三江中南段低温热液矿床成矿系列研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
综合分析了云南三江中南段区域成矿背景(不同构造单元出露的地层、构造环境、主要矿床类型、矿床地质特征、矿床地球化学特征、成岩成矿年代学)和三江构造演化,将三江中南段自西向东划分为三个成矿子系列:腾冲与热泉有关的Au成矿子系列、保山赋存于晚古生代碳酸盐岩中Pb-Zn成矿子系列与巍山岩浆—热液多金属成矿子系列。区域构造和矿床构造研究表明,区域深大断裂控制矿床和岩体的空间产出位置,矿区控矿构造、层间破碎带、裂隙等小构造控制着矿体的就位及产出样式,故提出了“大断裂控分布、小构造定就位”。
     基于野外和显微镜观察发现,三江中南段低温热液成矿系列中矿石结构以开放空间充填型为主。矿石矿物组合简单和围岩蚀变较弱,但不同子系列中矿石矿物组成和元素组合有差异。归纳前人研究成果并结合闪锌矿原位微量研究初步得出三江中南段低温热液成矿系的成矿温度在300℃以内。通过H-0同位素研究揭示三江中南段低温热液成矿系列成矿流体至少有2种来源:①沿断裂运移的成矿流体,包括循环的大气降水和地层中封存卤水;②深部岩浆水的参与。硫同位素研究显示三江中南段低温热液成矿系列硫主要来自岩浆并混有其它来源。硫化物δ34S介于-16.0%0~6.0%o,主要集中在-6.0%0~6.0%o,显示硫主要来自幔源(除东山铅锌矿床外),并有其它硫的贡献,部分硫酸盐可能来自下渗的盆地卤水和地层中封存的蒸发海水。三江中南段低温热液成矿系列成矿物质来源具有多源性。矿石、围岩、单金属硫化物ICP-MS和LA-ICPMS的微量稀土元素显示不同成矿子系列的成矿物质来源主要与其所在构造单元的背景值丰度或顶底板围岩有关。地层中预富集的成矿元素受成矿深部流体或下循环流体的萃取而富集成矿。
     系统年代学研究表明三江中南段低温成矿系列形成时代与三江构造演化及新生代印亚大陆碰撞过程关系密切。指出腾冲和巍山低温成矿子系列分别产于喜马拉雅期后碰撞(25Ma~至今)和晚碰撞(~34.11±0.36Ma)阶段。后者伴随着特提斯洋演化,具有早期沉积预富集的特点。保山Pb-Zn成矿子系列的形成可能与中特提洋的闭合相关。在综合研究的基础上,建立了三江中南段低温热液成矿系列成矿模式。基于此模式应用成矿系列理论在邻区域进一步找矿方向推测。
Comprehensive analysis of the regional metallogenic background in the MSOB including stratigraphy, tectonic settings, geological feature and geochemical characteristics of typical ore deposits and chronology in the different tectonic units. Based on those works and tectonic evolution of the Sanjiang orogenic belt, I try to divide the MSOB into three metallogenic subseries:(1) Hot spring type Au metallogenic subseries in the Tengchong which form in the volcanic arcs causing by the India-Asia continental collision.(2) Epithermal Pb-Zn metallogenic subseries hosted in the late Paleozoic Carbonate in the Baoshan block which occur in the extension environment after the close of Middle Tethys ocean.(3) Weishan porphyry-epithermal polymetallic metallogenic subseries in the Lanping-Simao strike-slip and pull-apart basin which form under continental collision during Himalayan.
     Regional structure and orefield structure reveal that the spatial distribution of metallogenic subseries and associated intrusions controlled by regional deep fault belt and orefield structure controlled ore bodies emplacement and styles. On the insight of field work and observation of thin sections, it is recognized that ore mineralization characterized by open space and cavity filling in the MSOB. The ore mineral assemblage and walk-rock alteration are very simple but ore mineral assemblages are difference in each metallogenic subseries. On the basis of the former data and the data of trace elements in the sphalerite by LA-ICPMS, ore-forming temperatures of the MSOB are below300℃. The study of hydrogen-oxygen isotope display that the metallogenic fluid at least has two sources:(1) ore-forming fluid migration along the faults including brine in the stratigraphy and meteoric waters.(2) magmatic hydrothermal fluids. The δ34S values of sulfide in the MSOB are between-16.0‰~6.O%o which mainly concentrated on-6.0‰~6.0‰suggesting that sulfur mainly derived from magma, with minor other sources. The source of mineralization multiple members in the MSOB which is associated with background value of stratigraphy in each metallogenic subseries. Pre-enrichment of metallogenetic elements in the whole rocks are extracted by deep fluid and down circulating fluid.
     Systematic Chronology study demonstrate that the formation age of epithermal deposits in the MSOB is closely related to tectonic evolution of the Sanjiang orogenic belt. The Tengchong and Weishan metallogenic subseries form during post-collision (25Ma-now) and late-collision (~34.11±0.36Ma) in Himalayan, respectively. The formation age of Baoshan Pb-Zn metallogenic subseries may be related to the close of Middle Tethys ocean. Through the comprehensive analysis of all data, a metallogenic model is proposed for epithermal metallogenic series in the MSOB. Based on the model, the prospecting direction is pointed out in adjacent regions under the guidance of theory of minerogenic series.
引文
Anglin C D, Jonasson I R, Franklin J M.1996. Sm-Nd dating of scheelite and tourmaline:implications for the genesis of Archean gold deposits. Val d'Or, Canada. Econ. Geol.91:1372-1382.
    Bau M and Dulski P.1999. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge:Implications for Yand REE behavior during near-vent mixing and for the Y/Ho ratio of Proterozoic seswater. Chem. Geol.,155: 77-90.
    Bau M and ME ller P.1992. Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite. Mineral. Petrol.,45:231-246.
    Beaudoin G.2000. Acicular sphalerite enriched in Ag, Sb, and Cuembedded within colour banded sphalerite from the Kokanee Range, BC. Canadian Mineralogist, 38:1387-1398.
    Bell K, Anglin C D, Franklin J M.1989. Sm-Nd and Rb-Sr isotope systematics of scheelites:possible implications for the age and genesis of vein-hosted gold deposits. Geology,17:500-504.
    Belousova EA, Suzanne GW and Fisher Y.2002. Igneous zircon:Trace element composition as an indicator of source rock type. Contributions To Mineralogy and Petrology.143:602-622.
    Chesley J T, Halliday A N, Scrivener R C.1991. Samarium-Neodymium direct dating of fluorite mineralization. Science,352:945-951.
    Chesley JT, Halliday AN, Kyser TK, Spry PG.1994. Direct dating of Mississippi Valley-type mineralization:using of Sm-Nd in fluorite. Economic Geology, 89:1192-1199.
    Christensen J N, Halliday A N, Kenneth E L Roderick N R and Stephen E K.1995a. Direct dating of sulfides by Rb-Sr:a critical test using the Polaris Mississippi valley-type Zn-Pb deposit. Geochimica et Cosmochimica Acta,59:5191-5197.
    Christensen J N, Halliday A N, Vearncombe J R and Stephen E K.1995b. Testing models of large-scale crustal fluid flow using direct dating of sulfides:Rb-Sr evidence for early dewatering and formation of Mississippi valley-type deposits, Canning Basin, Australia. Economic Geology,90:877-884.
    Compston W, Williams IS and Kirschvink JL.1992. Zircon U-Pb ages of Early Cambrian time-scale. Journal of Geological Society.149:171-184.
    Cook NJ, Ciobanu CL, Pring A, Skinner W, Danyushevsky L, ShimizuM, Saini-Eidukat B and Melcher F.2009. Trace and minor elements in sphalerite:A LA-ICP-MS study. Geochimica et Cosmochimica Acta,73:4761-4791.
    Danyushevsky LV, Robinson P, Gilbert S, Norman M, Large R, McGoldrick P and Shelley JMG.2011. Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS:Standard development and consideration of matrix effects. Geochemistry:Exploration, Environment, Analysis,11:51-60.
    Darbyshire D P F, Pitfield P E J, Campbell S D G.1997. Late archean and early proterozoic gold-tungsten mineralization in the Zimbabwe archean craton:Rb-Sr and Sm-Nd isotope constraints. Geology,24:19-22.
    Di Benedetto F, Bernardini GP, Costagliola P, Plant D and Vaughan DJ.2005. Compositional zoning in sphalerite crystals. American Mineralogist, 90:1384-1392
    Douville E, Bienvenu P and Charlou JI.1999. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochim. Cosmochim. Acta,63:627-643.
    Eichhorn R, Holl R., Jagoutz E, Scharer S.1997. Dating scheelite stages:a strontium, neodymium, lead approach from the Felbertal tungsten deposit, Central Alps, Austria. Geochimica et Cosmochimica Acta,61:5005-5022.
    Gammons CH, Willlamsj AE.1997. Chemical mobility of gold in the porphyry-epithermal environment [J]. Economic Geology.92 (1):45-59.
    Gottesmann W and Kampe A.2007. Zn/Cd ratios in calcsilicate-hosted sphalerite ores at Tumurtijn-ovoo, Mongolia. Chemie der Erde,67:323-328
    Halliday A N, Shepherd T J, Dickin A P, Chesley J T.1990. Sm-Nd evidence for the age and origin of a MVT ore deposit. Nature,334:54-56.
    Heald P, Foley N K, Hayba D O.1987. Comparative Anatomy of Volcanic-hosted Epithermal Deposits:Acid-sulfate and Adularia-sericite Type[J]. Economic Geology. 82(1):1-26.
    Hecht L, Freiberger R, Gilg H A, Grundmann G, Kostitsyn Y A.1999. Rare earth element and isotope(C,0, Sr) characteristics of hydrothermal carbonates:genetic implications for dolomite-hosted talc mineralization at Gopfersgrun (Fichtelgebrirge, Germany). Chem. Geol.155:115-130.
    Hedenquist JW and Lowenstern JB.1994. The role of magmas in the formation of hydrothermal ore deposits. Nature.370:519-527.
    Hedenquist JW, Arribas AJ, Gonzales-Uien E.2000. Exploration for Epithermal Gold Deposists[J]. Reviews in Economic Geology.13:245-277.
    Hedenquist JW, Arribas AJ, Reynolds TJ.1998. Evolution of an intrusion-centered hydrothermal system:Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines [J]. Economic Geology.93(4):373-404.
    Hedenquist JW, Arribans AR and Gozalez-Urein E.2000. Exploration for epithermal gold deposit. Gold in 2000. Society of Economic Geologists. Reviews in Economic Geology.13:245-278.
    Hoskin PWO and Black LP.2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. The Journal of Metamorphic Geology.18:423-439.
    Huston DL, Sie SH, Suter GF, Cooke DR and Both RA.1995. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part Ⅰ, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part Ⅱ, Selenium levels in pyrite; comparison with 34S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Economic Geology,90:1167-1196.
    Ishihara S and Endo Y.2007. Indium and other trace elements in volcanogenic massive sulphide ores from the Kuroko, Besshi and other types in Japan. Bulletin, Geological Survey of Japan,58:7-22
    Ishihara S, Hoshino K, Murakami H and Endo Y.2006. Resource evaluation and some genetic aspects of indium in the Japanese ore deposits. Resource Geology,56: 347-364.
    Jensen EP and Barton MD.2000. Gold deposit related to alkaline magmatism. Gold in 2000. Society of Economic Geologists. Reviews in Economic Geology.13:279-314.
    Jiang S Y, Slack J F, Palmer M R.2000. Sm-Nd dating of the giant Sullivan Pb-Zn-Ag deposit, British Columbia. Geology,28:751-754.
    Kempe U, Belyatsky B V, Krymsky R S, Ivanov P A.2001. Sm-Nd and Sr isotope systematics of scheelite from the giant Au (-W) deposit Muruntau (Uzbekistan):implications for the age and sources of Au mineralization. Miner. Depos.,36:379-392.
    Kent A J R, Campbell I H, McCulloch M T.1995. Sm-Nd systematics of hydrothermal scheelite from the Mount Charlotte Mine, Kalgoorlie, Western Australia:an isotopic link between gold mineralization and komatiites. Econ. Geol.,90: 2329-2335.
    Li Gongjian, Wang Qingfei, Wang jiaqi, Fang Qilin.2012. Geological and Geochemical Characteristics of the Huangshilao Stratabound gold deposit in the Tongguanshan orefield, Tongling, East-Central China. Resource Geology 63 (2):141-154.
    Liang, H. Y., Campbell, I. H., Allen, C.M., Sun,W.D., Yu, H. X., Xie, Y.W., Zhang, Y. Q., 2007. The age of the potassic alkaline igneous rocks along the Ailao Shan-Red River shear zone:implications for the onset age of left-lateral shearing. Journal of Geology 115,231-242.
    Lindgren, W.1922. A suggestion for the terminology of certain mineral deposit. Economic Geology.17:292-294.
    Lindgren, W.1933. Mineral deposits[M].1st ed.:New York, McGraw-Hill Brook Co.,930.
    Liu S hen, Hu Rui zhong, Gao Shan, Feng Caixia, Huang Zhilong, Lai Shaocong, Yuan Honglin, Liu Xiaoming, Coulson lan M. Feng Guangying, Wang T ao and Qi Youqiang. 2009. U-Pb zircon, geochemical and Sr-Nd-Hf isot opic const raint son the age an d origin of Early Palaeoz oi c I-t ype granit e f romthe Tengch ong -Baos han Block, West ern Yunnan Province, SW China. Journal Asian Earth Sciences,36: 168-182.
    Liu YS, Hu ZC, Gao S, Gunther D, Xu J, Gao CG, Chen HH.2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology.257.34-43.
    Lu YJ, Kerric R, Cawood PA, McCuaig TC,Hart CJR, Li ZX, Hou ZQ, Bagas L.2012. Zircon SHRIM U-Pb gepchronology of potassic felsic intrusions in western Yunnan, SW China:Constraints on the relationship of magmatism to the Jinsha suture. Gondwana Research.22 (2):737-747.
    Martin JD and Gil ASI.2005. An integrated thermodynamic mixing model for sphalerite geobarometry from 300 to 850℃ and up to 1GPa. Geochim. Cosmochim. Acta,69: 995-1006.
    McDonough, W.F. and Sun, S.-S. (1995). Composition of the Earth. Chemical Geology 120:223-253.
    Moeller A.O'Brien PJ, Kennedy A et al. , 2003. Linking Growth episodes of zircon and metamorphic texture to zircon chemistry:An example from tile ultrahigh-temperature granulites of Rogaland, SW Norway. Geological Society, London, Special Publications,220:65-81.
    Moller P, Perekh PP, Schneider HJ.1976. The application of Tb/Ca—Tb/La abundance to problems of fluorspar genesis. Mineral Deposita.11:111-116.
    Monteiro LVS, Bettencourt JS, Juliani C and Oliveira TF.2006. Geology, petrography, and mineral chemistry of the Vazante non-sulfide and Ambro' sia and Fagundes sulfide-rich carbonate-hosted Zn-(Pb) deposits, Minas Gerais, Brazil. Ore Geol. Rev.,28:201-234.
    Morgan J W and Wandless G A.1980. Rare earth element distribution in some hydrothermal minerals:Evidence for crystallographic control. Geochim. Cosmochim. Acta,44:973-980.
    Nakai S, Halliday A N, Kesler S F, Halliday A N and Jones H D.1990. Rb-Sr dating of sphalerites from Tennessee and the genesis of Mississippi valley type ore deposits. Nature,346:354-357.
    Nie F J, Bj(?)rlykke A B, Nilsen K S.1999. The origin of the Proterozoic Bidjovagge gold-copper deposit, Finnmark, Northern Norway, as deduced from rare earth element and Nd isotope evidences on calcites. Resour. Geol.,49(1):13-25.
    Peng J T, Hu R Z, Burnard P G.2003. Samarium-neodymium isotope systematics of hydrothermal calcites from the Xikuangshan antimony deposit (Hunan, China):the potential of calcite as a geochronometer. Chemical Geology,200(1-2):129-136.
    Peng J T, Hu R Z, Lin Y X, Zhao J H.2002. Sm-Nd isotope dating of hydrothermal calcites from the Xikuangshan antimony deposit, Central Hunan. Chinese Science Bulletin, 47(13):1134-1137.
    Qi L, Hu J, Gr6goire DC.2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta,51:507-513.
    Rollinson HR.1993. Using geochemical data:evaluation, presentation, interpretation. New York:John Wiley & Sons.
    Rubatto D and Gebauer D.2000. Use of Cathodoluminescence for U-Pb zircon dating by IOM microprobe:Some examples from the Westerm Alps. Germany, Berlin, Heidelberg: Springer-Verlag,373-400.
    Shannon RD.1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst, A32:751-767.
    Sillitoe RH.1999. Epithermal models:genetic types, geometric controls, and shallow features. Geological Association of Special Paper.40:403-417.
    Simmons S, White N C, John N C.2005. Geological Characteristics of Epithermal Precious and Base Metal Deposits [C]. Hedenquist JW, Thompson JFH, Goldfarb RJ, et al., Economic Geology, One Hundred Anniversary Volume 1905-2005. Washington: Society of Economic Geologists.485-522.
    Subias I, Fernandez-Nieto C.1995. Hydrothermal events in the Valle de Tena (Spain Western Pyrenees) as evidenced by fluid inclusions and trace-element distribution from fluorite deposits. Chem. Geol.,124:267-282.
    Sun S S, McDonough, W F.1989. In Magmatism in the Ocean Basins Spec. Pub. Geol. Soc. Lond.42,313-345.
    Wang CM, Deng J, Zhang ST, Xue CJ, Yang LQ, Wang QF and Sun X.2010. Sediment-hosted Pb-Zn deposits in Southwest Sanjiang Tethys and Kangdian area on the western margin of Yangtze Craton. Acta Geologica Sinica,84(6):1428-1438.
    Wang JH, Yin A, Harrison TM, Grove M, Zhou JY, Zhang YQ, Xie GH.2003. Thermochronological constraints on two pulses of Cenozoic high-K magmatism in eastern Tibet. Science in China (Series D) 46:719-729.
    Whitney P R and Olimsted J F.1998. Rare earth elementm etasomatism in hydrothermal systems:the Willsboro-lewis wollastonite ores, New York, USA. Geochimica et Cosmochimica Acta,62(17):2965-2977.
    Ying HL, Cai XP.2004. Ar-Ar dating of orthoclase and muscovite from alkali-rich porphyries in the Baiya mine, Yunnan. Chinese Journal of Geology.39:107-110.
    Zhang Q.1987. Trace elements in galena and sphalerite and their geochemical significance in distinguishing the genetic types of Pb-Zn ore deposits. Chniese Journal of Geochemistry.6:177-190.
    毕献武,胡瑞忠,彭建堂,吴开兴,苏文超,战新志.2005.姚安和马厂箐富碱侵入岩体的地球化学特征.岩石学报.21(01):113-124.
    常开永.2007.云南巍山笔架山锑矿床成因.云南地质.26(2):197-206.
    陈福坤,李秋立,王秀丽,李向辉.2006.滇西地区腾冲地块东侧混合岩锆石年龄和Sr-Nd-Hf同位素组成.岩石学报.22(2):439-448.
    陈毓川,裴荣富,宋天锐,等.1998.中国矿床成矿系列初论[M].北京:地质出版社,104.
    陈毓川,裴荣富,王登红.2006.三论矿床的成矿系列问题[J].地质学报.80(10):1501-1508.
    程裕淇,陈毓川,赵一鸣,宋天锐.1983.再论矿床的成矿系列问题——兼论中生代某些矿床的成矿系列[J].中国地质科学院院报.6()
    程裕淇,陈毓川,赵一鸣.1979.处论矿床的成矿系列问题[J].中国地质科学院院报.1().
    从柏林,吴根耀,张旗,张儒媛,翟明国,赵大升,张雯华.1993.中国滇西古特提斯构造带岩石大地构造演化.中国科学(B),23(11):1201-1207.
    崔子良,聂飞,董国臣,郜周全,张翔,董美玲.2012a.云南保山西邑Sedex型铅锌矿矿床成因.云南地质.31(4):419-425.
    祖子良,张翔,董国臣,郜周全,聂飞,董美玲.2012b.施甸东山铅锌矿特征元素地球化学及找矿意义.云南地质.31(4):419-425.
    邓军,葛良胜,杨立强.2013.构造动力体制与复合造山作用——兼论三江复合造山带时空演化.岩石学报,29(4):1099~1114.
    邓军,侯增谦,莫宣学,杨立强,王庆飞,王长明.2010.三江特提斯复合造山与成矿作用.矿床地质,29(1):37~42.
    邓军,王长明,李龚健.2012.三江特提斯叠加成矿作用样式及过程.岩石学报,28(5):1349~1361.
    邓万民,黄萱,钟大赉.1998.滇西新生代富碱斑岩的岩石学特征与成因.地质科学.33(4):412-425.
    丁星妤.2012.云南巍山县扎村金矿床成矿规律与成矿预测研究.博士学位论文.湖南:中南大学,1-120.
    董方浏,莫宣学,侯增谦,王勇,毕先梅,周肃.2005.云南兰坪盆地喜马拉雅期碱性岩40Ar/39Ar年龄及地质意义.岩石矿物学杂志,24:103~109.
    董方浏,侯增谦,高永丰,曾普胜,蒋成兴.2006.滇西腾冲新生代花岗岩:成因类型与构造意义.岩石学报.22(04):927-937.
    董方浏,莫宣学,喻学慧,侯增谦,王勇.2007.云南永平卓潘新生代碱性杂岩体的元素地球化学和Nd-Sr-Pb同位素特征及地质意义.岩石学报.23(05):986-994.
    董方浏.2005.云南巍山一永平矿化集中区铜金多金属矿床成矿条件及成矿潜力研究.博士学位论文.北京:中国地质大学,1-123.
    董文武,陈少玲.2007.镇康芦子园铅锌矿床特征及成因.云南地质.26(4):404-410。
    段建中,薛顺荣,钱祥贵.2001.滇西“三江”地区新生代地质构造格局及其演化.云南地质,20(3):243-252.
    丰成友,薛春纪,姬金生.2000.等东天山西滩浅成低温热液金矿床地球化学[J].矿床地质.19(4):322-329.
    葛良胜.2007.滇西北富碱岩浆活动与金多金属成矿系统.博士学位论文.北京:中国地质大学,1~286.
    韩吟文,马振东,张宏飞,张本仁,李方林,高山,鲍征于.2003.地球化学.北京:地质出版社,1-369.
    韩照信.1994.秦岭泥盆系铅锌矿成矿带中闪锌矿的标型特征.西安地质学院学报.16(1):12-17.
    何科昭,何浩生,蔡红飙.1996.滇西造山带的形成与演化.地质论评,42(2):97-106.
    侯增谦,宋玉财,李政,王召林,杨志明,杨竹森,刘英超,田世洪,何龙清,陈开旭,王富春,赵呈祥,薛万文,鲁海峰.2008.青藏高原碰撞造山带Pb-Zn-Ag-Cu矿床新类型:成矿基本特征与构造控矿模型.矿床地质,27(2):123~144.
    侯增谦,莫宣学,杨志明,王安建,潘桂棠,曲晓明,聂凤军.2006.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型.中国地质.33(22):340-350.
    侯增谦.2010.大陆碰撞成矿论.地质学报,84(1):30~58.
    黄静宁,陈永清,ZHAI XiaoMing,卢映祥,谢永富,程志中.2011.滇西保山地块双脉地晚始新世过铝质花岗岩:锆石SHRIMP U-Pd定年、地球化学和成因.中国科学:地球科学.41 (4):452~467.
    黎彤,袁怀雨,吴胜普,程先富.1999.中国大陆壳体的区域元素丰度.大地构造与成矿.23(2):101~107.
    李发源,顾雪祥,付绍洪,章明,司荣军.2003.铅锌矿床定年方法评述.世界地质.22(1):57-63.
    李文博,黄智龙,陈进,韩润生,张振亮,许成.2004a.会泽超大型铅锌矿床成矿时代研究.矿物学报,24(2):112-116.
    李文博,黄智龙,王银喜,陈进,韩润生,许成,管涛,尹牡丹.2004b.会泽超大型铅锌矿田方解石Sm-Nd等时线年龄及其地质意义.地质论评,50(2):189-195.
    李志吕,万建华,杜国民.1987.萤石Sm-Nd等时线.地质地球化学,15(9):9-13.
    刘建明,赵善人,沈洁,姜能,霍卫国.1998.成矿流体活动的同位素定年方法评述.地球物理学进展,13(3):46-45.
    刘英俊,曹励明,李兆麟.1984.元素地球化学.北京:地质出版社,1-548.
    刘增乾,李兴振,叶庆同,罗建宁,沈敢富,杨岳清.1993.三江地区构造岩浆带的划分与矿产分布规律.北京:地质出版社,1-243.
    罗君烈.1995.云南矿床的成矿系列[J].云南地质.14(4):251-262.
    毛光周,华仁民,高剑峰,赵葵东,龙光明,陆慧娟,姚军明.2006.江西金山金矿床含金黄铁矿的稀土元素和微量元素特征.矿床地质,25(4):412-426.
    毛景文,李晓峰,张作衡,等.2003.中国东部中生代浅成热液金矿的类型、特征及地球动力学背景[J].高校地质学报.9(4):620-637.
    牟传龙,王剑,余谦,张立生.1999.兰坪中新生代沉积盆地演化.矿物岩石,19(3):30-36.
    潘桂棠,王立全,李兴振,王洁民,徐强.2001.青藏高原区域构造格局及其多岛弧盆系的空间配置.沉积与特提斯地质,21(3):1-26.
    彭头平,王岳军,范蔚茗,刘敦一,杠玉若,苗来成.2006.澜沧江南段早中生代酸性火成岩SHRIMP锆石U-Pb定年及构造意义.中国科学(D辑),36(2):123-132.
    陶晓风,朱利东,刘登忠,王国芝,李佑国.2002.滇西兰坪盆地的形成及演化.成都理工学院学报,29(5):521-525.
    陶琰,胡瑞忠,朱飞霖,马言胜,叶霖,程增涛.2010.云南保山核桃坪铅锌矿成矿年龄及动力学背景分析.岩石学报,26(06):1760-1772.
    田世洪,杨竹森,侯增谦,刘英超,高延光,王召林,宋玉财,薛万文,鲁海峰,王富春,苏媛娜,李真真,王银喜,张玉宝,朱田,俞长捷,于玉帅.2009.玉树地区东莫扎抓和莫海拉亨铅锌矿床Rb-Sr和Sm-Nd等时线年龄及其地质意义.矿床地质,28(6):747-758.
    涂光炽,高振敏,胡瑞忠.2003.分散元素地球化学及成矿机制.北京:地质出版社,1-424.
    王宝禄,李文昌.2001.维西—景洪裂陷带初步研究.云南地质.20(1):39~45.
    王晓虎.2011.兰坪盆地白秧坪铅锌铜银多金属矿床地质与成因.博士学位论文.北京:中国地质科学院,1-168.
    王勇,侯增谦,莫宣学,董方浏,毕先梅,曾普生.2006.云南巍山—永平碰撞造山带走滑拉分盆地铜金多金属矿成矿流体系统:稳定同位素特征及热液来源.矿床地质.25(1):60-70.
    王勇.2002.云南巍山—永平铜金多金属矿化集中区成矿流体特征及流体地质填图研究.博士学位论文.北京:中国地质大学,1~136.
    吴福元,李献华,杨进辉,郑永飞.2007.花岗岩成因研究的若干问题.岩石学报,23(6):1217-1238
    徐受民.2007.滇西北衙金矿床的成矿模式及与新生代富碱斑岩的关系.博士学位论文.北京:中国地质大学,1-115.
    徐兴旺,蔡新平,送保昌,张宝林,应汉龙,肖骑彬,王杰.2006.滇西北衙金矿区碱性岩岩石学、年代学和地球化学特征及其成因机制.岩石学报22(3),631-642.
    薛春纪,陈毓川,杨健民,王登红,杨伟光,杨清标.2002.滇西兰坪盆地构造体制和成矿背景分析.矿床地质,21(1):36-44.
    杨嘉文,李有本,余莉雯.1991.扎村金矿床地质特征.云南地质.10(1):71-104.
    应汉龙.1999.浅成低温热液金矿的全球背景[J].贵金属地质.8(4):241-250.
    曾普胜,莫宣学,喻学惠.2000.滇西富碱斑岩带的Nd、Sr、Pb同位素特征及其挤压走滑背景.岩石矿物学杂志.21(03):231-241.
    翟裕生,林新多,池三川,姚书振.1980.长江中下游内生铁矿床成因类型及成矿系列探讨[J].地质与勘探.9-14.
    翟裕生,彭润民,向运川,等.2004.区域成矿研究法[M].北京:中国大地出版社.
    翟裕生,秦长兴.1987.关于成矿系列和成矿模式[M].北京:地质出版社,214~227.
    翟裕生,姚书振,崔彬.1996.成矿系列研究[M].北京:中国地质大学出版社.
    翟裕生.1992.长江中下游铁铜(金)成矿规律[M].北京:地质出版社,235.
    翟裕生.1992.成矿系列研究问题[J].现代地质.6(3):301-308.
    翟裕生.论成矿系统.地学前缘,1999,1.
    张海,金灿海,沈战武.2011.云南保山施甸东山铅锌矿床地质特征.矿物学报.916.
    赵振华.1997.微量元素地球化学原理.北京:科学出版社,1-238.
    朱创业,夏文杰.1997.兰坪—思茅中生代盆地性质及构造演化.成都理工学院学报,24(4):23-30.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.