组合式石英圆柱壳体振动陀螺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提出了一种组合式石英圆柱壳体振动陀螺结构。将陀螺谐振子的谐振部分与驱动部分分开进行加工,再通过高强度胶将两部分联接为一个整体谐振子。通过这种方法,可以在保证陀螺性能的同时显著降低石英谐振子的加工难度。
     全文针对这种组合式石英圆柱壳体振动陀螺,对其理论分析、制造工艺以及性能测试等进行了深入的研究。具体研究内容如下:
     1.提出了组合式石英谐振子的结构并建立其数学模型,并对其进行了结构分析及模态仿真分析。研究了组合式谐振子各个尺寸参数对谐振频率的影响,发现谐振环的外径及厚度对谐振频率的影响最大,为谐振子的结构设计提供了理论依据。
     2.研究了组合式圆柱壳体振动陀螺谐振子Q值的影响因素。通过理论分析及实验研究,分析了组合式谐振子的材料、尺寸以及谐振环形状等因素对于谐振子品质因数的影响。研究结果表明组合式谐振子的Q值相比整体加工的谐振子减小幅度不大,而谐振子材料、谐振环形状及谐振环外径对Q值的影响较大。
     3.研究了组合式石英圆柱壳体振动陀螺的制造工艺,包括石英谐振环和石英底部的加工工艺以及胶接工艺。研究了圆柱壳体振动陀螺谐振子的频率裂解以及其修形理论,采用添加质量法对组合式石英谐振子进行了修形,并将其频率裂解调整到了0.05Hz以下。
     4.制作出组合式石英圆柱壳体振动陀螺样机,并对其进行了性能测试。得到陀螺样机的Q值为6400左右,谐振频率的温度系数为8.64 ?1 0? 5/℃。在动态范围为±100?/s的情况下,刻度因子为112.5mV/(?/s),线性度为0.75%,室温下两个小时内的零偏稳定性为1.6?/h。
A novel combined fused silica cylinder shell vibrating gyroscope is proposed in this dissertation. The cylinder wall and the bottom of the fused silica resonator are fabricated separately, and then are connected by glue. With this method, the manufacturing difficulty of the fused silica cylinder vibrating gyroscope can be reduced significantly and the gyroscope performance can be retained without obvious degeneration.
     In this dissertation, the combined fused silica cylinder shell vibrating gyroscope is studied systematically, including the theoretical analysis, fabrication and performance test. The research results are shown as follows:
     1. Mathematical model of the combined fused silica resonator was built, and the structure characteristic of the resonator was studied. The relationship of resonance frequency and size of resonator was analyzed by the model simulation. It is shown that the diameter and thickness of the resonance cylinder wall have a major influence on resonator, which provided a reference for the structure design of the resonator.
     2. The influence factors of Q factor of the combined resonator are investigated theoretically. And the various experiments on the influence factors are performed. The experimental researches are conducted to study the factors which influence the quality factor of the combined resonator, including the material, the size and the shape. It is shown that the combined resonator’s Q factor is retained without remarkable deterioration comparing with an integral resonator’s Q factor, and the material, the shape and the diameter of the resonator are the crucial influence factors of the quality factor.
     3. The fabrication processes of the combined fused silica cylinder shell vibrating gyroscope are studied, including machining processes of the cylinder wall and the bottom of the fused silica resonator. The precision balance method for minimizing the natural frequency split of the resonator is described. The natural frequency split is reduced to 0.05Hz after mechanical balance.
     4. A combined fused silica cylinder shell vibrating gyroscope is fabricated, and the performance is tested. The result shows: the Q factor is 6400, and the frequency-temperature coefficient is 8.64 ?1 0? 5/℃. In the measurement range of±100?/s, the scale factor is 112.5mV/(/s), the nonlinearity is 0.75%, the bias stability in two hour at room temperature is 1.6?/h.
引文
[1]秦永元.惯性导航[M].北京:科学出版社, 2006.
    [2] N.Barbour and G.Schmidt. Inertial Sensor Technology Trends[J]. IEEE Sensors Journal, 1(4), 2001: 332~338.
    [3] A.Matthews, EJ.Rybak. Comparison of Hemispherical Resonator Gyro and Optical Gyros[J]. Mechanical & Aerospace Engineering, 2006, 2(6): 586~593.
    [4]梁阁亭,惠俊军,李玉平.陀螺仪的发展及应用[J].飞航导弹, 2006, 21: 38~40.
    [5] C.PEARCE. The Performance and Future Development of A MEMS SIVSG and Its Application to the SIIMU[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, 2001: 1~10.
    [6] Andrei M.Shkel. Type I and Type II Micromachined Vibratory Gyroscopes[J]. Aerospace and Electronics Systems, 1992, 7: 40~46.
    [7] Yu.A.Yatsenko, JS.F.Petrenko. Technological Aspects of Manufacturing of Compound Hemispherical Resonators for Small-sized Vibratory Gyroscopes[C]. Integrated Navigation Systems, RTO SCI international Conference, St.Petersburg, Russia, May, 1999: 71~75.
    [8] V.Chikovani, Y.Yatzenko. Coriolis force gyroscope with high sensitivity[P]. United States Patent: 7281425B2, 2008.
    [9]许江宁,边少锋,殷立吴.陀螺仪原理[M].北京:国防工业出版社, 2005.
    [10] V.Chikovani, I.Okon, A.Barabashov, P.Tewksbury. A Set of High Accuracy Low Cost Metallic Resonator CVG[C]. Proceedings of the IEEE/ION Position, Location And Navigation Symposium, 2008: 238~243.
    [11]李云相.半球谐振陀螺的误差模型研究[D].哈尔滨:哈尔滨工业大学, 2005.
    [12] G.H.Bryan. Vibrations of a Revolving Cylinder or Bell. Proc Camp[J], 1890, 1(2): 101.
    [13] B.马特维耶夫, M.巴萨拉布,杨亚非,赵辉译.固体波动陀螺[M].北京:国防工业出版社. 2009.
    [14] David M. Rozelle.The Hemispherical Resonator Gyro: From Wineglass to the Planets.
    [15]杨亚非.固体波动陀螺[M].北京:国防工业出版社, 2009.
    [16] William S.Watson. Vibratory Gyro Skewed Pick-Off and Driver Geometry[J]. Journal of Micro Machines, 2010, 4(10): 171~179.
    [17] Coriolis Force Gyroscope With High Sensitivity. CVG Datasheet.
    [18] V.V.Chikovani, I.M.Okon, A.S.Barabashov. Digitally Controlled High. Accuracy Metallic Resonator CVG[C]. Symposium Gyro Technology, Stuttgart, Germany,2006.
    [19] A.Madni, L.Costlow, S.Knowles. Common Design Techniques for BEI GyroChip Quartz Rate Sensors for Both Automotive and Aerospace/Defense Markets[J]. IEEE Sensors Journal, 2003, 3 (5): 569~578.
    [20] A.Madni, L.Costlow and M. Smith. A Quartz MEMS Automotive Gyroscope[C]. Proceedings of SAE, Detroit, 2006: 0143~0146.
    [21] A.Madni, R. Jaffe. a Digital Micro-machined Quartz Based Inertial Measurement System[C]. Proceeding of IEEE Aerospace, 2003: 1611~1619.
    [22]吕志清.振动陀螺的发展趋势[C].中国惯性技术学会第四届学术年会论文集,北海,中国, 1999: 196~200.
    [23]吕志清.振动陀螺的模型方程[C].中国惯性技术学会第五届学术年会论文集,桂林,中国, 2003: 226~233.
    [24]樊尚春,刘广玉,王振均.变厚度轴对称壳谐振子振型的进动研究[J].仪器仪表学报, 1991, 12(4): 421~426.
    [25]于伟.半球谐振陀螺的信号检测技术[D].哈尔滨:哈尔滨工业大学, 2004.
    [26]吕志清.半球壳体振动陀螺信号处理技术[J].中国惯性技术学报, 2000, 3: 58~61.
    [27]张坤.半球陀螺加工用球头砂轮修整装置研制与修整工艺研究[D].哈尔滨:哈尔滨工业大学, 2008.
    [28]吕志清.半球壳体振动陀螺研究现状及发展趋势[C].惯性技术发展动态发展方向研讨会文集. 2003: 103~105.
    [29]李子昂.半球陀螺谐振子的力学性能及振动特性分析[D].哈尔滨:哈尔滨工业大学, 2007.
    [30]高胜利.半球谐振陀螺的分析与设计[D].哈尔滨:哈尔滨工程大学, 2008.
    [31]梁嵬.半球陀螺仪谐振子振动特性及其结构研究[D].长春:长春理工大学, 2008.
    [32]刘长利.半球谐振陀螺仪振动的理论及有限元分析[D].沈阳:东北大学, 2001.
    [33]倪受东,吴洪涛等.微型半球陀螺仪的误差源研究[J].传感器与微系统, 2007, 26(1): 30~32.
    [34]雷霆.半球谐振陀螺控制技术研究[D].重庆:重庆大学, 2006.
    [35]易康.半球谐振陀螺误差分析和滤波方法研究[D].长沙:国防科学技术大学, 2005.
    [36] V.V.Chikovani, Yu.A.Yatsenko, A.S.Barabashov. Improved Accuracy Metallic Resonator CVG[J]. A&E SYSTEMS, 2009, 5: 40~43.
    [37]郭秀中等.陀螺仪理论及应用[M].北京:航空工业出版社, 1987.
    [38]曹志远.板壳振动理论[M].北京:中国铁道出版杜, 1989.
    [39] Loveday P.W, C.A.Rogers. Free vibration of elastically supported thin cylinders including gyroscopic effects[J]. Journal of Sound and Vibration, 1998, 217(3): 547~562.
    [40]殷学文. (多层复合)圆柱壳体的振动和声辐射研究[D].上海:上海交通大学, 2008.
    [41] Junger M C. Dynamic behavior of reinforced cylindrical shells in a vacuum and in a fluid[J]. J.App.Mech., 1954, March, 35-41.
    [42] Markus S. The Mechanics of Vibrations of Cylindrical Shells[M]. Elsevier Science Publi- shers Press, 1988.
    [43]吴连元.板壳理论[M].上海:上海交通大学出版社, 1989.
    [44]贾乃文,云天铨.弹性力学[M].广东:华南理工大学出版社, 1990.
    [45]席翔.杯形波动陀螺的结构设计与精度分析[D].长沙:国防科技大学, 2010.
    [46] Yuri A.Yatzenko, BARABASHOV. Sensing Element of Coriolis Force Gyroscope[P]. U.S. Patent: 0184798A1, 2008-08-07.
    [47]方同,薛璞.振动理论及应用[M].西安:西北工业大学出版社, 1998.
    [48]温熙森.机械系统建模与动态分析[M].北京:科学技术出版社, 2003.
    [49]陈柯,张茂.基于ANSYS的参数化设计与分析方法[J].机械工程师, 2007, 1: 82~83.
    [50] Blom F R, Bouwstra S, Elwenspoek M, et a1.. Dependence of the quality factor of micro-machined silicon beam resonators on pressure and geometry[J]. J Vac Sci. and Tech.B, 1992, 10(1):19~26.
    [51] Thomas L Floyd. Electric Circuits Fundamentals [M]. Prentice hall, 2009.
    [52] Hosaka H, Itao K, Kuroda S. Damping characteristics of beam-shaped microoscillators[J]. Sensors and Actuators: A, 1995, 49:87~95.
    [53] Tudor M J, Andres M V, Foulds K W H, et al.. Silicon resonator sensors: interrogation techniques and characteristics[J]. IEEE Proceeding, 1988, 135(5):364~368.
    [54] A.Grossmann, W.Erley, J.B.Hannon, H.Ibach. Giant surface stress in hetero epitaxial films: Invalidation of a classical rule in epitaxy[J]. Phys.Rev.Lett., 1966, vol. 77, pp. 127~130.
    [55] T.Uchiyama, T.Tomaru, M.E.Tobar, D.Tatsumi, et al. Mechanical quality factor of a cryogenic sapphire test mass for gravitational wave detectors[J]. Physics Letters A 261, 1999: 5~11.
    [56] CHE L F, LU Y, XU ZH N. Finite element simulation on packaging of hinged high-g micro-machined accelerometer[J]. Opt. Precision Eng., 2007, 15(2):199~205.
    [57]周岩,刘晓胜,杨乐民,郑胜军,张广玉.石英器件加工工艺及最新进展[J].中国机械工程, 2000, 6. 11(6): 668~671.
    [58]仇中军,周立波,房丰洲,椎名刚志,江田弘.石英玻璃的化学机械磨削加工[J].光学精密工程, 2010, 18(7): 1554~1561.
    [59]佟德微.玻璃研磨与其影响玻璃质量因素分析[C]. 2009年中国玻璃行业年后暨技术研讨会论文集,中国, 149~251.
    [60]袁巨龙,王志伟,文东辉,吕冰海,戴勇.超精密加工现状综述[J].机械工程学报, 2007, 43(1): 35~48.
    [61]高宏刚,陈斌,曹键林.超光滑光学表面加工技术[J].光学精密工程, 1995, 3(4): 7~14.
    [62]周岩,杨乐民,张广玉,杨贺见.激光切割石英摆片的若干问题研究[J].中国建材科技, 2001, 10(6): 43~48.
    [63] WOLLERMANN-WINDGASSE R, SCHINZEL C. Laser technology in manufacturing-state of the art at the beginning of the 21st century[C]. LANE 2001, 2001: 87~102.
    [64]张挺,徐思宇,冒继明,谭文耀,蒋春桥.半球陀螺谐振子的金属化镀膜工艺技术研究[J].压电与声光, 2006, 28(5): 538~540.
    [65]张岩.胶接技术发展概述[J].科技信息, 2008, 17: 46~47.
    [66]陈雪,任顺清,赵洪波.半球谐振子薄壁厚度不均匀性对陀螺精度的影响[J].空间控制技术及应用, 2009, 35(3): 29~33.
    [67] BISEGNA P, CARUSO G.. Frequency split and vibration localization in imperfect rings[J]. Journal of sound and vibration, 2007, 306(3): 691~711.
    [68] MATVEEV V A, BASARAB M A. Solid State Wave Gyro[M]. Beijing: National Defense Industry Press, 2009.
    [69] LOVEDAY P W. Analysis and Compensation of Imperfection Effects in Piezoelectric Vibratory Gyroscope[D]. Blacksburg: Virginia Polytechnic Institute and State University, 1999.
    [70] CHIKOVANI V, UMAKHANOV I O, MARUSYK P I. The Compensated Differential CVG[C]. Symposium Gyro Technology, Karlsruhe, Germany, 2008: 3.1~3.8.
    [71] CHIKOVANI V, YATZENKO Y. Coriolis force gyroscope with high sensitivity[P].United States Patent: 7281425B2, Oct,16,2008.
    [72] TIMOSHENKO S. Theory of Plates and Shells[M]. Beijing: Science Press, 1977: 539~543.
    [73] GAO Shengli, WU Jiantong. Drift Mechanisms & Control of Hemispherical Resonate Gyro[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(3): 61~64.
    [74] HIBBELER R C. Mechanics of Materials[M]. London: Pearson Education Press, 2003:648.
    [75]杨昌盛,杨中民,徐善辉,江小平.石英光纤与磷酸盐玻璃光纤间的熔接研究[J].武汉理工大学学报, 2007, 29: 289~292.
    [76]谭一云,于虹,黄庆安等.温度对硅纳米薄膜杨氏模量的影响[J].电子器件, 2007, 30(6):755~758.
    [77] Xinxin Li, Takahito Ono, Yuelin Wang, et al. Study on Ultra-Thin NEMS Cantilevers-High Yield Fabrication and Size-Effect on Young’s Modulus of Silicon[J]. IEEE, 2002:427~430.
    [78]杨亭鹏,高亚楠,陈家斌.光纤陀螺仪零漂信号的Allan方差分析[J].光学技术, 2005, 31(1): 87~89.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.