量子点的制备及其在生物分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光标记物研究的核心是寻找灵敏度高、稳定性好的荧光物质或荧光试剂。目前,最为常用的是有机荧光染料。这类荧光试剂具有荧光强度高、种类多样化等特点,但同时也存在光学稳定性较差、激发光谱范围窄、发射光谱较宽、与生物分子的背景荧光难以区分等不可忽视的弱点,导致在应用中灵敏度下降。而量子点作为一种新型的荧光纳米材料,弥补了有机染料的上述缺点,引起分析化学和生命科学领域的广泛关注。荧光材料在获得广泛应用之前,必须具有普遍使用的制备方法。无论在国内还是国际领域,量子点绝大部分是采用三辛基膦/三辛基氧膦(TOP/TOPO)体系在300℃左右高温合成的。由这种方法制得的量子点具有较好的光学性质和较高的荧光产率。然而,采用TOP/TOPO体系合成量子点时,要求在试剂储存和制备过程中绝对无氧,合成条件苛刻。同时,纵观国内外市场,量子点作为一种荧光试剂,价格非常昂贵。因此,研究工作者开始寻求绿色、环保、更为有效的合成路线,以满足不同领域应用的需要。其中,水相合成法和绿色有机合成法最引人瞩目。目前除CdTe外,其它量子点如CdS、CdSe、ZnS等在水相中均不能得到高质量的荧光性能。基于上述研究现状,本项研究立足于利用廉价环保的绿色有机相法制备高质量荧光量子点,并考查它们在生物大分子标记以及肿瘤细胞的免疫成像等领域中的应用。
     首先,采用绿色无污染、价格低廉易得的石蜡作为反应溶剂和还原剂,在无需除氧的条件下,选用长链不饱和酸—油酸作为反应配体和稳定剂,常见无机试剂为反应原料,合成出CdS、CdSe/CdS以及Se掺杂的CdS等三种纳米量子点。经光学性能表征,所制备的三种量子点均具有荧光产率较高、半峰宽窄、峰形对称等优良的光谱性能;结构性能表征表明合成的量子点尺寸分布均匀,为近似球形颗粒。最后,将制得的量子点经巯基乙酸修饰后转移至水相,从而使其在生命科学领域中具有很好的应用前景。
     其次,为了验证和考察采用油酸/石蜡体系制备的量子点在生命领域中的应用情况,经过实验实现了CdSe量子点与生物大分子的链接,总结了量子点与酶、蛋白质等生物大分子结合的作用规律。实验中选取四种具有代表性的生物大分子进行研究,分别为:简单蛋白—牛血清白蛋白、胰凝乳蛋白酶,结合蛋白—牛血红蛋白以及Cu/Zn-超氧化物歧化酶。研究结果表明,量子点与简单蛋白结合后,蛋白质会以共价键形式结合在量子点的表面,使其表面钝化,从而导致量子点荧光强度明显提高。然而,在量子点与结合蛋白的作用中,由于金属离子的影响,使其与蛋白质的作用复杂化,荧光光谱表现为蛋白质与金属离子的双重作用结果,即简单蛋白使量子点荧光增强,而部分金属离子使荧光减弱。
     再者,基于与上述生物大分子的作用规律,利用量子点表面的羧基基团与抗体中氨基基团之间的相互作用,分别实现了CdSe量子点与兔抗人CEA8抗体以及羊抗兔免疫球蛋白的结合,通过抗原—抗体之间的特异性反应,采用直接和间接方法分别完成了CdSe量子点对宫颈癌上皮细胞—HeLa细胞的免疫标记与成像。间接方法可以消除量子点在细胞表面的非特异性吸附,表现出比直接方法更好的标记效果。标记完成24 h后,量子点标记的HeLa细胞表面仍然呈现出了明亮的荧光,具有很好的荧光稳定性。
     分别考查了巯基丙酸和半胱胺稳定的CdTe量子点与纳米金纳米颗粒之间的相互作用。利用金纳米粒子能够稳定而迅速地吸附蛋白质以及量子点能与蛋白质结合的特性,以胰凝乳蛋白酶为桥梁,实现了纳米金与巯基丙酸修饰的CdTe量子点之间的荧光共振能量转移,为纳米颗粒与生物大分子之间的相互作用提供了新的研究思路。
     简言之,本项工作以寻求简单、环保的制备高质量量子点的方法为出发点,建立了制备一系列量子点的新方法。同时,讨论了量子点与生物大分子之间结合的作用规律,并以此为基础,将量子点与抗体结合,实现了对肿瘤细胞的免疫标记和成像。此外,还对纳米金与量子点之间的相互作用做了系统考查。研究还表明,在量子点的多功能化、特异性检测等方面仍然存在很大的发展空间,是今后该领域很有前景的研究方向之一。
The key skill for developing fluorescent probes is to explore fine fluorescence materials and reagents with high sensitivity, good stability and diversification. Although with characteristics of high fluorescence yields, conventional organic dyes show some shortcomings such as narrower excitation, broader emission spectra, lower sensitivity and poor stability, which lead to much difficulty to distinguish them from self fluorescence of bio-molecules in applications. Quantum dots (QDs) just come to overcome these limitations of organic dyes and attract much attention of researchers in analytical and biological fields.
     For any fluorescent materials, facile synthesis method should be developed before they are used widely. Now, quantum dots are mostly prepared using TOP/TOPO system in which reagents are injected into a hot coordinating solvent tri-n-octylphosphine oxide (TOPO) at high temperature (about 300℃). This method would not be popular because the synthesis and storage procedures need to be operated under rigorous conditions such as full of nitrogen, without water and oxygen etc, even though the as prepared QDs possess good optical properties and high quantum yields (QYs). Furthermore, overlooking the markets at home and abroad, QDs, as a type of fluorescence reagents, are very expensive. Therefore, it is very important to search greener and effective routes to fulfil the demands in different fields. Among them, synthesis methods in aqueous solution and green organic ligands attracted much more attention. Unfortunately, QDs such as CdS, CdSe, ZnS obtained in aqueous solution usually show low QYs, although they have good biological compatibility. Based on above states, the aim of the present work is to synthesize high-quality QDs in a new way and then use them in macro-molecules probes, as well as immuno-imagings of tumor cells.
     For the preparation of QDs, as described in the second and third part of this thesis, a convenient and environment friendlier strategy, in which paraffin was used as solvent and reductant while oleic acid acted as stabilizer, was applied to prepare CdS, CdSe/CdS and Se doped CdS QDs. Optical and structure properties indicated that the as prepared QDs showed excellent fluorescence spectra with narrow FWHM (the full width at the half maximum), good dispersibility and desirable fluorescence yields. TEM images indicated that QDs dispersed well in aquous solution and the shape was approximately spherical. After modification with 2-mercaptoacetic acid, QDs were transferred into aqueous solution and got water-solublity for further applications in biological system.
     For the applications of QDs in analytical and biological fields, a study about the conjugation between CdSe QDs and macromolecules was carried out, in which the interaction rules between QDs and biological macromolecules such as proteins and enzymes were obtained. In this work described in the fourth part of this thesis, four kinds of proteins were chosen, they were normal proteins-bovine serum albumin (BSA) and chymotrpsin, as well as metalloproteinase-Cu/Zn SOD and bovine hemoglobin. Experimental results indicated that normal proteins could be covalently linked to QDs and the fluorescence intensity of QDs enhanced markedly after conjugating with BSA and chymotrypsin due to their passivation on the defects of QDs. However, for the conjugation of QDs with metalloprotein, the presence of metal ions made the conjugation be complicated and lead to the fluorescence spectra showing two kinds of results:the normal proteins could enhance its intensity and the matal ions in metalloprotein could quench it.
     With the similar linking method as described above, CdSe QDs were conjugated with rabbit anti-CEA8 antibody and goat anti-rabbit IgG through the interaction of carboxylic groups on the surface of QDs and amino groups on antibody. By the reaction between antibody and antigen, both QDs-antibody and QDs-IgG probes were successfully used to label HeLa cells, as described in the fifth part. Experimental results of fluorescence imaging indicated that the non-specific adsorption could be eliminated through the indirect labeling method. Tracking the signal of imaging for 24 h, QDs still exhibited high and stable fluorescence.
     In the sixth part, the interaction between gold nanoparticles (NCs) and CdTe QDs capped with mercaptopropionic acid or cysteamine were studied. Proteins can be not only adsorbed on the surface of gold NCs, but also linked to QDs in appropriate solution atmosphere. Based on that, fluorescence resonance energy transfers (FRET) assemble between QDs and gold NCs with chymotrypsin as the binding bridge is developed. This work provided some valuable information for the further study on the interaction mechanism among nanoparticles.
     In conclusion, this work began with seeking for a new environment friendly and simple route to synthesize high-quality QDs, then studied the conjugation ahout QDs with macromolecules. After linking with primary or second antibody, the QDs probes were used to label HeLa cells. At last, a deeper study on interaction between QDs and gold NCs was carried out. All experiments indicated that there are great potential in the multifunction and specific detection of QDs probes, which would turn to one of most promising research branches in this field.
引文
1. Klabunde K J著,陈建峰,邵磊,刘晓林译.纳米材料化学[M].北京:化学工业出版社,2004,19-20.
    2. Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles [J]. Langmuir, 1996,12(3):788-800.
    3. Sanchez S, Garcia J V. Morphological study of silver colloids employed in surface-enhanced Raman spectroscopy:Activation when exciting in visible and near-infrared regions [J]. J. Colloid. Interf. Sci.,1995,175(2):358-368.
    4. Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T. Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water [J]. J. Am. Chem. Soc.,2005,127(26):9374-9375.
    5. Pool R, Schapotschnikow P, Vlugt T J H. Solvent effects in the adsorption of alkyl thiols on gold structures:a molecular simulation study [J]. J. Phys. Chem. C.,2007,111(28): 10201-10212.
    6. Thanh N T K, Rosenzweig Z. Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles [J]. Anal. Chem.,2002,74(7):1624-1628.
    7. Grubisha D S, Lipert R J, Park H Y, Driskell J, Porter M D. Femtomolar detection of prostate-specific antigen:An immunoassay based on surface-enhanced Raman scattering and immunogold labels [J]. Anal. Chem.,2003,75(21):5936-5943.
    8. Daniel M C, Astruc D. Gold nanoparticles:Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J]. Chem. Rev.,2004,104(1):293-346.
    9. Elghanian R, Storhoff J J, Mucic R C, Letsinger R L, Mirkin C A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles [J]. Science,1997,277(5329):1078-1081.
    10. Wickelgren I. Molecular biology:Spinning junk into gold [J]. Science,2003,300: 1646-1649.
    11. Ye Z Q, Tan M Q, Wallg G L, Yuan J L. Novel fluorescent europium chelate-doped silica nanoparticles:Preparation, characterization and time-resolved fluorometric application [J]. J. Mater. Chem.,2004,14(5):851-856.
    12. Amlouk A, Mir L E, Kraiem S, Saadoun M, Alaya S, Pierre A C. Luminescence of TiO2: Pr nanoparticles incorporated in silica aerogel [J]. Mat. Sci. Eng. B,2008,146(1-3): 74-79.
    13. Nynke A M Verhaegh, Alfons B. Dispersions of rhodamine-labeled silica spheres: Synthesis, characterization, and fluorescence confocal scanning laser microscopy [J]. Langmuir,1994,10(5):1427-1438.
    14. Taylor J R, Fang M M, Nie S M. Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles [J]. Anal. Chem.,2000,72(9):1979-1986.
    15. Zhao X J, Bagwe R P, Tan W H. Development of organic-dye-doped silica nanoparticles in a reversed microemulsion [J]. Adv. Mater.,2004,16(2):173-176.
    16. Oh K, Yoo S, Ryu U C, Kim S, Paek U C, Soh D B S, Sahu J K, Nilsson J. Spectral control of optical gain in a rare earth-doped optical fiber using novel triple layered structures [J]. Opt. Fiber Technol.,2006,12, (4):297-304.
    17. Liu Z Y, Liu M, Song W H, Pan K, Li J H, Bai Y B, Li T J. Multi-fluorescent dye-doped SiO2/lanthanide complexes hybrid particles [J]. Mater. Lett.,2006,60(13-14):1629-1633.
    18. Kluge T, Masuda A, Yamashita K, Ushida K. Concentration and molecular weight dependence of the quenching of Ru(bpy)2+3 by ferricyanide in aqueous solutions of synthetic hyaluronan [J]. Macromolecules,2000,33(2):375-381.
    19. Wang L, Yang C Y, Tan W H. Dual-luminophore doped silica nanoparticles for multiplexed signaling [J]. Nano Lett.,2005,5(1):37-43.
    20. Santra S, Zhang P, Wang K M, Tapec R, Tan W H. Conjugation of biomolecules with lununophore-doped silica nanoparticles for photostable biomarkers [J]. Anal. Chem., 2001,73(20):4988-4993.
    21.曲会英,杨黄浩,林鹏.荧光团杂化SiO2.微球作为生物标记探针的应用研究[J].高等学校化学学报,2003,24(3):422-424.
    22. Zhao X J, Tapec-Dytioco R, Tan W H. Ultrasen-sitive DNA detection using highly fluorescent bioconjugated nanoparticles [J]. J. Am. Chem. Soc.,2003,125(38): 11474-11475.
    23.何晓晓,王柯敏,谭蔚泓,陈基耘,段菁华,原茵,林霞.静电相互作用对微乳液法制备核壳纳米颗粒的影响[J].科学通报,2005,50(20):2185-2190.
    24. Li X Z, Wang L, Zhou C, Guan T T, Li J, Zhang Y H. Preliminary studies of application of CdTe nanocrystals and dextran-Fe3O4 magnetic nanoparticles in sandwich immunoassay [J]. Clin. Chim. Acta,2007,378(1-2):168-174. 25. Li Y, Liu Y, Tang J, Lin H Q, Yao N, Shen X Z, Deng C H, Yang P Y, Zhang X M. Fe3O4@Al2O3 magnetic core-shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis [J]. J. Chromatogra. A,2007,1172(1): 57-71.
    26. Bucak S, Jones D A, Laibinis P E, Hatton T A. Protein seperations using colloidal magnetic nanoparticles [J]. Biotechnol. Prog.,2003,19:477-484.
    27. Weissleder R, Bogdanov A, Neuwelt E A, Paposov M. Long-circulating iron oxides for MR imaging [J]. Adv. Drug Del. Rev.,1995,16(2-3):321-334.
    28. Jordan A, Scholz R, Wust P, Schirra H, Thomas S, Schmidt H, Felix R. Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro [J]. J. Magn. Magn. Mater., 1999,194:185-196.
    29. Liu Z L, Ding Z H, Yao K L, Tao J, Du G H, Lu Q H, Wang X, Gong F L, Chen X. Preparation and characterization of polymer-coated core-shell structured magnetic microbeads [J]. J. Magn. Magn. Mater.,2003,265:98-105.
    30.王毅翔,何国祥,沈天真,陈星荣.超顺磁性氧化铁胶体用作网状内皮系统磁共振对比剂的实验研究(续)[J].中国医学影像学杂志,1998,6:42-45.
    31.钱建华,杨凯,范我,宋建荣,汪长源,胡明江,彭运开.用作核磁共振造影增强剂的氧化铁溶液理化性质测定[J].核技术,2001,24(6):487-490.
    32.丁广良,胡红兵,卢广,叶朝辉.两种新型的MRI照影剂[J].化学物理学报,2000,13(1):99-102.
    33. Henglein A. Small-particle research physicochemical properties of extremely small colloidal metal and semiconductor particles [J]. Chem. Rev.,1998,89:1861-1873.
    34. Brus L. Quantum crystallites and nonlinear optics [J]. Appl. Phys.1991, A53:465-474.
    35. Burda C, Chen X, Narayanan R, El-Sayed M A. The chemistry and properties of nanocrystals of different shapes [J]. Chem. Rev.,2005,105:1025-1102.
    36. Bailey R E, Smith A M, Nie S M. Quantum dots in biological and medicine [J]. Physica E, 2004,25:1-12.
    37. Bruchez Jr M, Moromme M, Gim P, Weiss S, Alivisatos A P. Semiconductor nanocrystals as flourescent biological labels [J]. Science,1998,281:2013-2016.
    38.郭可信.电子显微镜在材料科学中的应用[J].材料科学与工程,2002,20:1-10.
    39. Spanhel L, Haase M, Weller H, Henglein A. Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles [J]. J. Am. Chem. Soc,1987,109,5649-5655.
    40. Kortan A R, Hull R, Opila R L, Bawendi M G, Steigerwald M L, Carrikk P J, Brus L E. Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media [J]. J. Am. Chem. Soc.,1990,112:1327-1332.
    41. Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. J. Am. Chem. Soc.,1993,115:8706-8715.
    42. Peng Z A, Peng X G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor [J], J. Am. Chem. Soc.,2001,123,183-184.
    43. Han M Y, Gao X H, Su Jack Z, Nie S M. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules [J]. Nat. Biotechnol.,2001,19:631-635.
    44. Deng Z T, Cao L, Tang F Q, Zou B S. A new route to zinc-blende CdSe nanocrystals: Mechanism and synthesis [J], J. Phys. Chem. B,2005,109:16671-16675.
    45. Rajh T, Micic O I, Nozik A J. Synthesis and characterization of surface-modified colloidal cadmium telluride quantum dots [J]. J. Phys. Chem.,1993,97:11999-12003.
    46. Gaponik N, TalapinD V, Rogach A L, Hoppe K, Shevchenko E V, Kornowski A, Eychmuller A, Weller H. Thiol-capping of CdTe nanocrystals:An alternative to organometallic synthetic routes [J]. J. Phys. Chem. B,2002,106:7177-7185.
    47. Zhang H, Zhou Z, Yang B, Gao M. The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles [J]. J. Phys. Chem. B,2003,107:8-13.
    48. Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science,1996, 271:933-937.
    49.舒磊,俞书宏,钱逸泰.半导体硫化物纳米微粒的制备[J].无机化学学报,1999,15(1):1-7.
    50. Liu Y C, Kim M, Wang Y J, Wang Y A, Peng X G. Highly luminescent, stable, and water-soluble CdSe/CdS core-shell dendron nanocrystals with carboxylate anchoring groups [J]. Langmuir,2006,22: 6341-6345.
    51.吴华强,邵名望,顾家山,魏先文.微波辅助法制备纤维状NaFeS2纳米粒子及其XPS研究[J].光谱学与光谱分析,2005,25(6):949-951.
    52. Zhu J, Zhou M, Xu L, Liao X. Preparation of CdS and ZnS nanoparticles using microwave irradiation [J]. Mater. Lett.,2001,47(1-2):25-29.
    53. Zhu J, Palchik 0, Chen S, Gedanken A. Microwave assisted preparation of CdSe, PbSe, and Cu2-xSe nanoparticles [J]. J. Phys. Chem. B,2000,104:7344-7347.
    54. Li L, Qian H F, Ren J C. Rapid synthesis of highly luminescent CdTe nanocrystals in the aqueous phase by microwave irradiation with controllable temperature [J]. Chem. Commun.,2005:528-530.
    55. Chu M Q, Shen X Y, Liu G J. Microwave irradiation method for the synthesis of water-soluble CdSe nanoparticles with narrow photoluminescent emission in aqueous solution [J]. Nanotechnology,2006,7:444-449.
    56.陈启凡,杨冬芝,徐淑坤,曲正.微波快速加热制备半胱胺包被的水溶性CdTe量子点及其光学性能的研究[J].光谱学与光谱分析,2007,27(4):650-653.
    57.许燕,林兆军,陈伟,白远强,方克明.CdSe纳米团簇的透射电镜研究[J].半导体学报,1998,19(3):181-184.
    58. Lakowicz J R, Grycznski I, Gryczynski J, Murphy C J. Luminescence spectral properties of CdS nanoparticles [J]. J. Phys. Chem. B,1999,103:7613-7620.
    59.刘舒曼,徐征.CdSe纳米晶的制备及性能表征[J].光电子·激子,2003,14(1):46-49.
    60. Becerra L R, Murray C B, Griffin R G, Bawendi M G Investigation of the surface morphology of capped CdSe nanocrystallites by 31P nuclear magnetic resonance [J]. J. Chem. Phys.,1994,100:3297-3300.
    61. Katari J E B, Colvin V L, Alivisatos A P. X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface [J]. J. Phys. Chem., 1994,98:4109-4117.
    62. Zhou H S, Honma I, Komiyama H, Haus J W. Coated semiconductor nanoparticles; the cadmium sulfide/lead sulfide system's synthesis and properties [J]. J. Phys. Chem.,1993, 97:895-901.
    63. Zhou H S, Sasahara H, Honma I, Komiyama H, Haus J W. Coated semiconductor nanoparticles:the CdS/PbS system's photoluminescence properties [J]. Chem. Mater., 1994,6:1534-1541.
    64. Isarov A V, Chrysochoos J. Optical and photochemical properties of nonstoichiometric cadmium sulfide nanoparticles:surface modification with copper (Ⅱ) ions [J]. Langmuir, 1997,13:3142-3149.
    65. Peng X G, Schlamp M C, Kadavanich A V, Alivisatos A P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility [J]. J. Am. Chem. Soc.,1997,119:7019-7029.
    66. Kamalov V F, Little R, Logunov S L, Elsayed M A. Picosecond electronic relaxation in CdS/HgS/CdS quantum dot quantum well semiconductor nanoparticles [J]. J. Phys. Chem.,1996,100:6381-6384.
    67. Guzelian A A, Katari J E B, Kadavanich A V, Banin U, Hamad K, Juban E, Alivisatos A P, Wolters R H, Arnold C C, Heath J R. Synthesis of size-selected, surface-passivated InP nanocrystals [J]. J. Phys. Chem.,1996,100:7212-7219.
    68. Hines M A, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals [J]. J. Phys. Chem.,1996,100:468-471.
    69. Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, Heine J R, Mattoussi H, Ober R, Jensen K F, Bawendi M G (CdSe)ZnS core-shell quantum dots:synthesis and characterization of a size series of highly luminescent nanocrystallites [J]. J. Phys. Chem. B,1997,101: 9463-9475.
    70. Pan D, Wang Q, Jiang S, Ji X, An L. Low-temperature synthesis of oil-soluble CdSe, CdS, and CdSe/CdS core-shell nanocrystals by using various water-soluble anion precursors [J]. J. Phys. Chem. C.,2007,111(15):5661-5666.
    71. Hines M A, Guyot-Sionnest P. Synthesis of strongly luminescing ZnS-capped CdSe nanocrystals [J]. J. Phys. Chem. B,1996,100:468-471
    72. Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, Heine J R, Mattoussi H, Ober R, Jensen K F, Bawendi M G (CdSe)ZnS core-shell quantum dots:synthesis and characterization of a size series of highly luminescent nanocrystallites [J]. J. Phys. Chem. B,1997,101: 9463-9475.
    73.孙聆东,付雪峰,钱程,廖春生,严纯华.水热法合成CdS/ZnO核壳结构纳米微粒[J].高等学校化学学报,2001,22(6):879-882.
    74. Mattoussi H, Mauro J M, Goldman E R, Anderson G P, Sundar V C, Mikulec F V, Bawendi M G Self-assemble of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein [J]. J. Am. Chem. Soc.,2000,122:12142-12150.
    75. Mitchell G P, Mirkin C A, Letsinger R L. Programmed assembley of DNA functionalized quantum dots [J]. J. Am. Chem. Soc.,1999,121:8122-8123.
    76. Chan W C W, Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J]. Science,1998,281:2016-2018.
    77.孙保全,衣光舜,陈德朴,谢文章,周玉祥,程京.分析化学的成就与挑战[M],重庆,重庆师范大学出版社,2000年.
    78. Pathak S, Choi Soo-K, Arnheim N, Thompson M E. Hydroxylated quantum dots as luminescent probes for in situ hybridization [J]. J. Am. Chem. Soc.,2001,123: 4103-4104.
    79. Chu M Q, Sun Y, Shen X Y, Liu G J. Synthesis and characterization of SiO2-coated mercaptoacetic acid-stabilized CdSe nanocrystals in aqueous solution [J]. Physica E, 2006,35:75-80.
    80. Chang S, Zhou M, Grover C. Information coding and retrieving using fluorescent semiconductor nanocrystals for object identification [J]. Optics Express,2004,12: 143-148.
    81. Schroedter A, Weller H, Eritja R, Ford W E, Wessels J M. Biofunctionalization of silica-coated CdTe and gold nanocrystals [J]. Nano Lett.,2002,2:1363-1367.
    82. Hoppe K, Geidel E, Weller H, Eychmuller A. Covalently bound CdTe nanocrystals [J]. Phys. Chem. Chem. Phys.,2002,4:1704-1706.
    83. Mattoussi H, Mauro J M, Goldman E R, Anderson G P, Sundar V C, Mikulec F V, Bawendi M G Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein [J]. J. Am. Chem. Soc.,2000,122:12142-12150
    84.林章碧,张皓,陈奇丹,万异,杨柏,苏星光,张家骅,金钦汉.利用水相合成的量子点标记木瓜蛋白酶的研究[J].高等学校化学学报,2003,24:609-611.
    85.张春阳,马辉,丁尧,金雷,陈瓞延,苗琦,聂书明.量子点标记天花粉蛋白的研究[J].高等学校化学学报,2001,22(1):34-37.
    86. Ji X J, Zheng J Y, Xu J M, Rastogi V K, Cheng T C, DeFrank J J, Leblanc R M. (CdSe)ZnS quantum dots and organophosphorus hydrolase bioconjugate as biosensors for detection of paraoxon [J]. Phys. Chem. B,2005,109(9):3793-3799.
    87. Li H, Qu F. Synthesis of CdTe quantum dots in sol-gel-derived composite silica spheres coated with calyx [4] arene as luminescent probes for pesticides [J]. Chem. Mater.,2007, 19(17):4148-4154.
    88. Chang E, Miller J S, Sun J T, Yu W W, Colvin V L, Drezek R, West J L. Protease-activated quantum dot probes [J]. Biochem. Bioph. Res. Co.,2005,334: 1317-1321.
    89. Goldman E R, Anderson G P, Tran P T. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays [J]. Anal. Chem.,2002,74:841-847.
    90. Lingerfelt B M, Mattoussi H, Goldman E R, Mauro J M, Anderson G P. Preparation of quantum dot-biotin conjugates and their use in immunochromatography assays [J]. Anal. Chem.,2003,75:4043-4049.
    91. Chen F Q, Gerion D. Fluorescent ZnS@CdSe nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells [J]. Nano Lett.,2004, 4(10):1827-1832.
    92. Jaiswal J K, Mattoussi H, Mauro J M, Simon S M. Long-term multiple color imaging of live cells using quantum dot bioconjugates [J]. Nat. Biotechnol.,2003,21(1):47-51.
    93. Dubertret B, Skourides P, Norris D J, Noireaux V, Brivanlou A H, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles [J]. Science,2002,298: 1759-1762.
    94. Larson D R, Zipfel W R, Williams R M, Clark S W, Bruchez M P, Wise F W, Webb W W. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo [J]. Science,2003,300:1434-1436.
    95. Goldman E R, Clapp A R, Anderson G P, Uyeda H T, Mauro J M, Medintz I L, Mattoussi H. Multiplexed toxin analysis using four colors of quantum dot fluororeagents [J]. Anal. Chem.,2004,76 (3):684-688.
    96. Xie M, Liu H H, Chen P, Zhang Z L, Wang X H, Xie Z X, Du Y M, Pan B Q, Pang D W. CdSe/ZnS-labeled carboxymethyl chitosan as a bioprobe for live cell imaging [J]. Chem. Commun.,2005,44:5518-5520.
    97. Wang G P, Song E Q, Xie H Y, Zhang Z L, Tian Z Q, Zuo C, Pang D W, Wu D C, Shi Y B. Biofunctionalization of fluorescent-magnetic-bifunctional nanospheres and their applications [J]. Chem. Commun.,2005,34:4276-4278.
    98. Xie H Y, Zuo C, Liu Y, Zhang Z L, Pang D W, Li X L, Gong J P, Dickinson C, Zhou W Z. Cell-targeting multifunctional nanospheres with both fluorescence and magnetism [J]. Small,2005,1(5):506-509.
    99. Bailey R E, Nie S M. Alloyed semiconductor QDs:tuning the optical properties without changing the particle size [J]. J Am Chem Soc,2003,125(23):7100-7106.
    100.Liotta L, Petricoin E. Molecular profiling of human cancer [J]. Nat. Rev. Genet.,2000,1: 48-56.
    101.Ness J M, Akhtar R S, Latham C B. Combined tyramide signal amplification and quantum dots for sensitive and photostable immunofluorescence detection [J]. J Histochem. Cytochem.,2003,51(8):981-987.
    102.Ravindran S, Kim S, Martin R, Lord E M, Ozkan C S. Quantum dots as bio-labels for the localization of a small plant adhesion protein [J]. Nanotechnology,2005,16(1):1-4.
    103.Hoshino A, Hanakik, Suzuki K, Yamamoto K. Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body [J]. Biochem. Bioph. Res. Co.,2004,314:46-53.
    104.Kim S, Lim Y T, Soltesz E G, Grand A M D, Lee J, Nakayama A, Parker J A, Mihaljevic T, Laurence R G, Dor D M, Cohn L H, Bawendi M G, Frangioni J V. Near-infrared fluorescent type Ⅱ quantum dots for sentinel lymph node mapping [J]. Nat. Biotechnol., 2003,22:93-97.
    105.Zimmer J P, Kim S W, Ohnishi S, Tanaka E, Frangioni J V, Bawendi M G. Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging [J]. J. Am. Chem. Soc.,2006,128:2526-2527.
    106.Oh E, Hong M Y, Lee D, Nam S H, Yoon H C, Kim H S. Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles [J]. J. Am. Chem. Soc.,2005,127 (10):3270-3271.
    107.Clapp A R, Medintz I L, Fisher B R, Anderson G P, Mattoussi H. Can luminescent quantum dots be efficient energy acceptors with organic dye donors? [J]. J. Am. Chem. Soc.,2005,127:1242-1250.
    108.Willard D M, Carillo L L, Jung J, Orden A V, CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay [J]. Nano Lett.,2001, 1(9):469-474.
    109.Clapp A R, Medintz I L, Mauro J M, Fisher B R, Bawendi M G, Mattoussi H, Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors [J]. J. Am. Chem. Soc.,2004,126(1):301-310.
    110.Medintz I L, Trammell S A, Mattoussi H, Mauro J M, Reversible modulation of quantum dot photoluminescence using a protein-bound photochromic fluorescence resonance energy transfer acceptor [J]. J. Am. Chem. Soc.,2004,126(1):30-31.
    111.Willard D M, Orden A V, Quantum dots:Resonant energy-transfer sensor [J]. Nat. Mater., 2003,-2:575-576.
    112.Wang S P, Mamedova N, Nicholas A K, Chen We, Studer J, Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates [J]. Nano Lett.,2002,2(8): 817-822.
    113.Goldman E R, Medintz I L, Whitley J L, Hayhurst A, Clapp A R, Uyeda H T, Deschamps J R, Lassman M E, Mattoussi H A. Hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor [J]. J. Am. Chem. Soc.,2005,127 (18):6744-6751.
    114.Wang J H, Liu T C, Cao Y C, Hua X F, Wang H Q, Zhang H L, Li X Q, Zhao Y D. Fluorescence resonance energy transfer between FITC and water-soluble CdSe/ZnS quantum dots [J]. Colloid. Surface. A,2007,302(1-3):168-173.
    115.Jamieson T, Bakhshi.R, Petrova D, Pocock R, Imani M, Seifalian A M. Biological applications of quantum dots [J]. Biomaterials,2007,28(31):4717-4732.
    116.Medintz I L, Clapp A R, Mattoussi H, Goldman E R, Fisher B, Matthew J M. Self-assembled nanoscale biosensors based on quantum dot FRET donors [J]. Nat. Mater., 2003,2(9):630-638.
    117.Medintz I L, Goldman E R, Lassman M E, Mauro J M. A fluorescence resonance energy transfer sensor based on maltose binding protein [J]. Bioconjug. Chem.,2003,14(5): 909-918.
    118.Mohamed Ali E, Zheng Y, Yu H H, Ying J Y. Ultrasensitive Pb2+ detection by glutathione-capped quantum dots [J]. Anal. Chem.,2007,79(24):9452-9458.
    119.Chen Y, Rosenzweig Z. Luminescent CdS quantum dots as selective ion probes [J]. Anal. Chem.,2002,74(19):5132-5138.
    120.Ai X P, He Z K, Pang D W. Functionalized CdSe quantum dots as selective silver ion chemodosimeter Jian-Gong Liang [J]. Analyst,2004,129:619-622.
    121.严拯宇,庞代文,邵秀芬,胡育筑.量子点荧光猝灭法测定中药饮片中的微量铜[J].中国药科大学学报2005,3:230-233.
    122.Gardea-Torresdey J L, Tiemann K, Parsons J G, Gamez G., Yacaman M J. Characterization of trace level Au (Ⅲ) binding to alfalfa biomass (medicago sativa) by GFAAS [J]. Adv. Environ. Res.,2002,6:313-323.
    123.Zheng H R, Wang X J, Qua S X, Dejneka M J, Meltzer R S. Dynamical processes of Ln3+ ions doped in LaF3 nanocrystals embedded in transparent oxyfluoride glass [J]. J. Lumin., 2006,119-120:153-160.
    124.Dayal S, Burda C. Semiconductor quantum dots as two-photon sensitizers [J]. J. Am. Chem. Soc.,2008,130(10):2890-2891.
    125.Wang X H, Du Y M, Ding S, Wang Q Q, Xiong G G, Xie M, Shen X C, Pang D W. Preparation and third-order optical nonlinearity of self-assembled chitosan/CdSe-ZnS core-shell quantum dots multilayer films [J]. J. Phys. Chem. B,2006,110:1566-1570.
    126.Zheng H R, Meltzer R S. Nonradiative relaxation of rare-earth ions in YPO4 crystal [J]. J. Lumin.,2007,122-123:478-480.
    127.Gorbatsevich S K, Kaputskaya I A, Mikhnevich S Yu, Artemyev M V, Nabiev I R, Strekal N D, Maskevich S A. Fluorescence of CdSe/ZnS quantum dots in solid solutions in the presence of organic molecules DODCI [J]. J. Lumin.,2005,110:23-29.
    128.Huang B H, Tomalia D A. Dendronization of gold and CdSe/cdS (core-shell) quantum dots with tomalia type, thiol core, functionalized poly (amidoamine) (PAMAM) dendrons [J]. J. Lumin.,2005,111:215-223.
    129.Wu C, Szymanski C, Cain Z, McNeill J. Conjugated polymer dots for multiphoton fluorescence imaging [J]. J. Am. Chem. Soc.,2007,129(43):12904-12905
    130.Mulder W J M, Koole R, Brandwijk R J, Storm G, Chin P T K, Strijkers G J, Mello Donega C, Nicolay K, Griffioen A W. Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe [J]. Nano Lett.,2006,6(1):1-6.
    131.Xiong H, Chen Z H, Hyomi K, Souma I, Zhang Y N, Sun L X, Ren Q J, Bai L H, Huang S H, Wang F Z, Murayama A, Oka Y, Shen S C. Coupling of quantum states in a single CdSe/ZnSe quantum dot molecule [J]. J. Lumin.,2006,119-120:193-197.
    132.Xie M, Liu H H, Chen P, Ling Z Z, Wang X H, Xie Z X, Du Y M, Pan B Q, Pang D W. CdSe/ZnS-labeled carboxymethyl chitosan as a bioprobe for live cell imaging [J]. Chem. Commun.,2005,44:5518-5520.
    133 Jeong S, Achermann M, Nanda J, Ivanov S, Klimov V I, Hollingsworth J A. Effect of the thiol-thiolate equilibrium on the photophysical properties of aqueous CdSe/ZnS nanocrystal quantum dots [J]. J. Am. Chem. Soc.,2005,127(29):10126-10127.
    134.Murcia M J, Shaw D L, Woodruff H, Naumann C A, Young B A, Long E C. Facile sonochemical synthesis of highly luminescent ZnS-shelled CdSe quantum dots [J]. Chem. Mater.,2006,18(9):2219-2225.
    135.Mansson A, Sundberg M, Balaz M, Bunk R, Nicholls I A, Omling P, Tagerud S, Montelius L, In vitro sliding of actin filaments labelled with single quantum dots [J]. Biochem. Bioph. Res. Co.,2004,314:529-534.
    136.Venugopal B R, Ravishankos N, Perrey C R, Shivakumara C, Rajamathi M. Layered double hydroxide-CdSe quantum dot composites through colloidal processing:effect of host matrix-nanoparticle interaction on optical behavior [J]. J. Phys. Chem. B,2006,110: 772-776.
    137.Uematsu T, Maenosono S, Yamaguchi Y. Photoinduced fluorescence enhancement in mono- and multilayer films of CdSe/ZnS quantum dots:dependence on intensity and wavelength of excitation light [J]. J. Phys,Chem. B.,2005,109(18):8613-8618.
    138.滕枫,唐爱伟,高银浩,梁春军,徐征,王永生.水溶胶CdSe/CdS核/壳结构纳米晶制备及光学性质的研究[J].光谱学与光谱分析,2005,25:651-654.
    139.Rogach A L, Kornowski A, Gao M, Eychmuller A, Weller H. Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals [J]. J. Phys. Chem. B,1999,103:3065-3069.
    140.Demas J N, Crosby G A. The measurement of photoluminescence quantum yields [J], J. Phys. Chem.,1971,75 (8):991-1024.
    141.Chen Y, Ji T, Rosenzweig Z. Synthesis of glyconanospheres containing luminescent CdSe-ZnS quantum dots [J]. Nano Lett.,2003,3(5):581-584.
    142.Hao E, Sun H P, Zhou Z, Liu J Q, Yang B, Shen J C. Synthesis and optical properties of CdSe and CdSe/CdS nanoparticles [J]. Chem. Mater.,1999,11:3096-3102.
    143.Billone P S, Maretti L, Maurel V, Scaiano J C. Dynamics of the dissociation of a disulfide biradical on a CdSe nanoparticle surface [J]. J. Am. Chem. Soc.,2007,129(46): 14150-14151.
    144.www.jobinyvon.co.uk/jy/fluorescence/applications/quantumyieldstrad.pdf.
    145.Mekis I, Talapin D V, Kornowski A, Haase M, Weller H. One-pot synthesis of highly luminescent CdSe/CdS core-shell nanocrystals via organometallic and "greener" chemical approaches [J]. J. Phys. Chem. B,2003,107:7454-7462.
    146.Heuff R F, Cramb D T, Marrocco M. Fluorescence correlation spectroscopy for diffusion of mobile quantum dots in dilute solutions [J]. Chem. Phys. Lett.,2008,454(4-6): 257-261.
    147.Mao J, Yao J N, Wang L N, Liu W S. Easily prepared high-quantum-yield CdS quantum dots in water using hyperbranched polyethylenimine as modifier [J]. J. Colloid Interf. Sci., 2008,319(1):353-356.
    148.Khanna P K, Singh N. Light emitting CdS quantum dots in PMMA:Synthesis and optical studies [J]. J. Lumin.,2007,127(2):474-482.
    149.Duong H D, Rhee J. Use of CdSe/ZnS core-shell quantum dots as energy transfer donors in sensing glucose [J]. Talanta,2007,73(5):899-905.
    150.Wang L, Wang L Y, Zhu C Q, Wei X W, Kan X W. Preparation and application of functionalized nanoparticles of CdS as a fluorescence probe [J]. Anal. Chim. Acta,2002, 468:35-41.
    151.He R, Gu H C. Synthesis and characterization of mondispersed CdSe nanocrystals at lower temperature [J]. Colloid. Surface. A,2006,272:111-116.
    152.Li J, Bao D S, Hong X, Li D, Li J H, Bai Y B, Li T J. Luminescent CdTe quantum dots and nanorods as metal ion probes [J]. Colloid. Surface. A,2005,257:267-271.
    153.Chan W C W, Maxwell D J, Gao X, Bailey R E, Han M Y, Nie S M. Luminescent quantum dots for multiplexed biological detection and imaging [J]. Curr Opin Biotech., 2002,13:40-46.
    154.Horiuchi H, Iwami N, Tachibana F, Ohtaki A, Iizuka R, Zako T, Oda M, Yohda M, Tani T. Complex formation of CdSe/ZnS/TOPO nanocrystal vs. molecular chaperone in aqueous solution by hydrophobic interaction [J]. J. Lumin.,2007,127(1):192-197.
    155.Gao X H, Nie S M. Doping mesoporous materials with multicolor quantum dots [J]. J. Phys. Chem. B,2003,107:11575-11578.
    156.Vassiltsova 0 V, Zhao Z Y, Petrukhina M A, Carpenter M A. Surface-functionalized CdSe quantum dots for the detection of hydrocarbons [J]. Sensor. Actuat. B,2007,123(1): 522-529.
    157.Oda M, Hasegawa A, Iwami N, Nishiura K, Ando N, Nishiyama A, Horiuchi H, Tani T. Photoluminescence behaviors of single CdSe/ZnS/TOPO nanocrystals:Adsorption effects of water molecules onto nanocrystal surfaces [J]. J. Lumin.,2007,127(1):198-203.
    158.Sharma S N, Sharma H, Singh G, Shivaprasad S M. Low energy ion induced effects on TOPO capped CdSe nanocrystals probed by XPS depth profiling and optical measurements [J]. Nucl. Instrum. Meth. B.,2006,244(1):86-90.
    159.Yamasaki C, Koyanagi K O, Fujii Y, Itoh T, Barrero R, Tamura T, Yamaguchi-Kabata Y, Tanino M, Takeda J, Fukuchi S, Miyazaki S, Nomura N, Sugano S, Imanishi T, Gojobori T. Investigation of protein functions through data-mining on integrated human transcriptome database, H-Invitational database (H-InvDB) [J]. Gene,2005,364:99-107.
    160.Li J J, Wang Y A, Guo W Z, Keay J C, Mishima T D, Johnson M B, Peng X G Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction [J]. J. Am. Chem. Soc., 2003,125:12567-12575.
    161.Zhong X H, Feng Y Y, Knoll W, Han M. Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width [J]. J. Am. Chem. Soc.,2003,215:13559-13563.
    162.林章碧,苏星光,张家骅,金钦汉。纳米粒子在生物分析中的应用[J].分析化学,2002,30(2):237-241.
    163.李步洪,张镇西,谢树森.量子点在生物学中的研究进展[J].激光生物学报,2006,15(2):214-220.
    164.Diguna L J, Shen Q, Sato A, Katayama K, Sawada T, Toyoda T. Optical absorption and ultrafast carrier dynamics characterization of CdSe quantum dots deposited on different morphologies of nanostructured TiO2 films [J]. Mater. Sci. Engin. C,2007,27(5-8): 1514-1520.
    165.Lan X M, Cao X B, Qian W H, Gao W J, Zhao C, Guo Y. Long Fe3O4 nanowires decorated by CdTe quantum dots:Synthesis and magnetic-optical properties [J]. J. Solid State Chem.,2007,180(8):2340-2345.
    166.林章碧,苏星光,张皓,牟颖,孙晔,胡海,杨柏,闫岗林,罗贵民,金钦汉。用 水溶液中合成的量子点作为生物荧光标记物的研究[J].高等学校化学学报,2003,24(2):212-220.
    167.Kochereshko V P, Platonov A V, Gurevich A S. Optical anisotropy of cubic crystals, from bulk to quantum dots [J]. J. Lumin.,2007,125(1-2):133-146.
    168.Jiang W, Mardyani S, Fischer H, Chan C W. Design and characterization of lysine cross-linked mercapto-acid biocompatible quantum dots [J]. Chem. Mater.,2006,18: 872-878.
    169.Jin W J, Costa-Fernandez J M, Pereiro R, Sanz-Medel A. Surface-modified CdSe quantum dots as luminescent probes for cyanide determination [J]. Anal. Chim. Acta, 2004,522(1):1-8.
    170.Fernandez-arguelles M T, Jin W J, Costa-Fernandez J M., Pereiro R, Sanz-Medel A. Surface-modified CdSe quantum dots for the sensitive and selective determination of Cu(II) in aqueous solutions by luminescent measurements [J]. Anal. Chim. Acta,2005, 549(1-2):20-25.
    171.Li H B, Zhang Y, Wang X Q. L-Carnitine capped quantum dots as luminescent probes for cadmium ions [J]. Sensor. Actuat. B,2007,127(2):593-597.
    172.Xie H Y, Liang J G, Zhang Z L, Liu Y, He Z K, Pang D W. Luminescent CdSe-ZnS quantum dots as selective Cu2+ probe [J]. Spectrochim Acta A,2004,60(11):2527-2530.
    173.Schneider T, Moore L R, Jing Y, Haam S, Williams P S, Fleischman A J, Roy S, Chalmers J J, Zborowski M. Continuous flow magnetic cell fractionation based on antigen expression level [J]. J. Biochem. Biophys. Methods,2006,68:1-21.
    174.Ansorge W, Pepperkok R. Performance of an automated system for capillary microinjection into living cells [J]. J. Biochem. Biophys. Methods.,1998,16:283-292.
    175Jiang C, Xu S K, Yang D Z, Zhang F H, Wang WX. Synthesis of glutathione-capped CdS quantum dots and preliminary studies on protein detection and cell fluorescence image [J]. Luminescence,2007,42:430-437.
    176.Wu Y, Lopez G P, Sklar L A, Buranda T. Spectroscopic characterization of streptavidin functionalized quantum dots [J]. Anal. Biochem.,2007,364(2):193-203.
    177.Kampani K, Quann K, Ahuja J, Wigdahl B, Khan Z K, Jain P. A novel high throughput quantum dot-based fluorescence assay for quantitation of virus binding and attachment [J]. J. Virol. Methods,2007,141(2):125-132.
    178.Ding S Y, Jones M, Tucker M P, Nedeljkovic J M, Wall J, Simon M N, Rumbles G, Himmel M E. Quantum dot molecules assembled with genetically engineered proteins [J]. Nano Lett.,2003,3:1581-1585.
    179.Fu A H, Micheel C M, Cha J, Chang H, Yang H, Alivisatos A P. Discrete nanostructures of quantum dots/Au with DNA [J]. J. Am. Chem. Soc.,2004,126:10832-10833.
    180.Silver J, Ou W. Photoactivation of quantum dot fluorescence following endocytosis [J]. Nano Lett.,2005; 5:1445-1449.
    181.Murcia M J, Shaw D L, Long E C, Naumann C A. Fluorescence correlation spectroscopy of CdSe/ZnS quantum dot optical bioimaging probes with ultra-thin biocompatible coatings [J]. Opt. Commun.,2008.281(7):1771-1780.
    182.Gao X H, Cui Y Y, Levenson R M, Chung L W K, Nie S M. In vivo cancer targeting and imaging with semiconductor quantum dots [J]. Nat. Biotechnol.,2004,22:969-976.
    183.Cai W B, Shin D W, Chen K, Gheysens O, Cao Q Z, Wang S X, Gambhir S S, Chen X Y. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects [J]. Nano Lett.,2006,6:669-676.
    184.Wu X Y, Liu H J, Liu J Q, Haley K N, Treadway J A, Larson J P, Ge N F, Peale F, Bruchez M P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots [J]. Nat. Biotechnol.,2003,21:41-46.
    185.Li Z H, Wang K M, Tan W H, Li J, Fu Z Y, Ma C B, Li H M, He X X, Liu J B. Immunofluorescent labeling of cancer cells with quantum dots synthesized in aqueous solution [J]. Anal. Biochem.,2006,354:169-174.
    186.Tholouli E, Hoyland J A, Vizio D D, O'Connell F, Macdermott S A, Twomey D, Levenson R, Liu Y J A, Golub T R, Loda M, Byers R. Imaging of multiple mRNA targets using quantum dot based in situ hybridization and spectral deconvolution in clinical biopsies [J]. Biochem. Biophys. Re. Co.,2006,348(2):628-636.
    187.Guo G N, Liu W, Liang J G, He Z K, Xu H B, Yang X L. Probing the cytotoxicity of CdSe quantum dots with surface modification [J]. Mater. Lett.,2007,61(8-9):1641-1644.
    188.Courty S, Bouzigues C, Luccardini C, Ehrensperger M V, Bonneau S, Dahan M. Tracking individual proteins in living cells using single quantum dot imaging [J]. Method. Enzymol.,2006,414:211-228.
    189.Ballou B, Lagerholm B C, Ernst L A, Bruchez M P, Waggoner A S. Noninvasive imaging of quantum dots in mice Bioconjug [J]. Bioconjug. Chem.,2004,15:79-86.
    190.Tomlinson I D, Gies A P, Gresch P J, Dillard J, Orndorff R L, Sanders-Bush E, Hercules D M, Rosenthal S J. Universal polyethylene glycol linkers for attaching receptor ligands to quantum dots [J]. Bioorg. Med. Chem. Lett.,2006,16(24):6262-6266.
    191.Zhang B B, Cheng J, Li D, Liu X H, Ma G P, Chang J. A novel method to make hydrophilic quantum dots and its application on biodetection [J]. Mater. Sci. Eng. B,2008, 149(1):87-92.
    192.Chen Q D, Ma Q, Wan Y, Su X G, Lin Z B, Jin Q H. Studies on fluorescence resonance energy transfer between dyes and water-soluble quantum dots [J]. Luminescence,2005, 20:251-255.
    193.Zhu C Q, Zhao D H, Chen J L, Li Y X, Wang L Y, Wang L. Application of L-cysteine-capped nano-ZnS as a fluorescence probe for the determination of proteins [J]. Anal. Bioanal. Chem.,2004,378:811-815.
    194.Severine L G, Istvan V, Albert B. Quantum dots based probes conjugated to annexin Ⅴ for photostable apoptosis detection and imaging [J]. Nano Lett.,2006,6(9):1863-1869.
    195.Fu Z Y, Li Z H, He X X, Wang K M, Tan W H, Li H M. Detection of antigen CA242 in gastric cancer cells using water-soluble quantum dots [J]. Chinese J Anal. Chem.,2006, 34(12):1669-1673.
    196.Yaguchi T, Harada J I, Ikeda Y, Hirano T, Chiura H X, Kaul S C, Kaul Z, Wadhwa R. An antibody-conjugated internalizing quantum dot suitable for long-term live imaging of cells [J]. Biochem Cell Biol.,2007,85(1):133-140.
    197.Kirchner C, Liedl T, Kudera S, Pellegrino T, Javier A M, Gaub H E, Stolzle S, Fertig N, Parak W J. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles [J]. Nano Lett., 2005,5:331-338.
    198.Shi L, De Paoli V, Rosenzweig N, Rosenzweig Z. Synthesis and application of quantum dots fret-based protease sensors [J]. J. Am. Chem. Soc.,2006,128(32):10378-10379.
    199.Ma Q, Su X G, Wang X Y, Wan Y, Wang C L, Yang B, Jin Q H. Fluorescence resonance energy transfer in doubly-quantum dot labeled IgG system [J]. Talanta,2005,67(5): 1029-1034.
    200.Algar W R, Krull U J. Towards multi-colour strategies for the detection of oligonucleotide hybridization using quantum dots as energy donors in fluorescence resonance energy transfer (FRET) [J]. Anal. Chim. Acta,2007,581:193-201.
    201.Peng H, Zhang L, Kjallman T H M, Soeller C, Travas-Sejdik J. DNA hybridization detection with blue luminescent quantum dots and dye-labeled single-stranded DNA [J]. J. Am. Chem. Soc.,2007,129(11):3048-3049.
    202.Wei Q, Lee M, Yu X, Lee E K, Seong G H, Choo J, Cho Y W. Development of an open sandwich fluoroimmunoassay based on fluorescence resonance energy transfer [J]. Anal. Biochem.,2006,358:31-37.
    203.Shi L, Rosenzweig N, Rosenzweig Z. Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors [J]. Anal. Chem.,2007,79(1):208-214.
    204.Zhang C, Johnson L W. Quantum dot-based fluorescence resonance energy transfer with improved FRET efficiency in capillary flows [J]. Anal. Chem.,2006,78:5532-5537.
    205.Itoh H, Naka K, Chujo Y. Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation [J]. J. Am. Chem. Soc.,2004,126:3026-3027.
    206.Choi J, Jun Y, Yeon S, Kim H C, Shin J, Cheon J. Biocompatible heterostructured nanoparticles for multimodal biological detection [J]. J. Am. Chem. Soc.,2006,128: 15982-15983.
    207.Kumar S S, Kumar C S, Mathiyarasu J, Phani K L. Stabilized gold nanoparticles by reduction using 3,4-ethylenedioxythiophene-polystyrenesulfonate in aqueous solutions: nanocomposite formation, stability, and application in catalysis [J]. Langmuir,2007,23: 3401-3408.
    208.Mattoussi H, Medintz I L, Clapp A R, Goldman E R, Jaiswal J K, Simon S M, Mauro J. M. Luminescent quantum dot-bioconjugates in immunoassays, FRET, biosensing, and imaging applications [J]. J. Assoc. Lab. Autom.,2004,9(1):28-32.
    209.Willner I, Baron R, Willner B. Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics [J]. Biosens. Bioelectron.,2007,22(9-10):1841-1852.
    210.Ramadurai D, Geerpuram D, Alexson D, Dutta M, Kotov N A, Tang Z Y, Stroscio M A. Electrical and optical properties of colloidal semiconductor nanocrystals in aqueous environments [J]. Superlattice. Microst.,2006,40(1):38-44.
    211.He Y, Lu H, Sai L, Lai W, Fan Q, Wang L, Huang W. Synthesis of CdTe nanocrystals through program process of microwave irradiation [J]. J. Phys. Chem. B,2006,110, 13352-13356.
    212.陈启凡,王文星,葛颖新,李梦莹,徐淑坤,张秀娟。半胱胺包被的碲化镉量子点的直接水相制备及与DNA的链接,分析化学,2007,35(1):135-138
    213.Wang W X, Chen Q F, Jiang C, Yang D Z, Liu X M, Xu S K. One-step synthesis of biocompatible gold nanoparticles using gallic acid in the presence of poly-(N-vinyl-2-pyrrolidone [J]. Colloid. Surf. A,2007,301:73-79.
    214.Ni J, Lipert R J, Dawson G B, Porter M D. Immunoassay readout method using extrinsic raman labels adsorbed on immunogold colloids [J]. Anal. Chem.,1999,71:4903-4908.
    215.Zhang H, Wang L P, Xiong H M, Hu L H, Yang B, Li W. Hydrothermal synthesis for high-quality CdTe nanocrystals [J]. Adv. Mater.,2003,15:1712-1715.
    216.Wang Y F, Li M J, Jia H Y, Song W, Han X X, Zhang J H, Yang B, Xu W Q, Zhao B. Optical properties of Ag/CdTe nariocomposite self-organized by electrostatic interaction [J]. Spectrochim. Acta A,2006,64:101-105.
    217.Chen J H, Zheng A F, Gao Y C, He C Y, Wu G H, Chen Y C, Kai X M, Zhu C Q. Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution [J]. Spectrochim. Acta A,2008,69(3): 1044-1052.
    218.Huang C Z, Li Y F. Resonance light scattering technique used for biochemical and pharmaceutical analysis [J]. Anal. Chim. Acta,2003,500:105-117.
    219.Bao P, Frutos A G, Greef C, Lahiri J, Muller U, Peterson T C, Warden L, Xie X Y. High-sensitivity detection of DNA hybridization on microarrays using resonance light scattering [J]. Anal. Chem.,2002,74:1792-1797.
    220.Sarkar S K, Chandrasekharan N, Gorer S, Hodes G Reversible adsoption-enhanced quantum confinement in semiconductor quantum dots [J]. Appl. Phys. Lett.,2002,81: 5045-5047.
    221.Schramboeck M, Andrews A M, Roch T, Schrenk W, Lugstein A and Strasser G Nano-patterning and growth of self-assembled quantum dots [J]. Microelectron. J.,2006, 37(12):1532-1534.
    222.Kagan C R, Murray C B, Bawendi M G. Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids [J]. Phys. Rev. B,1996,54: 8633-8643.
    223.Mamedova N N, Albumin N A K. Albumin-CdTe nanoparticle bioconjugates:preparation, structure, and interunit energy transfer with antenna effect [J]. Nano Lett.,2001,1: 281-286.
    224.Tlili A, Abdelghani A, Aguir K, Gillet M, Jaffrezic-Renault N. Adsorption characteristics of self-assembled thiol and dithiol layer on gold [J]. Mater. Sci. Eng. C,2007,27: 620-624.
    225.Dong C, Qian H, Fang N, Ren J. Study of fluorescence quenching and dialysis process of cdte quantum dots, using ensemble techniques and fluorescence correlation spectroscopy [J]. J. Phys. Chem. B,2006,110:11069-11075.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.