直拉硅单晶中微缺陷演变的相场模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅单晶是制造集成电路和光能转换产品的基础材料,对于21世纪信息产业和太阳能产业的发展起到关键的支撑作用。从2002年始,我国硅单晶产量由不足世界总产量的0.4%发展为今天以出口为主。但是,其品质还无法与国际上高纯度、高完整性、高均匀性、大直径的发展趋势同步。目前,直拉硅单晶缺陷已经成为制约其发展和应用的关键问题,然而,硅单晶中一些缺陷也有利于提高器件的成品率与电参数,对它们的认识亦由原来的“消除”转变为“控制、利用”,促使人们更加重视对其合理控制即“缺陷工程”的研究。鉴于直拉硅单晶直径逐渐增大的趋势及“缺陷工程”的兴起,揭示和控制硅单晶生长过程中空洞、氧沉淀等微观缺陷的演变规律和存在状态以确保其应用性能已成为当前不容忽视的实际问题。
     近年来,采用计算机数值模拟作为辅助手段已成为直拉硅单晶缺陷研究的一种新趋势,直拉硅单晶缺陷研究已逐渐转向试验观察-理论分析与计算机数值模拟相并行。但是,目前的数值模拟研究只限于有限元法的宏观模拟,还不能对介观或微观区域中缺陷演变进行模拟,缺少深层次的仿真分析。探索宏观-介观-微观多尺度耦合的模拟方法、相应模型、应用程序及其关键模拟技术,实现直拉硅单晶缺陷多尺度数值模拟的研究势在必行。
     相场法以Ginzburg-Landau自由能理论为基础,用微分方程来展现有序化势和热力学驱动的综合作用,是一种新型的材料微结构演化的数值模拟方法。经过20多年的发展,它已成为材料介-微观组织模拟的一种重要方法。目前,国内学者已经应用相场模型进行了枝晶长大、动态再结晶及单晶生长的模拟研究,但未见其用于单晶体缺陷模拟的报道。因此,本文尝试采用相场模型,模拟了直拉硅单晶中微缺陷的演变,这一研究具有重要的理论意义和实际价值。
     首先,基于晶体生长物理学和相场模拟理论,全面考虑原始点缺陷的扩散和复合行为以及拉晶速度对空洞演化的影响,创建了直拉硅单晶空洞演化的单相场模型,并以时间为纽带,通过空间尺度转换、网格再划分等技术,将有限元软件CGSim所模拟的温度场、点缺陷浓度场导入相场模型,完成有限元方法与相场方法的耦合,实现硅单晶微缺陷的宏观分析和介观形态观察的有机结合。成功地模拟了Φ400mm直拉硅单晶轴线不同区域空洞演化,揭示了初始本征点缺陷浓度和拉晶速度对空洞演化的影响规律:初始本征点缺陷浓度较高时,空洞的数目、平均尺寸、面积分数普遍较大,孕育阶段缩短、形核和长大阶段延长;空洞的偏聚及合并、长大的现象明显;两种拉晶速度对于空洞演化历程影响不大,依然先后经历孕育-形核-长大-稳定四个阶段,拉晶速度较低时空洞的密度增加而平均尺寸减小。该相场模型及其模拟结果的可靠性得到了实验观察与有限元模拟结果的检验。
     其次,基于直拉硅单晶生长时空洞演化单相场模型,创建了直拉硅单晶生长微缺陷演化多相场模型及其分析流程,完成了不同初始点缺陷状态对直拉硅单晶生长时轴向微缺陷演化影响的模拟研究及其相关机理的探讨,结果表明:①纯初始间隙氧原子浓度条件下,随着温度降低,氧沉淀密度单调增加,平均直径先增大后缓慢减小;随着初始间隙氧原子浓度增加,空洞平均直径增大(低温时更显著),空洞密度减小(低温时),而平均直径增大。②低温时,最小的和最大的初始空位浓度分别对应最小的多型空洞密度和空洞密度,最大初始空位浓度下空洞平均直径相对较大;随着初始空位浓度增大,氧沉淀密度基本不变,氧沉淀平均直径增大且随温度降低逐渐增强。③低温时,空洞密度与平均直径随间隙硅原子浓度增大而减小,初始间隙硅原子浓度对氧沉淀演变影响不大。该相场模型及其模拟结果的可靠性得到了相关的宏观模拟结果验证。
     随后,考虑轴向和径向点缺陷对流、扩散的影响,进一步完善了空洞-氧沉淀演化多相场模型及其应用程序,通过宏观有限元模拟和介观多相场模拟,实现了晶体内部微缺陷全局演变的双层次仿真,揭示了拉晶速度对微缺陷存在状态影响的规律。结果表明:①晶体内不同轴向位置处空洞和氧沉淀的径向分布规律均相同,即除了晶体边缘空洞密度减小或无空洞区之外,随着径向半径增加,空洞密度增大而平均直径减小;氧沉淀密度沿径向大部分区域变化不大,仅在接近侧表面区域呈现先升高又急剧降低的变化,其平均直径沿径向减小且总体变化幅度大于空洞。②随着轴向位置升高,空洞密度降低,平均直径增大,无空洞区减小;氧沉淀密度径向变化减弱而平均直径径向变化增强。③拉晶速度对于微缺陷径向分布规律没有影响,随着拉晶速度加快,空洞密度曲线和平均直径曲线向侧表面平移,空洞密度减小、平均直径增加,无空洞区减小;氧沉淀密度和直径的径向变化趋势减小。④相场模拟结果不仅提供了微缺陷演变的形貌、分布状态等介观信息,而且显示了与有限元模拟相同的空洞径向演变规律,两种模拟的结合可实现直拉硅单晶生长时微缺陷演化的多尺度全局模拟。
     最后,在空洞-氧沉淀多相场模型基础上,引入余差函数计算硅片热处理过程中点缺陷扩散,成功地模拟了硅片在炉冷、传统高-低-高三步等温退火、RTA退火和中子辐照退火过程中硅片微缺陷的演变规律,并与理论和实验进行了比较。模拟结果表明:①炉冷过程对于直拉硅单晶微缺陷分布规律没有影响,只使得空洞平均直径略有增加,氧沉淀尺寸减小、密度增大。②三步等温退火时,在第一步高温退火获得的合理间隙氧原子浓度分布前提下,通过后续的低温退火和高温退火,可在硅片中形成表面为洁净区和心部为氧沉淀聚集区的“内吸杂”结构,且第三步高温退火促进了心部氧沉淀聚集。③较高起始温度的Ramping退火硅片的微缺陷密度和尺寸要明显小于较低起始温度的Ramping退火硅片,同时洁净区厚度较大;RTP处理+Ramping退火后硅片的微缺陷密度、尺寸都小于传统的RTP处理+低-高两步退火,且空洞演变所受退火条件影响较氧沉淀更明显。④在合理的中子辐照空位浓度条件下,通过相场模拟可实现硅片心部高表面低的空位浓度分布状态。
Silicon crystal is the basic material of integrated circuit and light converse products, it plays a important role in the21th century information industry and solar industry. In2002, the silicon yield of China account for less than0.4%of the world, after ten years'development, single crystal industry of China has turned to export-oriented. However, it is still unable to keep up with international development trend of high purity, high integrity, high uniformity and large diameter. At present, CZ silicon defects becomes the main restrictive factor of its development and adhibition, but some defects in silicon crystal also help increase the yield and electrical parameter, people's cognition has turned from "eliminate" to "control, utilize", which impel people to focus more on the defect engineering. In view of the increase of silicon crystal diameter and the rise of defect engineering, indicating and managing the evolution law and existing state of silicon crystal defects such as voids and oxygen precipitation to guarantee the performance property of silicon crystal have become a practical problem that cannot be ignored.
     Recently, using computer numerical simulation as a supplementary mean in defect engineering of CZ silicon has become a new trend, CZ silicon defect engineering has turned to experimental observation-theoretical analysis parallel with computer numerical simulation. However, computer numerical simulation is restricted to macro simulation which uses finite element method at present, it cannot be used in mesoscopic and microcosmic simulation of defect evolution. Exploring a macroscopic-mesoscopic-microcosmic multi-scale coupling simulation method, coupling model, application program and key simulation technology to realize CZ silicon defect multi-scale coupling simulation is imperative.
     Phase-field method is based on Ginzburg-Landau free energy theory, using differential equation to show the comprehensive action of ordering potential and thermodynamics drive. After more than20years'development, it has become a very important method in mesoscopic-microcosmic simulation. At present, domestic scholars have been using phase-field method to simulate dendrite growth, dynamic recrystallization and single crystal growth, but using phase-field method to simulate the evolution of defects in single silicon crystal has not been reported. Therefore, this paper adopt phase-field method to simulate the evolution of CZ silicon defects, this research has great theoretical significance and actual value.
     Firstly, based on crystal growth physics and phase-field simulation theory, fully considered the diffusion and compound behavior of point defects and the effect growth speed did to void defects' evolution, built phase-field model of single silicon void evolution, took time as the link, through scale transformation of spatial and mesh subdivision etc., temperature field and point defect concentration field which were simulated by finite element software (CGSim) were introduced into phase-field model so finite element method and phase-field method were coupled, in this way, the organic combination of the macroscopic analysis of silicon crystal and mesoscopic morphology observation could be realized. Successfully simulated the0400mm CZ silicon axial void defects evolution of different areas, revealed the effects of different intrinsic point defects concentration and different crystal growth speed do to the evolution of void defects:when intrinsic point defects concentration is high, the number, average size and area fraction of void defects were generally increased, incubation stage was shortened, nucleation stage and growth stage were both increased; the segregation, combination and growth of void defects were obvious; two different growth speed had little effect on the evolution of voids, void still followed incubation, nucleation, growth and static at different temperature intervals, the concentration increased and average size decreased with low growth speed. The reliability of phase-field model and the simulation result were verified by experimental observation and finite element simulation results.
     Secondly, based on the phase-field model of void dynamics during CZ silicon crystal growth, created a multiple phase-field model of micro defects dynamics during CZ silicon crystal growth and analysis process, simulated the effects different state of initial point defects did to the evolution of axial micro defects and discussed the related mechanism, the results showed that:①under the condition of pure concentration of initial interstitial oxygen, as temperature decreased, concentration of oxygen precipitate increased, average diameter increased at first then decreased slowly; as concentration of initial interstitial oxygen increased, the average diameter of voids increased (more significantly at temperature), the density of voids decreased (low temperature), but average diameter enlarged.②under low temperature, the maximum and the minimum initial void defects concentration correspond to the maximum and the minimum multi-type void defects concentration, under the condition of maximum initial vacancy concentration, the average diameter of voids was relatively large; as initial vacancy concentration increased, oxygen precipitate concentration changed little, the average diameter of oxygen precipitate increased and got bigger when temperature fell.③under low temperature, concentration and average diameter of vacancies decreased as interstitial silicon concentration increased, interstitial silicon concentration did little effect on oxygen precipitate evolution. This phase-field model and simulation results were verified by the relative macroscopic simulation results.
     Subsequently, In consideration of the axial and radial diffusion and convection of point defects, further perfected the vacancy-oxygen precipitate dynamics multiple phase-field model and its application program, through the finite element macroscopic simulation and multiple phase-field mesoscopic simulation, realized double level simulation of global micro defects dynamics in CZ silicon, revealed the influence low of micro defects state affected by growth speed and initial interstitial oxygen concentration. The results showed that:①The radial distribution laws of vacancy and oxygen precipitate in different axial position of silicon were the same, namely except for the decreasing of vacancy density on the edge of silicon or the zero-vacancy area, with the increasing of radial radius, vacancy density increased and average diameter decreased; oxygen precipitate density changed little along radial direction in most areas, only increased at first then dropped rapidly near the lateral surface, oxygen precipitate average diameter decreased along radial direction and its general change range was bigger than voids.②With axial position raising, vacancy density decreased, average diameter increased and zero-vacancy area decreased; the radial change of oxygen precipitate decreased and average diameter's change increased.③Growth speed did no effect on micro defects' radial distribution. As growth speed increased, vacancy density curve and average diameter curve moved toward lateral surface, vacancy density decreased, average diameter increased and zero-vacancy area decreased; the density and radial change trend of oxygen precipitate were both decreased.④The phase-field simulation results not only provided the morphology, distribution etc. mesoscopic information of micro defects, but also indicated the vacancy radial evolution law, which was the same as finite element simulation result, to combine the two simulations could realize multi-scale global simulation of micro defect dynamic during the growth process.
     Finally, based on the void-oxygen precipitate multiple phase-field model, this paper introduced complementary function to calculate macroscopic point defects diffusion in CZ silicon heat treatment, simulated the silicon microscopic defects' evolution during furnace cooling, traditional High-Low-High temperature isothermal annealing, RTA annealing and neutron irradiation annealing and results were compared with theory and experiments. Defects evolution law in different annealing process:①Furnace cooling did no effect on CZ silicon micro defect distribution law, only made vacancy average diameter increased slightly, oxygen precipitate size decreased and oxygen precipitate density increased.②Under the condition of reasonable interstitial oxygen concentration distribution acquired from the first high temperature annealing, a intrinsic gettering structure of denuded zone on the surface and oxygen precipitate accumulation area in the core part could be made through subsequent high and low temperature annealing, the third step high temperature annealing could promote the accumulation of oxygen precipitate.③Silicon under high initial temperature annealing had much smaller micro defect density and size than which was under low initial temperature annealing and the thickness of denuded zone was larger at the same time; silicon after RTP annealing plus Ramping annealing had smaller micro defect size and density than that after traditional RTP annealing plus low-high temperature annealing, annealing condition had greater influence on vacancy dynamics than oxygen precipitate.④Under the condition of reasonable neutron irradiation vacancy concentration, the vacancy concentration distribution of high on the surface and low in core part could be realized by phase-field simulation.
引文
[1]易晓剑.我国半导体硅材料工业现状及发展对策[J].湖南有色金属,2004,20(1):32-34.
    [2]吴琪乐.美国半导体产业协会发布半导体未来走势[J].半导体信息,2012,2:3.
    [3]黄秋玥,洪如欣.中国半导体产业发展态势分析[J].中国青年科技,2007,160:51-58.
    [4]黄强,郭大琪.我国半导体产业的现状及面临问题[J].电子与封装,2003,3(5):1-3.
    [5]Nikolas Provatas, Ken Elder. Phase-field methods in material science and engineering[M]. Weinheim:Wiley-VCH,2010.
    [6]C.V. Achim, J.A.P. Ramos, M. Karttunen, et al. Nonlinear driven response of a phase-field crystal in a periodic pinning potential[J]. Physical Review E,2009,79(1): 011606(1)-011606(10).
    [7]陈万春,简来成.相场方法及其在晶体生长中的应用[J].人工晶体学报,2002,31(3):245-259.
    [8]介万奇.晶体生长原理与技术[M].北京:科学出版社,2010.
    [9]Alberto Pimpinelli, Jacques Villain. Physics of Crystal Growth[M]. London:Cambridge University Press,1998.
    [10]T. Abe. A history and future of silicon crystal growth[C]. Electrochemical Society Proceedings,1998,157-178.
    [11]http://www.egg.or.jp/MSIL/english/index-e.html
    [12]W.C. Dash. Growth of silicon crystals free from dislocations[J]. Journal of Applied Physics, 1959,30(4):459-474.
    [13]W.C. Dash. Improvement on the Pedestal method of growing silicon and germanium crystals[J]. Journal of Applied Physics,1960,31(4):736-738.
    [14]M.C. Flemings, H.P. Utech. Elimination of solute banding in indium antimonide crystals by growth in a magnetic field[J]. Journal of Applied Physics,1966,37(5):2021-2023.
    [15]林明献.矽晶圆半导体材料技术[M].台湾:全华科技图书股份有限公司,1988:4-77.
    [16]R.W. Series. Czochralski growth of silicon under an axial magnetic field[J]. Journal of Crystal Growth,1989,97(1):85-91.
    [17]H. Hirata, K. Hoshikawa, N. Inoue. Improvement of thermal symmetry in CZ silicon melts by the application of a vertical magnetic field[J]. Journal of Crystal Growth,1984,70(1-2): 330-334.
    [18]王蔚,田丽,任明远.集成电路制造技术[M].北京:电子工业出版社,2010.
    [19]T.Y. Tan, E.E. Gardner, W.K. Tice. Intrinsic gettering by oxide precipitate induced dislocations in Czochralski Si[J]. Applied Physics Letters,1977.30(4):175-176.
    [20]R. Holzl, L. Fabry, K.J. Range. Gettering efficiencies for Cu and Ni as a function of size and density of oxygen precipitates in p/p-silicon epitaxial wafers[J]. Applied Physics A,2001, 73(2):137-142.
    [21]S. Isomae, S. Aoki, K. Watanabe. Depth Profiles of interstitial oxygen concentrations in silicon subjected to three-step annealing[J]. Journal of Applied Physics,1983,55(4): 817-824.
    [22]W. Bergholz. Grown-in and Process-induced defects[J]. Semiconductors and Semimetals, 1994,42:513-575.
    [23]H. Peibst, H. Raidt. Nucleation of oxygen precipitations and efficiency of internal gettering centres in Czochralski silicon[J]. Physica Status Solidi (a),1981,68(1):253-260.
    [24]D. Graf, U. Lambert, M. Brohl, et al. Improvement of Czochralski silicon wafers by high-temprature annealing[J]. Journal of Electrochemical Society,1995,142(9):3189-3192.
    [25]R. Falster, V.V. Voronkov, F. Quast. On the properties of the intrinsic point defects in silicon: a perspective from crystal growth and wafer processing[J]. Physica Status Solidi (b),2000, 222(1):219-244.
    [26]E. Dornberger, W. von Ammon. The dependence of ring-like distributed stacking faults on the axial temerature gradient of growing Czochralski silicon crystals[J]. Journal of The Electrochemical Society,1996,143(5):1648-1653.
    [27]J. M. Meese. Neutron transmutation doping in semiconductors[M]. New York:Plenum Publishing Corporation,1978:1.
    [28]Y. Tokuda, A. Usami. Comparison of neutron and 2 MeV electron damage in N-type silicon by deep-level transient spectroscopy[J]. IEEE Transactions on Nuclear Science,1981,28(3): 3564-3568.
    [29]P.M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicon[J]. Reviews of modern physics,1989,61(2):289-384.
    [30]T. Mori. Modeling the linkages between heat transfer and microdefect formationin crystal growth:examples of Czochralski growth of silicon and Vertical Bridgman growth of bismuth germanate[D]. Massachusetts Institute of Technology,2000.
    [31]T. Abe, T. Samizo, S. Maruyama. Etch pits observed in dislocation free silicon crystals[J]. Japanese Journal of Applied Physics,1966,5(5):458-459.
    [32]J. Ryuta, E. Morita, T. Tanaka. Crystal-originated singularities on Si wafer surface after SCl cleaning[J]. Japanese Journal of Applied Physics,1990,29(11):L1947-L1949.
    [33]M. Hasebe, Y. Takeoka, S. Shinoyama. Formation process of stacking faults with ringlike distribution in CZ-Si wafers[J]. Japanese Journal of Applied Physics,1989,28(11): L1999-L2002.
    [34]魏光普,姜传海等.晶体结构与缺陷[M].北京:中国水利水电出版社,2010.
    [35]刘培生.晶体点缺陷基础[M].北京:科学出版社,2010.
    [36]V.V. Voronkov. The mechanism of swirl defects formation in silicon[J]. Journal of Crystal Growth,1982,59(3):625-643.
    [37]M.S. Kulkarni. A selective review of the quantification of defect dynamics in growing Czochralski silicon crystals[J]. Industrial & Engineering Chemistry Research.2005,44(16): 6246-6263.
    [38]K. Nakamura. T. Saishoji, T. Kubota, et al. Formation process of grown-in defects in Czochralski grown silicon crystals[J]. Journal of Crystal Growth,1997,180(1):61-72.
    [39]T. Sinno, R.A. Brown, W. von Ammon, et al. Point defect dynamics and the oxidation induced stacking-fault ring in Czochralski-grown silicon crystals[J]. Journal of The Electrochemical Society,1998,145(1):302-318.
    [40]H. Yamagishi, I. Fusegawa, N. Fujimaki, et al. Recognition of D defects in silicon single crystals by preferential etching and effect on gate oxide integrity[J]. Semiconductor Science and Technology,1992,7(A1):A135-A140.
    [41]J. Ryuta, E. Morita, T. Tanaka, et al. Crystal-originated singularities on Si wafer surface after SCI cleaning[J]. Japanese Journal of Applied Physics,1990,29(11):L1947-L1949.
    [42]M. Miyazaki, S. Miyazaki, Y. Yanase, et al. Microstructure observation of crystal-originated particles on silicon wafers[J]. Japanese Journal of Applied Physics,1995,34(12A): 6303-6307.
    [43]K. Sumino. Defect control in semiconductors[M]. Amsterdam:North-Holland,1990:255.
    [44]M. Kato, Y. Yoshida, Y. Ikeda, et al. Transmission electron microscope observation of "IR scattering defect" in as-grown Czochralski Si crystals[J]. Japanese Journal of Applied Physics,1996,35(11):5597-5601.
    [45]T. Ueki, M. Itsumi, T. Takeda. Octahedral void defects observed in the bulk of Czochralski silicon[J]. Applied Physics Letters,1997,70(10):1248-1250.
    [46]Y. Yanase, T. Ono, T. Kitamura, et al. A new method for transmission electron microscope observation of grown-in defects in as-grown Czochralski silicon(111) crystals[J]. Japanese Journal of Applied Physics,1997,36(10):6200-6203.
    [47]V.V. Voronkov, R. Falster. Dopant effect on point defect incorporation into growing silicon crystal[J]. Journal of Applied Physics,2000,87(9):4126-4129.
    [48]K. Terashima, H. Noguchi. The effects of boron impurity on the extended defects in CZ silicon crystals grown under interstitial rich conditions[J]. Journal of Crystal Growth,2002, 237-239:1663-1666.
    [49]E. Dornberger, D. Graf, M. Suhren, et al. Influence of boron concentration on the oxidation-induced stacking fault ring in Czochralski silicon crystals[J]. Journal of Crystal Growth,1997,180(3-4):343-352.
    [50]M. Iida, W. Kusaki, M. Tamatsuka, et al. Effects of light element impurities on the formation of grown-in defects free region of Czochralski silicon single crystal[J]. Proceedings of Electrochemical Society,2000,99(1):499-510.
    [51]A.J.R.de Kock, P.J. Roksnoer, P.G.T. Boonen. Effect of growth parameters on formation and elimination of vacancy clusters in dislocation-free silicon crystals[J]. Journal of Crystal Growth,1974.22:311-320.
    [52]M.S. Kulkarni, J. Libbert, S. Keltner, et al. A theoretical and experimental analysis of macrodecoration of defects in monocrystalline silicon[J]. Journal of Electrochemistry Society,2002,149(2):G153-G165.
    [53]V.V. Voronkov, R. Falster. Nucleation of oxide precipitates in vacancy-containing silicon[J]. Journal of Applied Physics,2002,91(9):5802-5810.
    [54]K. Sueoka, M. Akatsuka, M. Okui, et al. Computer simulation for morphology, size, and density of oxide precipitates in CZ silicon[J]. Journal of Electrochemistry Society,2003, 150(8):G469-G475.
    [55]P.M. Petroff, A.J.R. de Kock. The formation of interstitial swirl defects in dislocation-free floating-zone silicon crystals[J]. Journal of Crystal Growth,1976,36:4-12.
    [56]M.S. Kulkarni. Defect dynamics in the presence of oxygen in growing Czochralski silicon crystals[J]. Journal of Crystal Growth,2007,303(2):438-448.
    [57]V.V. Voronkov, R. Falster. Grown-in microdefects, residual vacancies and oxygen precipitation bands in Czochralski silicon[J]. Journal of Crystal Growth,1999,204(4): 462-474.
    [58]W. Lin. The incorporation of oxygen into silicon crystals[J]. Semiconductors and Semimetals, 1994,42:9-52.
    [59]W. Zulehner, D. Huber. "Czochralski-Grown Silicon"'Crystals:Growth, Properties and Applications[M]. New York:Springer,1982.
    [60]RE. Freeland, K.A. Jackson, C.W. Lowe, et al. Precipitation of oxygen in silicon[J]. Applied Physics Letters,1977,30(1):31-33.
    [61]N. Inoue, J. Osaka, K. Wada. Oxide micro-precipitates in As-grown CZ silicon[J]. Journal of the Electrochemical Society,1982,129(12):2780-2788.
    [62]H.Wang, X. Ma, J. Xu, et al. Effects of nitrogen doping on the dissolution of oxygen precipitates in Czochralski silicon during rapid thermal annealing[J], Semiconductor Science and Technology,2004,19(6):715-719.
    [63]S.M. Hu. A method for finding critical stresses of dislocation movement[J]. Applied Physics Letters,1977,31(3):139-141.
    [64]K. Terashima, H. Noguchi. The effects of boron impurity on the extended defects in CZ silicon crystals grown under interstitial rich conditions[J]. Journal of Crystal Growth,2002, 237-239:1663-1666.
    [65]D. Kashchiev. Nucleation:Basic Theory with Applications[M]. Oxford: Butterworth-Heinemann,2000.
    [66]S.M. Hu. Interstitial and vacancy concentrations in the presence of interstitial injection[J]. Journal of Applied Physics,1985,57(4):1069-1075.
    [67]T. Usami, Y. Matsushita, M. Ogino. Embryo formation during crystal growth[J]. Journal of Crystal Growth,1984,70(1-2):319-323.
    [68]M. Schrems, T. Brabec, M. Budil. Simulation of oxygen precipitation in Czochralski grown silicon[J]. Materials Science and Engineering B,1989,4(1-4):393-399.
    [69]J. Esfandyari, J. Vanhellemont, G. Obermeier. Computer simulation of oxygen precipitation by considering a temperature dependent interfacial energy[C]. Electrochemical Society Proceedings,1999:437-445.
    [70]T.Y. Tan, U. Gosele. Point defects, diffusion processes, and swirl defect formation in silicon, Appl.Phys.A,1985,37:1-17.
    [71]F.S. Ham. Diffusion-limited growth of precipitate particles[J]. Journal of Applied Physics, 1959,30(10):1518-1525.
    [72]K. Wada, N. Inoue. Oxide precipitate nucleation in Czochralski silicon-an insight from thermal donor formation kinetics[C]. Electrochemical Society Proceedings,1986,86-4: 778-779.
    [73]K. Sueoka, M. Akatsuka, K. Nishihara, et al. Generation of oxidation induced stacking faults in CZ silicon wafers[J]. Materials Science Forum,1995,196-201:1737-1742.
    [74]J. Vanhellemont, J. Esfandyari, G. Obermeier, et al. Recent progress in understanding oxygen precipitation in silicon[C]. Electrochemical Society Proceedings,1998:101-124.
    [75]K. Yang, J. Carle, R. Kleinhenz. Formation of the oxygen precipitate-free zone in silicon[J]. Journal of Applied Physics,1987,62(12):4890-4896.
    [76]S. Isomae. Computer-aided simulation for oxygen precipitation in silicon[J]. Journal of Applied Physics,1991,70(8):4217-4223.
    [77]M. Schrems. Simulation of Oxygen Precipitation[J]. Semiconductors and Semimetals,1994, 42(C):391-447.
    [78]M. Schrems, T. Brabec, M. Budil, et al. Defect Control in Semiconductors[M]. Amsterdam: Elsevier Ltd,1990:245-250.
    [79]J. Esfandyari, C. Schmeiser, S. Senkader, et al. Computer simulation of oxygen precipitation in Czochralski-grown silicon during HL-LO-H1 Anneals[J]. Journal of the Electrochemical Society,1996,143(3):995-1001.
    [80]K.F. Kelton, R. Falster, D. Gambaro, et al. Oxygen precipitation in silicon:experimental studies and theoretical investigations within the classical theory of nucleation[J]. Journal of Applied Physics,1999,85(12):8097-8111.
    [81]P.F. Wei, K.F. Kelton, R. Falster. Coupled-flux nucleation modeling of oxygen precipitation in silicon[J]. Journal of Applied Physics,2000,88(9):5062-5070.
    [82]K. Sueoka, M. Akatsuka, T. Ono, et al. Oxygen precipitation behavior and its optimum condition for internal gettering and mechanical strength in epitaxial and polished silicon wafers[C]. Electrochemical Society Proceedings,2000:164-179.
    [83]Kashchiev, D., Nucleation:Basic Theory with Applications, Butterworth-Heinemann, Oxford, (2000).
    [84]V.V. Voronkov, R. Falster. Effect of doping on point defect incorporation during silicon growth[J]. Microelectronic Engineering,2001,56(1-2):165-168.
    [85]阙端麟,陈修治.硅材料科学与技术[M].浙江:浙江大学出版社,2000.
    [86]D. Yang, X. Yu, X. Ma, et al. Germanium effect on void defects in Czochralski silicon[J]. Journal of Crystal Growth,2002,243(3-4):371-374.
    [87]C. Cui, D. Yang, X. Yu, et al. Effect of nitrogen on denuded zone in Czochralski silicon wafer[J]. Semiconductor Science and Technology,2004,19(3):548-551.
    [88]D. Yang, J. Chen, H. Li, et al. Micro-defects in Ge doped Czochralski grown Si crystals[J]. Journal of Crystal Growth,2006,292(2):266-271.
    [89]余学功,张媛,马向阳,等.氮对重掺锑直拉硅中氧沉淀的影响[J].半导体学报,2004,25(3):284-287.
    [90]余学功,杨德仁.马向阳,等.P型微氮直拉硅中氧施主的电学特性[J].半导体学报,2002,23(4):377-381.
    [91]J. Chen, D. Yang, H. Li, et al. Enhancement effect of germanium on oxygen precipitation in Czochralski silicon[J]. Journal of Applied Physics,2006,99(7):073509-073509-5.
    [92]J. Chen, D. Yang, X. Ma, et al. Dissolution of oxygen precipitates in germanium-doped Czochralski silicon during rapid thermal annealing[J]. Journal of Crystal Growth,2007, 308(2):247-251.
    [93]刘培东,黄笑容,沈益军,等.重掺硅中氧的测定[J].半导体学报,2001,22(10):1284-1286.
    [94]田达晰,马向阳,曾俞衡,等.300mm掺氮直拉硅片的原生氧沉淀径向分布[J],半导体学报,2008,29(1):123-127.
    [95]D. Tian, D. Yang, X. Ma, et al. Crystal growth and oxygen precipitation behavior of 300mm nitrogen-doped Czochralski silicon[J]. Journal of Crystal Growth,2006,292(2):257-259.
    [96]X. Ma, L. Lin, D. Tian, et al. Effect of rapid thermal processing on high temperature oxygen precipitation behavior in Czochralski silicon wafer[J]. Journal of Physics:Condensed Matter,2004,16(21):3563-3569.
    [97]余学功,杨德仁,杨建松,等.大直径直拉硅中氮对原生氧沉淀的影响[J].半导体学报,2003,24(1):49-53.
    [98]樊瑞新,杨德仁,马向阳,等.硅中氢杂质的研究[J].半导体情报,2000.37(06):46-49,54.
    [99]余学功,杨德仁,马向阳,等.微氮硅单晶中的空洞型原生缺陷[J].半导体学报,2002,23(12):1286-1290.
    [100]李养贤,鞠玉林.中子辐照直拉硅中缺陷的电镜观察[J].电子显微学报,1994,6:504.
    [101]郝秋艳,乔治,张建峰,等.快速退火对大直径CZSi单晶中原生微缺陷的影响[J].人工晶体学报,2004,33(5):747-750.
    [102]Qiuyan Hao, Caichi Liu. Study of oxygen precipitation and internal gettering in heavily As-doped silicon crystal. The First International Symposium on Physics and IT Industry, 2004.10. Shenyang,208-211.
    [103]王启元,王俊,韩秀峰,等Ramping热退火直拉重掺锑硅衬底片的增强氧沉淀[J].半导体学报.1999,20(6):458-462.
    [104]韩海建,周旗钢.戴小林.300mm直拉硅单晶中的氮元素对氧化诱生层错的影响[J].稀有金属,2009,33(2):223-226.
    [105]乔永红,王绍青.Si晶体中空位运动的分子动力学研究[J].金属学报,2005,41(3):231-234.
    [106]王慧娟,陈成,邓联文,等.硅晶体中点缺陷结合过程的分子动力学模拟[J].材料科学与工程学报,2007,25(2):298-30.
    [107]李根,孟庆元,杨立军,等.Si材料中60°位错的分子动力学研究[J].原子与分子物理学报,2006,23(1):71-74.
    [108]Nikolas Provatas, Ken Elder. Phase-field methods in material science and engineering[M]. Weinheim, germany:2011.
    [109]P. Ehreniest. Proc. Acad. Sci. (Amsterdam).1933,36:115.
    [110]Ginzburg V L. Landau L D. On the theory of superconductivity[J]. J. Exptl. Theoret. Phys.(USSR),1950,20:1064-1082.
    [111]Devonshire. Theory of barium titanate [M].1949,1040-1063.
    [112]张继祥,关小军,异常晶粒长大的Monte Karlo模拟[J].中国有色金属学报,2006,16(10):1689-1697.
    [113]申孝民.有限元与蒙特卡罗方法耦合的退火过程模拟模型及关键技术研究[D].济南:山东大学博士学位论文,2008.
    [114]刘运腾.织构材料再结晶退火的蒙特卡罗模型及其模拟研究[D].济南:山东大学博士学位论文,2008.
    [115]宋晓燕,刘国权,何宜柱.一种改进的晶粒长大Monte Carlo模拟方法[J].自然科学进展,1998,8,337-341.
    [116]Lepinoux J, Kubin L P. The dynamic organization of dislocation structures:a simulation[J]. Scr.Metall.,1987,21:833-838.
    [117]Hesselbarth H W, Gobel I R. Simulation ofrecrystallization by cellular automata[J]. Acta Metall. Mater.,1991,39:2135-2143.
    [118]J. L. Barrat, J. P. Hansen. Basic and Concepts for Simple and Complex Fluids[M]. Cambridge University Press,2003.
    [119]J. Bechhoefer and A. Libchaber. Orientational order in block copolymer films zone annealed below theorder-disorder transition temperature [J]. Phys. Rev.,1987,35,1393-1396,.
    [120]E. Ben-Jacob, N. Goldenfeld, J.S. Langer, and G. Schon. Dynamics of Interfacial Pattern Formation [J]. Phys. Rev.,1983,51:1930-1932.
    [121]Robert W. Ballu, Samuel M. Allen, W. Craig Carter. Kinetics of Materials[M]. Wiley-Interscience. Hoboken, New Jersey,2005.
    [122]M. Barber, A. Barbieri, J.S. Langer. Dynamics of dendritic sidebranching in the two-dimensional symmetric model of solidification [J]. Phys. Rev. A,1987,36:3340-3349.
    [123]B. Bottger, J. Eiken, I. Steinbach. Phase field simulation of equiaxed solidification in technical alloys [J]. Acta Materialia,2006,54:2697-2704.
    [124]E. Brener, D. Temkin. Noise-induced sidebranching in the three-dimensional nonaxisymmetric dendritic growth [J]. Phys. Rev. E,1995,51:351-359.
    [125]J.S. Langer, in:G. Grinstein, G. Mazenko (Eds.). Directions in Condensed Matter Physics [M]. World Scientific,Singapore,1986, p.165.
    [126]L. X. Liu, J. S. Kirkaldy. Thin film forced velocity cells and cellular dendrites-Ⅰ. Experiments [J]. Acta Metall. Mater.,1995,43:2891-2904.
    [127]P. C Hohenberg, B. I. Halperin. Theory of dynamic critical phenomena [J]. Rev. Mod. Phys. 1977,49:435-479.
    [128]K. A. Wu, A. Karma. Phase-field crystal modeling of equilibrium bcc-liquid interfaces. Phys. Rev. B,2007,76:184107.
    [129]Y M Yu, R. Backofen, A. Voigt. Modeling heteroepitaxial growth of thin films on vicinal substrates using phase-field-crystal approach [J]. Phy. Rev. E,2009.
    [130]R. Glauber, J. Math. Time dependent statistics of the simulated annealing model[J]. Phys,1963,4:294-303.
    [131]J. D. Gunton. The dynamics of first order phase transitions [C]. Phase transformations and critical phenomena. Academic press,1983,8:267-466.
    [132]J. A. Warren, R. Kobayashi, A. E. Lobkovsky, et al. Extending phase field models of solidification to polycrystalline materials. Acta Materialia,2003,51:6035-6058.
    [133]A. A. Wheeler, G. B. McFadden, and W.J. Boettinger. Phase-Field Model for Solidification of a Eutectic Alloy [J]. Proc. Royal Soc. London A,1996,452:495-525.
    [134]L. Q. Chen. Novel computer simulation technique for modeling grain growth [J]. Script. Metall. et Mater.,1995,32:115-125.
    [135]L. Q. Chen, A.G. Khachaturyan. Computer simulation of structural transformations during precipitation of an ordered intermetallic phase[J]. Acta Metallurgica et Materialia,1991, 39(11):2533-2551.
    [136]Y. Wang, L.-Q. Chen, A.G. Khachaturyan. Kinetics of strain-induced morphological transformation in cubic alloys with a miscibility gap[J]. Acta Metallurgica et Materialia, 1993,41(1):279-296.
    [137]L.-Q. Chen, W. Yang. Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters:The grain-growth kinetics[J]. Physical Review B,1994,50(21):15752-15756.
    [138]J.B. Collins, H. Levine. Diffuse interface model of diffusion-limited crystal growth[J]. Physical Review B,1989,31(9):6119-6122.
    [139]R.D. Cook, D.D. Malkus, M.E. Plesha, et al. Concepts and applications of finite element analysis[M]. John Wiley & Sons Inc.,2002.
    [140]W.H. Press, S.A. Teukolsky, W.T. Vetterling, et al. Numerical recipes in Fortran 77 (second edition) [M]. Cambridge:Cambridge University Press,1992.
    [141]徐岳生.直拉硅单晶生长的现状与发展[J].河北工业大学学报,2004,33(2):52-58.
    [142]H.J. Scheel. The development of crystal growth technology in Crystal Growth Technology[M]. New York:John Wiley & Sons Inc.,2003:1-14.
    [143]P.C. Millett. A. El-Azab, S. Rokkam, et al. Phase-field simulation of irradiated metals Part I: Void kinetics[J]. Computational Materials Science,2011,50(3):949-959.
    [144]T. Sinno, R.A. Brown. Modeling microdefect formation in Czochralski silicon[J]. Journal of Electrochemical Society,1999,146(6):2300-2312.
    [145]曾庆凯,关小军,潘忠奔.等.φ400mm直拉硅单晶生长过程中氧浓度对微缺陷影响的数值模拟[J].人工晶体学报,2011,40(5):1150-1156.
    [146]R. Falster, V.V. Voronkov. Intrinsic point defects and their control in silicon crystal growth and wafer processing[J]. MRS Bulletin,2000,25-6:28-32.
    [147]J.P. John, M.E. Law. Phosphorus diffusion in isoconcentration backgrounds under inert conditions in silicon[J]. Applied Physical Letter,1993.62(12):1388-1389.
    [148]L.C. Kimerling. Radiation Effects in Semiconductors[C]. The Institute of Physics Conference Series,1976,221.
    [149]L.W. Song, B.W. Benson. G.D. Watkins. New vacancy-related defects in n-type siliconfJ]. Physical Review B,1986,33(2):1452-1455.
    [150]G.D. Watkins, J.R. Troxell. Negative-U properties for point defects in silicon[J]. Physical Review Letters,1980,44(9):593-596.
    [151]J.D. Plummer, M.D. Deal, P.B. Griffin. Silicon VLSI Technology:Fundamentals, Practice and Modeling [M]. New Jersey:Prentice Hall,2000.
    [152]刘志恩.材料科学基础[M].西安:西北工业大学出版社,2007.
    [153]Zhihong Wang. Modeling Microdefects Formation in Crystalline Silicon:The Roles of Point Defects and Oxygen[M]. Massachusetts:Massachusetts Institute of Technology,2002.
    [154]M.S. Kulkarni, V.V. Voronkov, R. Falster. Quantification of unsteady-state and steady-state defect dynamics in the Czochralski growth of monocrystalline silicon[J]. Journal of Electrochemical Society,2004,151(10):G663-G678.
    [155]K. Kitamura, J. Furukawa. Y. Nakada, et al. Radial distribution of temperature gradients in growing CZ-Si crystals and its application to the prediction of microdefect distribution[J]. Journal of Crystal Growth,2002,242(3-4):293-301.
    [156]国家标准GBn 266-87.硅材料原生缺陷图谱(1987).
    [157]K.V. Ravi. Imperfections and Impurities in Semiconductor Silicon[M]. New York:John Wiley & Sons,1981.
    [158]M.S. Kulkarni. Defect dynamics in the presence of nitrogen in growing czochralski silicon crystals[J]. Journal of Crystal Growth,2008,310:324-335.
    [159]Y. Yatsurugi, N. Akijama, Y. Endo, et al. Concentration, solubility, and equilibrium distribution coefficient of nitrogen and oxygen in semiconductor silicon[J]. Journal of the Electrochemical Society,1973,120:975-979.
    [160]T.A. Kinney, R.A. Brown. Application of turbulence modeling to be the integrated hydrodynamic thermal-capillary model of Czochralski crystal growth of silicon[J]. Journal of Crystal Growth,1993,132(3-4):551-574.
    [161]A. Lipchin, R.A. Brown. Hybrid finite-volume/finite-element simulation of heat transfer and melt turbulence in Czochralski crystal growth of silicon[J]. Journal of Crystal Growth,2000, 216(1-4):192-203.
    [162]A. Lipchin, R.A. Brown. Comparison of three turbulence models for simulation of melt convection in Czochralski crystal growth of silicon[J]. Journal of Crystal Growth,1999, 205(1-2):71-91.
    [163]P.C. Millett, A. El-Azab, D. Wolf. Phase-field simulation of irradiated metals Part Ⅱ:Gas bubble kinetics[J]. Computational Materials Science,2011,50(3):960-970.
    [164]李虹,刘利民,王绍青,等.氧原子在γ-TiAl(111)表面吸附的第一性原理研究[J].金属 学报,2006,42(9):897-902.
    [165]F. Spaepen. Solid State Physics[M]. New York:Academic Press,1994:1.
    [166]E. Dornberger, D. Graf, M. Suhren, et al. Influence of boron concentration on the oxidation-induced stacking fault ring in Czochralski silicon crystal[J]. Journal of Crystal Growth,1997,180(3-4):343-352.
    [167]R.A. Brown, D. Maroudas, T. Sinno. Modelling point defect dynamics in the crystal growth of silicon[J]. Journal of Crystal Growth,1994,137(1-2):12-25.
    [168]P.J. Roksnoer. The mechanism of formation of microdefects in silicon[J]. Journal of Crystal Growth,1984,68:596-612.
    [169]T. Sinno, E. Dornberger, W.von Ammon, et al. Defect engineering of Czochralski single-crystal silicon[J]. Materials Science and Engineering,2000,28(5-6):149-198.
    [170]V.V. Voronkov, R. Falster. The effect of nitrogen on void formation in Czochralski crystals[J]. Journal of Crystal Growth,2005,273:412-423.
    [171]K. Nakamura, T. Saishoji, T. Kubota, et al. Formation process of grown-in defects in Czochralski grown silicon crystals[J]. Journal of Crystal Growth,1997,180(1):61-72.
    [172]M.S. Kulkarni. Lateral incorporation of vacancies in Czochralski silicon crystals[J]. Journal of Crystal Growth,2008,310(13):3183-3191.
    [173]S. Gondet, T. Duffar, G. Jacob, et al. Improvement of crystalline quality of 3-inch InP wafers for microelectronics applications[C].10th International Conference on Indium phosphide and Related Materials,1998,381.
    [174]A.T. Kuliev, N.D. Durnev, V.V. Kalaev. Analysis of 3D unsteady melt flow and crystallization front geometry during a casting process for silicon solar cells[J]. Journal of Crystal Growth,2007,303(1):236-240.
    [175]V.V. Voronkov, R. Falster. Intrinsic point defects and impurities in Silicon crystal growth[J]. Journal of The Electrochemical Society,2002,149(3):167-174.
    [176]K. Nakamura, T. Saishoji. T. Kubota, et al. Formation process of grown-in defects in Czochralski grown silicon crystals[J]. Journal of Crystal Growth,1997,180:61-72.
    [177]M.S. Kulkarni. A selective review of the quantification of defect dynamics in growing Czochralski silicon crystals[J]. Ind. Eng. Chem. Res.2003,44:6246-6263.
    [178]STR Group. CGSim Flow Module Theory Manual v.8.12[DB/CD]. St. Petersburg, Russia: Richmond VA,2007 [2009-7-17]. http://www.semitech.us.
    [179]孙以材.硅单晶的热处理问题[J].稀有金属,1980,3:67-75.
    [180]杨恒青,宋毅峰.半导体外延掺杂的深度分布——“修正的”余误差分布[J].复旦学报(自然科学版),2008,1:8-13.
    [181]张银霞,李大磊,郜伟.硅片加工表面层损伤检测技术的试验研究[J].人工晶体学报,2011.40(2):359-364.
    [182]S.Isomae, S.Aoki, K.Walanabe. Depth Profiles of interstitial oxygen concentrations in silicon subjected to three-step annealing[J]. Journal of Applied physics,1983, 55(4):817-824.
    [183]K. Yamamoto, S. Kishino, Y. Matsushita, et al. Lifetime improvement in Czochralski-grown silicon wafers by the use of a two-step annealing[J]. Applied Physics Letters,1980,36: 195-197.
    [184]V.D. Akhmetov, H. Richter, O.Lysytskiy, et al. Oxide precipitates in annealed nitrogen-doped 300mm CZ-Si[J]. Materials Science in Semiconductor Processing,2002, 5(4-5):391-396.
    [185]K. Wada, N. Inoue, K. Kohra. Diffusion-limited growth of oxide precipitates in Czochralski silicon[J]. Journal of Crystal Growth,1980.49(4):749-752.
    [186]郝秋艳.集成电路用大直径CZSi单晶中微缺陷的研究[D].天津:天津大学博士学位论文.2006.
    [187]E. Dornberger, D. Graf, M. Suhren. Influence of boron concentration on the oxidation-induced stacking fault ring in Czochralski silicon crystals[J]. Journal of Crystal Growth,1997,180:343-352.
    [188]Deren Yang, Ming Li, Can Cui, et al. Nitrogen-doped Czochralski silicon treated in rapid thermal process[J]. Materials Science and Engineering B,2006,134(2-3):193-201.
    [189]田达晰.直拉单晶硅的晶体生长及缺陷研究[D].浙江:浙江大学博士学位论文,2009.
    [190]吴承龙.中子辐照微氮直拉硅单晶辐照效应的研究[D].浙江:浙江大学硕士学位论文,2002.
    [191]M. Bertolotti. Experimental observation of damage clusters in semiconductors [M]. NewYork:PlenumPress,1968,311.
    [192]H. Y. Fan, A. K. Ramdas. Infrared absorption and photoconductivity in irradiated silicon [J]. Appl. Phys,1959,30:1127-1134.
    [193]C. T. Sah, et al. Thermally Stimulated Capacitance (TSCAP) in p-n Junctions [J]. Appl. Phys.1972,20:193-195.
    [194]G. Fabri, et al. Decay features of positrons in semiconductor [J]. Phys. Rev.,1966,151: 356-359.
    [195]V. Avalos, S. Dannefaer. Impurity-vacancy complexes formed by electron irradiation of czochralski silicon [C]. Materials science forum,1997.5, Vols.256-263:581-586.
    [196]J. F. Gibbons. Ion implantation in semiconductors-Part Ⅱ:Damage production and annealing [J]. Proc. IEEE,1972,60:1062-1096.
    [197]Y. X. Li, H. Y. Guo, B. D. Liu. The effects of neutron irradiation on the oxygen precipitation in Czochralski-silicon[J]. Journal of Crystal Growth 253 (2003) 6-9.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.