热轧生产计划与负荷分配的多目标群智能算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着钢铁行业竞争的日益加剧,降低生产成本、提高产品质量成为钢铁企业追求的目标。热轧是钢铁生产过程中的关键工序之一,其中存在两个重要的优化问题:热轧生产计划与负荷分配。优化热轧生产计划对提高生产效率、降低生产成本有着重要的意义,而优化热轧负荷分配则是提高产品质量的重要途径。因此,研究热轧生产计划与负荷分配的优化方法具有重要的现实意义。
     热轧生产计划与负荷分配本质上属于多目标优化问题,以往文献大都通过加权法将其转化为单目标优化问题,然后使用单目标优化算法求解,存在的问题是目标权重往往很难确定,特别是在目标数量级不一致的情形下。鉴于单目标优化方法的局限性,本文使用多目标群智能算法来优化热轧生产计划与负荷分配问题,不仅避免了目标权重的选择,且算法一次运行便可产生多个Pareto最优解,给决策者带来了更大的决策自由度。
     针对热轧生产计划与负荷分配问题,首先设计了一种基于Maximin适应度函数的多目标群智能算法框架,其基本思想是在保证优化性能的同时,尽量降低算法复杂度。在多目标群智能算法中,适应度分配、精英保留、多样性保留是最重要的三个机制,该算法框架利用Maximin适应度函数具有的“识别”非支配解与“奖励”分散解、“惩罚”聚集解的特性,在对其改进的基础上,使用Maximin适应度函数进行了适应度分配、精英保留与多样性保留,并提出了一种混合多样性保留策略,提高了算法的多样性能,同时通过引入一个二维数组存储Min适应度,使得该算法框架的计算复杂度降低为O(mN2),体现了“以空间换取时间”的思想。
     针对热轧生产计划优化问题,本文将其归结为多目标奖金收集车辆路径问题(PCVRP)模型,该模型兼具板坯选择与排程的功能。在此基础上提出了一种Pareto最大最小蚂蚁系统算法(P-MMAS)来优化该模型。P-MMAS在最大最小蚂蚁系统算法的基础上,重新设计了状态转移策略、信息素更新策略、局部搜索策略及信息素平滑机制,并使用基于Maximin适应度函数的多目标群智能算法框架进行适应度分配、精英保留与多样性保留。在此基础上,设计了热轧生产计划的多目标优化方法:首先在满足轧制规程约束的基础上,使用P-MMAS算法在最小化相邻板坯间跳跃惩罚的同时,使收集的奖金尽可能多(即尽可能处理优先级高的板坯),由此得到一组非支配解;然后使用TOPSIS多目标决策方法选择其中的一个解作为最终的生产计划。
     针对热轧负荷分配问题,本文建立了综合考虑轧制力裕量均衡、轧辊磨损控制与板形控制等因素的多目标优化模型,并提出了一种基于局部搜索的多目标粒子群算法(LS-MOPSO)进行优化。该算法在多目标优化中引入局部搜索策略,通过构造局部搜索聚合函数,并使用数学规划方法求解以加速算法收敛到Pareto最优解。此外,使用基于Maximin适应度函数的多目标群智能算法框架进行适应度分配、精英保留与多样性保留。为避免粒子群算法早熟收敛,算法中引入了高斯变异算子。最后,为处理负荷分配优化模型中的约束条件,提出了一种有效的约束处理方法。研究表明使用LS-MOPSO不仅能获得比经验负荷分配方法更好的解,而且还能揭示负荷分配模型不同目标间的矛盾关系,体现了热轧负荷分配多目标优化方法的优越性,也验证了LS-MOPSO算法解决实际问题的有效性。
In recent years, with the increasing competition in the steel industry, most of the ironand steel enterprises want to reduce production costs and improve product quality. Hotrolling process is one of the key processes in the steel production, and it has two importantoptimization problems: hot rolling production planning (HRPP) and load distribution. TheHRPP problem has an important impact on production efficiency and production costs,while load distribution is an important way to improve product quality. Therefore, to studythe optimization methods for the HRPP and load distribution problems has a practicalsignificance.
     The HRPP and load distribution essentially belong to the multi-objective optimizationproblems. Most of the previous methods belong to single objective optimization based onthe weighted-sum approach. However, it is difficult to determine the weight coefficients inpractice, especially when the objectives have different orders of magnitude. Therefore, weadapt multi-objective swarm intelligence algorithm (MOSIA) to optimize the HRPP andload distribution problems. The MOSIA can not only avoid the selection of weightcoefficients, but also generate more than one Pareto-optimal solution in one run, whichprovides more decision-making flexibility for decision-makers.
     As for the HRPP and load distribution problems, a MOSIA framework based on theMaximin fitness function is proposed to improve the performance and decrease thecomputational complexity. In the MOSIA, fitness assignment, elitism preservation anddiversity preservation are three most important mechanisms. This framework assignsfitness, preserves elitism and diversity based on the modified Maximin fitness function. Inorder to improve the diversity performance, a hybrid diversity preservation strategy is alsoproposed. Meanwhile, by introducing a two-dimensional array to store the min fitnesses,the computational complexity of the framework decreases to O(mN2), which reflects the idea of trading space for time.
     In this dissertation, the HRPP problem is formulated as a multi-objective prizecollecting vehicle routing problem (PCVRP) model, which considers the selection processof the candidate slabs. Moreover, a Pareto max-min ant system algorithm (P-MMAS) isproposed to solve this model. On the basis of MMAS, P-MMAS modifies the statetransition rule, the pheromone updating rule, the local search rule and pheromone trailsmoothing mechanism, as well as employs the MOSIA framework based on the Maximinfitness function to preserve elitism and diversity. Then, a multi-objective optimizationmethod for the HRPP problem is proposed. Firstly, P-MMAS is used to minimize thepenalties caused by jumps between adjacent slabs, and maximize the prizes collectedsimultaneously. Then a multi-objective decision-making approach based on TOPSIS isused to select the final rolling batch from the Pareto-optimal solutions.
     In this dissertation, a multi-objective load distribution model that takes into accountthe rolling force margin balance, roll wear ratio and strip shape control, is presented. Then,a local search based multi-objective particle swarm optimization algorithm (LS-MOPSO)is used to solve this model. It introduces a local search strategy into the multi-objectiveoptimization, and adapts the mathematical programming method to approach thePareto-optimal solutions quickly. Moreover, it also employs the MOSIA framework basedon the Maximin fitness function to preserve elitism and diversity. Meanwhile, a Gaussianmutation operator is introduced to avoid LS-MOPSO premature convergence. Finally, anefficient constraint handling method is proposed to handle the constraints in the loaddistribution model. The simulation results based on practical production data indicate thatLS-MOPSO can not only achieve a better performance in comparison with the empiricalsolution, but also find the conflicting relationship between different objectives, whichreflects the advantage of multi-objective load distribution optimization and theeffectiveness of LS-MOPSO.
引文
[1] Tang, L.X., Liu, J.Y., Rong, A.Y., et al. A review of planning and scheduling systems and methodsfor integrated steel production[J]. European Journal of Operational Research,2001,133:1-20.
    [2]孙一康.带纲热连轧的模型与控制[M].北京:冶金工业出版,2002.
    [3] Lopez, L, Carter, M.W., Gendreau, M. The hot strip mill production scheduling problem: a tabusearch approach[J]. European Journal of Operational Research,1998,106:317-335.
    [4]唐立新.热轧带钢轧制批量计划的实例应用[J].东北大学学报(自然科学版),1999,203267-270.
    [5] Wright, J.R., Houck M.H., Archibald, L.L., et al. The application of system engineering to the hotmill production scheduling[R]. Report to Bethlehem Steel Corporation,1984.
    [6] Jacobs, T.L., Wright, J.R. Optimal inter-process steel production scheduling[J]. Computers&Operational Research,1998,15:497-507.
    [7] Balas, E., Martin, C. Combinatorial Optimization in steel rolling. In: The DIMACS/RUTCORWorkshop on Combinatorial Optimization in Science and Technology, Rutgers University, NewBrunswick, NJ, April1991:20-25.
    [8] Kosiba, E.D., Wright, J.R., Cobbs, A.E. Discrete event sequencing as a traveling salesmanproblem[J]. Computers in Industry,1992,19:317-327.
    [9] Cowling, P., Rezig, W. Integration of continuous caster and hot strip mill planning for steelproduction[J]. Journal of Scheduling,2000,3:185-208.
    [10] Lopez, L, Carter, M.W., Gendreau, M. The hot strip mill production scheduling problem: a tabusearch approach[J]. European Journal of Operational Research,1998,106:317-335.
    [11] Chen, X., Wan, W.S., Xu, X.H. Modeling rolling batch planning as vehicle routing problem withtime windows[J]. Computers&Operations Research,1998,25(12):1127-1136.
    [12] Tang, L.X., Liu, J.Y., Rong, A.M., et al. A multiple traveling salesman problem model for hotrolling scheduling in Shanghai Baoshan Iron&Steel Complex[J]. European Journal of OperationalResearch,2000,124:267-282.
    [13] Tang, L.X., Wang, X.P. Iterated local search algorithm based on very large-scale neighbourhood forprize-collecting vehicle routing problem[J]. International Journal of Advanced Manufacturing Technology,2006,29,1246-1258.
    [14]Chen, A.L., Yang, G.K., Wu, Z.M. Production scheduling optimization for the hot rolling process[J]. International Journal of Production Research,2008,46(7):1955-1973.
    [15]Chen, Y.W., Lu, Y.Z., Yang, G.K. Hyrbid evolutionary algorithm with marriage of genetic algorithm and extremal optimization for production scheduling. International Journal of Advanced Manufacturing Technology,2008,36:959-968.
    [16]Zhao, J., Wang W., Liu Q.L., et al. A two-stage scheduling method for hot rolling and its application[J]. Control Engineering Practice,2009,17(6),629-641.
    [17]Pan, C.C., Yang, G.K. A method of solving a large-scale rolling batch scheduling problem in steel production using a variant of column generation[J]. Computers&Industry Engineering,2009,56:165-178.
    [18]Liu, S.X. Model and algorithm for hot rolling batch planning in steel plants. International Journal of Information and Management Sciences,2010,21(3):247-263.
    [19]Wang, X.P., Tang, L.X. Integration of batching and scheduling for hot rolling production in the steel industry[J]. International Journal of Advanced Manufacturing Technology,2008,36:431-441.
    [20]Yadollahpour, M.R., Bijari, M., Kavosh, S., et al. Guided local search algorithm for hot strip mill scheduling problem with considering hot charge rolling[J]. International Journal of Advanced Manufacturing Technology,2009,45:1215-1231.
    [21]陈雄,徐心和.基于模拟退火轧制批量计划问题的两阶段算法[J].控制理论与应用,1999,16(2):209-216.
    [22]张涛,杨建夏.不确定计划数的轧制批量计划的模型和算法[J].系统工程学报,2000,15(1):54-60.
    [23]李耀华,王伟,徐乐江等.热轧生产轧制计划模型与算法研究[J].控制与决策,2005,20(3):275-279.
    [24]陈爱玲,杨根科,吴智铭.轧制计划的优化模型及其算法的应用研究[J].系统仿真学报,2006,18(9):2484-2487.
    [25]陈爱玲,杨根科,吴智铭.基于混合离散约束免疫算法的轧制计划编排[J].控制与决策,2007,22(6):716-720.
    [26]刘士新,周山长,宋健海等.基于PCTSP的热轧单元计划模型与算法[J].控制理论与应用,2006,23(1):89-92.
    [27]刘士新,宋健海,周山长.热轧带钢轧制批量计划优化模型及算法[J].控制理论与应用,2007,24(2):243-248.
    [28]黄可为,汪定伟.热轧计划中的多旅行商问题及其计算方法[J].计算机应用研究,2007,24(7):43-45.
    [29]贾佳,潘莉,屠乃威等.热轧批量计划多目标智能优化编制新方法[J].控制工程,2008,15(2):220-224.
    [30]宁树实.炼钢-连铸-热轧一体化生产调度研究及应用[博士论文].大连:大连理工大学.2006.
    [31]赵珺.轧钢过程生产调度及其优化算法的研究与应用[博士论文].大连:大连理工大学.2008.
    [32]陈玉旺.基于极值动力学的自组织优化理论、算法与应用研究[博士论文].上海:上海交通大学.2008.
    [33]潘常春.基于反馈校正机制的优化算法设计及其在薄板轧制调度中的应用[博士论文].上海:上海交通大学.2009.
    [34]朱俊.热轧生产计划优化系统研究与应用[硕士论文].上海:上海交通大学.2007.
    [35]Chang, S.Y., Hong, Y.S., Jun, C.Y. Constraint satisfaction approach to scheduling DHCR process. In:CPC-93, Korean,1993:464-470.
    [36]李铁克,郭冬芬.基于约束满足的热轧批量计划模型与算法[J].控制与决策,2007,22(4):389-393.
    [37]郭冬芬,李铁克.约束满足技术在板坯排序中的应用[J].计算机工程与应用,2007,43(9):1-3.
    [38]Cowling, P. A flexible decision support system for steel hot rolling mill scheduling[J]. Computers&Industrial Engineering,2003,45:307-321.
    [39]Jin, G.X., Sun, F.X., Bai, S.B., et al. BaoSteel's production management, Publishing House of Metallurgical Industry, Beijing,1994:104-130.
    [40]武贺,吕立华.板带轧机负荷分配方法的综述[J].控制工程,2009,16(S1):6-10.
    [41]张进之.热连轧机负荷分配方法的分析和综述[J].宽厚板,2004,10(3):14-21.
    [42]Yamada, F., Sekiguchi, K. Hot strip mill mathematical models and set-up calculation[J]. IEEE Transactions on Industry Applications,1991,27(1):131-139.
    [43]吕程,赵启林,刘立忠等.热连轧精轧机组负荷分配的优化算法[J].钢铁研究学报,2001,13(1):26-29.
    [44]江潇,胡贤磊,刘相华等.热轧带钢负荷分配目标厚度函数法[J].东北大学学报,2006,27(7):768-770.
    [45]Li, H.J., Xu, J.Z. Improvement on conventional load distribution algorithm in hot tandem mills[J]. Journal of Iron and Steel Research, International,2007,14(2):36-41.
    [46]Hu, X.L., Zhang, Q.S., Zhao, Z. Application of approximation full-Load distribution method to pass scheduling on plate mill with hydro-bending system[J]. Journal of Iron and Steel Research, International,2006,13(4):22-26.
    [47]王焱,刘景录,孙一康.免疫遗传算法对精轧机组负荷分配的优化[J].北京科技大学学报,2002,24(3):339-341.
    [48]王建辉,徐林,闫勇亮等.改进粒子群算法及其对热连轧负荷分配优化的研究[J].控制与决策,2005,20(12):1379-1383.
    [49]姚峰,杨卫东,张明.改进粒子群算法及其在热连轧负荷分配中的应用[J].北京科技大学学报,2009,31(8):1061-1066.
    [50]姚峰,杨卫东,张明等.改进自适应变空间差分进化算法[J].控制理论与应用,2010,27(1):32-38.
    [51]姚峰,杨卫东,张明.多目标差分进化在热连轧负荷分配中的应用[J].控制理论与应用,2010,27(7):897-902.
    [52]姚峰,杨卫东,张明.基于多子群目标分段差分进化的多目标热连轧负荷分配[J].北京科技大学学报,2010,32(11):1506-1512.
    [53]李海军,王国栋,徐建忠等.使用变尺度混合遗传算法进行热轧负荷分配优化[J].钢铁研究学报,2007,19(8):33-36.
    [54]胡长斌,童朝南,彭开香.改进型复杂过程全局进化算法在热连轧负荷分配中的应用[J].控制与决策,2012,27(1):15-21.
    [55]赵适宜.基于改进遗传算法的热连轧精轧机组负荷分配优化研究[硕士论文].沈阳:东北大学.2005.
    [56]Wanga, D.D., Tieu, A.K., Boer de F.G. Toward a heuristic optimum design of rolling schedules for tandem rolling mills[J]. Engineering Applications of Artificial Intelligence,2000,13:397-406.
    [57]Yang, J.M., Che, H.J. Genetic algorithm-based optimization used in rolling schedule[J]. Journal of Iron and Steel Research, International,2009,15(2):18-22.
    [58]Yao, L., Postlethwaite, I., Browme, W. Design, implementation and testing of an intelligent knowledge-based system for the supervisory control of a hot rolling mill[J]. Journal of Process Control,2005,15:615-628.
    [59]Holland, J.H. Adaptation in nature and artificial systems[M]. Ann Arbor:University of Michigan Press,1975.
    [60]Dorigo, M., Maniezzo, V., Colorni, A. Ant system:optimization by a colony of cooperating agents[J]. IEEE Transactions on System, Man and Cybernetics-Part B,1996,26(1):29-41.
    [61]Dorigo, M., Gambardella, L.M. Ant colony system:a cooperative learning approach to thetravelling salesman problem[J]. IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.
    [62] Stuzle, T., Hoos, H.H. MAX-MIN ant system[J]. Future Generation Computer System,2000,16:889-914.
    [63] Dorigo, M., Birattari, M., Stutzle, T. Ant colony optimization: artificial ants as a computationalintelligence technique[J]. IEEE Computational Intelligence Magazine,2006, November:28-39.
    [64] Blum, C., Dorigo, M. The hyper-cube framework for ant colony optimization[J]. IEEETransactions on System, Man and Cybernetics-Part B,2004,34(2):1161-1172.
    [65] Birattari, M., Pellegrini, P., Dorigo, M. On the invariance of ant colony optimization[J]. IEEETransactions on Evolutionary Computation,2007,11(6):732-742.
    [66] Dorigo, M., Stutzle, T. Ant colony optimization[M]. Cambrige: MIT Press,2004.
    [67] Kennedy, J., Eberhart, R.C. Particle swarm optimization[C]. Proceedings of the IEEE internationalConference on Neural Networks,1995:1942-1948.
    [68] Eberhart, R.C., Shi, Y. Comparing inertia weights and constriction factors in particle swarmoptimization[C]. Proceedings of the Conference on Evolutionary Computation,2000:84-88.
    [69] Kennedy, J., Eberhart, R.C., Shi, Y. Swarm intelligence[M]. San Francisco: Morgan KaufmannPublishers,2001.
    [70] Shi, Y., Eberhart, R.C. A modified particle swarm optimizer[C]. Proceedings of the IEEE Congresson Evolutionary Computation,1998:303-308.
    [71] Shi, Y., Eberhart, R.C. Empirical study of particle swarm optimization[C]. Proceedings of the IEEECongress on Evolutionary Computation,1999:1945-1950.
    [72] Clerc, M., Kennedy, J. The particle swarm-explosion, stability, and convergence in amultidimensional complex space[J], IEEE Transactions on Evolutionary Computation,2002,6(1):58-73.
    [73] Storn, R., Price, K. Differential evolution-a simple and efficient heuristic for global optimizationover continuous spaces[J]. Journal of Global Optimization,1997,11:341-359.
    [74] Price, K.V., Storn, R.M., Lampinen, J.A. Differential evolution-a practical approach to globaloptimization[M]. Berlin: Springer-Verlag,2005.
    [75]郭秀萍.多目标进化算法及其在制造系统中的应用研究[博士论文].上海:上海交通大学.2007.
    [76] Zitzler, E., Laumanns, M., Bleuler, S. A tutorial on evolutionary multiobjective optimization. InXavier Gandibleux et al., editor, Metaheuristics for Multiobjective Optimisation, Berlin, Springer,2004:3-37.
    [77]Bonabeau, E., Dorigo, M., Theraulaz, G. Swarm intelligence:From natural to artificial systems[M]. New York:Oxford University Press,1999.
    [78]Karaboga, D., Basturk, B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization,2007,39:459-471.
    [79]李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践,2002,22(11):32-38.
    [80]Eusuff, M.M., Lansey, K.E. Optimization of water distribution network design using the shuffled frog leaping algorithm[J]. Journal of Water Resources Planning and Management,2003,129(3):210-225.
    [81]Socha, K., Dorigo, M. Ant colony optimization for continuous domains[J]. European Journal of Operational Research,2008,185,1155-1173.
    [82]Kennedy, J., Eberhart, R.C. A discrete binary version of the particle swarm algorithm[C]. Proceedings of the World Multi-Conference on Systemics, Cybernetics and Informatics,1997:4104-4109.
    [83]Onwubolu, G., Davendra, D. Scheduling flow shops using differential evolution algorithm[J]. European Journal of Operational Research,2006,171(2):674-692.
    [84]Wolpert, D.H., Macready, W.G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation,1997,1(1):67-82.
    [85]崔逊学.多目标进化算法及其应用[M].北京:国防工业出版社,2006.
    [86]郑金华.多目标进化算法及其应用[M].北京:科学出版社,2007.
    [87]公茂果,焦李成,杨咚咚等.进化多目标优化算法研究[J].软件学报,2009,20(2):271-289.
    [88]Miettinen, K.M. Nonlinear multiobjective optimization[M]. Boston:Kluwer Academic Publishers,1999.
    [89]Schaffer, J.D. Multiple objective optimization with vector evaluated genetic algorithms[C]. Proceedings of the1st International Conference on Genetic Algorithms,1985:93-100.
    [90]Fonseca, C.M., Fleming, P.J. Genetic algorithm for multiobjective optimization:formulation, discussion and generation[C]. Proceedings of the5th International Conference on Genetic Algorithms,1993.416-423.
    [91]Srinivas, N., Deb, K. Multiobjective optimization using non-dominated sorting in genetic algorithms [J]. Evolutionary Computation,1994,2(3):221-248.
    [92]Horn, J., Nafpliotis, N., Goldberg, D.E. A niched Pareto genetic algorithm for multiobjective optimization[C]. Proceedings of the1st IEEE Congress on Evolutionary Computation,1994.82-87.
    [93] Zitzler, E., Thiele, L. Multi-Objective evolutionary algorithms: A comparative case study and thestrength Pareto approach[J]. IEEE Transactions on Evolutionary Computation,1999,3(4):257-271.
    [94] Zitzler, E., Laumanns, M., Thiele, L. SPEA2: Improving the strength Pareto evolutionary algorithm.In: Evolutionary Methods for Design, Optimization and Control with Applications to IndustrialProblems. Berlin: Springer-Verlag,2002.95-100.
    [95] Knowles, J.D., Corne, D.W. Approximating the non-dominated front using the Pareto archivedevolution strategy[J]. Evolutionary Computation,2000,8(2):149172.
    [96] Corne, D.W., Knowles, J.D., Oates, M.J. The Pareto-envelope based selection algorithm formulti-objective optimization[C]. Proceedings of the6th International Conference on Parallel ProblemSolving from Nature,2000:869-878.
    [97] Corne, D.W., Jerram, N.R., Knowles, J.D., et al. PESA-II: region-based selection in evolutionarymulti-objective optimization[C]. Proceedings of the Genetic and Evolutionary Computation Conference,2001:283-290.
    [98] Erickson, M., Mayer, A., Horn, J. The niched Pareto genetic algorithm2applied to the design ofgroundwater remediation system[C]. Proceedings of the1st International Conference on EvolutionaryMulti-Criterion Optimization,2001:681-695.
    [99] Coello Coello, C.A., Pulido, G.T. A micro-genetic algorithm for multiobjective optimization[C].Proceedings of the Genetic and Evolutionary Computation Conference,2001:274-282.
    [100] Deb, K, Pratap, A., Agarwal, S., et al. A fast and elitist multi-objective genetic algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
    [101] Deb, K., Saxena, D.K. On finding Pareto-optimal solutions through dimensionality reduction forcertain large-dimensional multi-objective optimization problems[R]. Technical Report,2005011, IndianInstitute of Technology Kanpur,2005.
    [102] Saxena, D.K., Deb, K. Non-linear dimensionality reduction procedure for certainlarge-dimensional multi-objective optimization problems: employing correntropy and a novel maximumvariance unfolding[C]. Proceedings of the4th International Conference on Evolutionary Multi-CriterionOptimization,2007:772-787.
    [103] Laumanns, M., Thiele, L., Deb, K., et al. Combining convergence and diversity in evolutionarymulti-objective optimization[J]. Evolutionary Computation,2002,10(3):263-282.
    [104] Hernández-Díaz, A.G., Santana-Quintero, L.V., Coello Coello, C.A., et al. Pareto-Adaptive-dominance[J]. Evolutionary Computation,2007,15(4):493-517.
    [105] Knowles, J.D., Corne, D.W., Fleischer, M. Bounded archiving using the Lebesgue measure[C].Proceedings of IEEE Congress on Evolutionary Computation,2003:2490-2497.
    [106] Zitzler, E., K nzil, S. Indicator-based selection in multiobjective search[C]. Proceedings of the8th International Conference on Parallel Problem Solving from Nature,2004:832-842.
    [107] K ksalan, M., Karahan, I. An interactive territory defining evolutionary algorithm: iTDEA[J].IEEE Transactions on Evolutionary Computation,2010,14(5):702-722.
    [108] Deb, K., Sinha, A., Korhonen, P.J., et al. An interactive evolutionary multiobjective optimizationmethod based on progressively approximated value functions[J]. IEEE Transactions on EvolutionaryComputation,2010,14(5):723-739.
    [109] Deb, K., Sundar, J., Uday, N., et al. Reference point based multiobjective optimization usingevolutionary algorithms[J]. International Journal of Computational Intelligence Research,2006,2(6):273-286.
    [110] Deb, K., Kumar, A. Interactive evolutionary multiobjective optimization and decision-makingusing reference direction method[C]. Proceedings of the Genetic and Evolutionary ComputationConference,2007:781-788.
    [111] Deb, K., Kumar, A. Light beam search based multiobjective optimization using evolutionaryalgorithms[C]. Proceedings of the Congress on Evolutionary Computation,2007:2125-2132.
    [112] Thiele, L., Miettinen, K., Korhonen, P., et al. A preference-based interactive evolutionaryalgorithm for multiobjective optimization[J]. Evolutionary Computation,2009,17(3):411-436.
    [113] Zhang Q.F., Li H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition[J].IEEE Transactions on Evolutionary Computation,2007,11(6):712-731.
    [114] Zhang Q.F., Zhou A.M., Jin Y. RM-MEDA: a regularity model based multiobjective estimation ofdistribution algorithm[J]. IEEE Transactions on Evolutionary Computation,2007,12(1):41-63.
    [115] Gong, M.G., Jiao, L.C., Du, H.F., et al. Multiobjective immune algorithm with nondominatedneighbor-based selection[J]. Evolutionary Computation,2008,16(2):225-255.
    [116] Bandyopadhyay, S., Saha, S., Maulik, U., et al. A simulated annealing-based multiobjectiveoptimization algorithm: AMOSA[J]. IEEE Transactions on Evolutionary Computation,2008,12(3):269-283.
    [117] Mariano, C.E., Morales, E. A multiple objective Ant-Q algorithm for the design of waterdistribution irrigation networks[R], Technical Report HC-9904, Instituto Mexicano de Tecnología delAgua,1999.
    [118] Iredi, S., Merkle, D., Middendorf, M. Bi-criterion optimization with multi colony antalgorithms[C], Proceedings of the1st International Conference on Evolutionary Multi-criterion Optimization,2001:359-372.
    [119]Gravel, M., Price, W.L., Gagne, C. Scheduling continuous casting of aluminium using a multiple objective ant colony optimization metaheuristic[J], European Journal of Operational Research,2002,143(1):218-229.
    [120]Cardoso, P., Jesus, M., Marquez, A. MONACO-multi-objective network optimisation based on an ACO[C], Proceedings of X Encuentros de Geometria Computacional, Seville, Spain, June16-17,2003.
    [121]Doerner, K., Hart1, R.F., Teimann, M. Are COMPETants more competent for problem solving?-the case of full truckload transportation[J], Central European Journal of Operations Research,2003,11(2):115-141.
    [122]Gambardella, L.M., Taillard, E., Agazzi, G MACS-VRPTW:a multiple ant colony system for vehicle routing problems with time windows. In Corne D, Dorigo M, Glover F (eds) New ideas in optimization. UK:McGraw-Hill,1999:63-76
    [123]Baran, B., Schaerer, M. A multiobjective ant colony system for vehicle routing problem with time windows [C]. Proceedings of the21st IASTED International Conference on Applied Informatics,2003:97-102.
    [124]Doerner, K.F., Gutjahr, W.J., Hartl, R.F, et al. Pareto ant colony optimization with ILP preprocessing in multiobjective project portfolio selection[J]. European Journal of Operational Research,2006,171:830-841.
    [125]Angus, D., Woodward, C. Multiple objective ant colony optimization[J]. Swarm Intelligence,2009,1:69-85.
    [126]Garcia-Martinez, C., Cordon, O., Herrera, F. A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for bi-criteria TSP[J]. European Journal of Operational Research,2007,180(1):116-148.
    [127]Lopez-lbanez, M., Stutzle, T. The impact of design choices of multiobjective ant colony optimization algorithms on performance:an experimental study on the biobjective TSP[C]. Proceedings of the Genetic and Evolutionary Computation Conference,2010:71-78.
    [128]马良,蒋馥.多目标旅行售货员问题的蚂蚁算法求解[J].系统工程理论方法应用,1999,8(4):23-27.
    [129]王洪刚,李高雅,马良.双目标旅行商问题及其蚂蚁算法实验研究[J].上海理工大学学报,2007,29(5):413-416.
    [130]Reyes-Sierra, M., Coello Coello, A.C. Multi-objective particle swarm optimizers:a survey of thestate-of-the-art[J]. International Journal of Computational Intelligence Research,2006,2(3):287-308.
    [131] Parsopoulos, K.E., Vrahatis, M.N. Particle swarm optimization method in multiobjectiveproblems[C]. Proceedings of the2002ACM Symposium on Applied Computing,2002:603-607.
    [132] Baumgartner, U., Magele, C., Renhart, W. Pareto optimality and particle swarm optimization[J].IEEE Transactions on Magnetics,2004,40(2):1172-1175.
    [133] Parsopoulos, K.E., Tasoulis, D.K., Vrahatis, M.N. Multiobjective optimization using parallelvector evaluated particle swarm optimization[C]. Proceedings of the IASTED International Conferenceon Artificial Intelligence and Applications,2004:823-828.
    [134] Li, X.D. A non-dominated sorting particle swarm optimizer for multiobjective optimization[C].Proceedings of the Genetic and Evolutionary Computation Conference,2003:37-48.
    [135] Li, X.D. Better spread and convergence: Particle swarm multiobjective optimization using themaximin fitness function[C]. Proceedings of the Genetic and Evolutionary Computation Conference,2004:117-128.
    [136] Fieldsend, J.E., Sing, S. A multi-objective algorithm based upon particle swarm optimization, anefficient data structure and turbulence[C]. Proceedings of the2002U.K. Workshop on ComputationalIntelligence,2002:37-44.
    [137] Coello Coello, C.A., Pulido, G.T., Lechuga, M.S. Handing multiple objectives with particle swarmoptimization[J]. IEEE Transactions on Evolutionary Computations,2004,8(3):256-279.
    [138] Reyes Sierra, M., Coello Coello, C.A. Improving PSO-based multi-objective optimization usingcrowding, mutation and-dominance[C]. Proceedings of the3rd International Conference onEvolutionary Multi-Criterion Optimization,2005:505-519.
    [139] Abido, M.A. Two level of nondominated solutions approach to multiobjective particle swarmoptimization[C]. Proceedings of the Genetic and Evolutionary Computation Conference,2007:726-733.
    [140] Korudu, P., Das, S., Welch, S.M. Multi-Objective hybrid PSO using-fuzzy dominance[C].Proceedings of the Genetic and Evolutionary Computation Conference,2007:853-860.
    [141] Omkar, S.N., Khandelwal, R., Ananth, T.V.S., et al. Quantum behaved Particle SwarmOptimization (QPSO) for Multi-Objective Design Optimization of Composite Structures[J]. ExpertSystems with Applications,2009,36:11312-11322.
    [142]李中凯,谭建荣,冯毅雄等.基于拥挤距离排序的多目标粒子群优化算法及其应用[J].计算机集成制造系统,2008,1471329-1336.
    [143]杨俊杰,周建中,方仍存等.基于自适应网格的多目标粒子群优化算法[J].系统仿真学报,2008,20215843-5847.
    [144]莫愿斌,陈德钊.多目标过程系统优化的粒子群算法求解[J].高校化学工程学报,2008,22(1):94-99.
    [145]王辉,钱锋.基于拥挤度与变异的动态微粒群多目标优化算法[J].控制与决策,2008,23(11):1238-1242.
    [146]张勇,巩敦卫,郝国生等.含区间参数多目标系统的微粒群优化算法[J].自动化学报,2008,34(8):921-928.
    [147]郑向伟,刘弘.一种多样性引导的两阶段多目标微粒群算法[J].山东大学学报(理学版)2008,43(11):5-10.
    [148]余进,何正友,钱清泉.基于偏好信息的多目标微粒群优化算法研究[J].控制与决策,2009,24(1):66-70.
    [149]徐鸣,沈希,马龙华等.一种多目标粒子群改进算法的研究[J].控制与决策,2009,24(11):1713-1718.
    [150]陈民铀,张聪誉,罗辞勇.自适应进化多目标粒子群优化算法[J].控制与决策,2009,24(12):1851-1855.
    [151]王丽萍,江波,邱飞岳.基于决策偏好的多目标粒子群算法及其应用[J].计算机集成制造系统,2010,16(1):140-148.
    [152]胡广浩,毛志忠,何大阔.基于两阶段领导的多目标粒子群优化算法[J].控制与决策,2010,25(3):404-410.
    [153]Babu, B.V., Jehan, M.M. Differential evolution for multiobjective optimization[C]. Proceedings of the IEEE Congress on Evolutionary Computation,2003:2696-2703.
    [154]Li, H., Zhang, Q.F. Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-Ⅱ [J]. IEEE Transactions on Evolutionary Computation,2009,13(2):284-302.
    [155]Parsopoulos, K.E., Taoulis, D.K., Pavlidis, N.G., et al. Vector evaluated differential evolution for multiobjective optimization[C]. Proceedings of the IEEE Congress on Evolutionary Computation,2004:204-211.
    [156]Abbass, H.A., Sarker, R., Newton, C. PDE:A pareto-frontier differential evolution approach for multiobjective optimization problems[C]. Proceedings of the IEEE Congress on Evolutionary Computation,2001:971-978.
    [157]Abbass, H.A. The self-adaptive Pareto differential evolution algorithm[C]. Proceedings of the IEEE Congress on Evolutionary Computation,2002:831-836.
    [158]Iorio, A.W., Li, X.D. Solving rotated multi-objective optimization problems using differential evolution[C]. Proceedings of Advances in Artificial Intelligence,2004:861-872.
    [159]Iorio, A.W., Li, X.D. Incorporating directional information within a differential evolution algorithm for multi-objective optimization[C]. Proceedings of the Genetic and Evolutionary Computation Conference,2006:675-682.
    [160]Kukkonen, S., Lampinen, J. A differential evolution algorithm for constrained multi-objective optimization:initial assessment[C]. Proceedings of the IASTED International Conference on Artificial Intelligence and Applications,2004:96-102.
    [161]Kukkonen, S., Lampinen, J. An extension of generalized differential evolution for multi-objective optimization with constraints[C]. Proceedings of the8th International Conference on Parallel Problem Solving from Nature,2004:752-761.
    [162]Kukkonen, S., Lampinen, J. GDE3:the third evolution step of generalized differential evolution[C]. Proceedings of the IEEE Congress on Evolutionary Computation,2005:443-450.
    [163]Madavan, N.K. Multiobjective optimization using a Pareto differential evolution approach[C]. Proceedings of the IEEE Congress on Evolutionary Computation,2002:1145-1150.
    [164]Xue, F., Sanderson, A.C., Graves, R.J. Pareto-based multiobjective differential evolution[C]. Proceedings of the IEEE Congress on Evolutionary Computation,2003:862-869.
    [165]牛大鹏,王福利,何大阔等.多目标混沌差分进化算法[J].控制与决策,2009,24(3):361-364.
    [166]牛大鹏,王福利,何大阔等.基于改进多目标差分算法的诺西肽发酵过程优化[J].控制理论与应用,2010,27(4):505-508.
    [167]龚文引,蔡之华.基于e占优的正交多目标差分进化演化算法研究[J].计算机研究与发展,2009,46(4):655-666.
    [168]张利彪,周春光,马铭等.基于极大极小距离密度的多目标微分进化算法[J].计算机研究与发展,2007,44(1):177-184.
    [169]曾三友,魏巍,康立山等.基于正交设计的多目标演化算法[J].计算机学报,2005,28(7):1153-1162.
    [170]吴亮红,王耀南,周少武等.双群体伪并行差分进化算法研究及应用[J].控制理论与应用,2007,24(3):453-458.
    [171]孟红云,张小华,刘三阳.用于约束多目标优化问题的双群体差分进化算法[J].计算机学报,2008,31(2):228-235.
    [172]Balling, R. The maximin fitness function; Multiobjective city and regional planning[C]. Proceedings of the International Conference on Evolutionary Multi-criterion Optimization,2003:1-15.
    [173]Hwang, C.L., Yoon, K. Multiple attribute decision making:methods and applications[M]. New York:Springer,1981.
    [174]邵健,何安瑞,杨荃等.兼顾热轧工艺润滑的工作辊磨损预报模型[J].中国机械工程,2009,20(3):361-364.
    [175]张勇,巩敦卫,张婉秋.一种基于单纯形法的改进微粒群优化算法及其收敛性分析[J].自动化学报,2009,35(3):289-298.
    [176]Fan, S.K.S., Zahara, E. A hybrid simplex search and particle swarm optimization for unstrained optimization[J]. European Journal of Operational Research,2007,181:527-548.
    [177]Soylu, B., Koksalan, M. A favorable weight-based evolutionary algorithm for multiple criteria problems[J]. IEEE Transactions on Evolutionary Computation,2010,14(2):191-205.
    [178]陈宝林.最优化理论与算法(第2版)[M].北京:清华大学出版社,2005.
    [179]Zitzler, E., Deb, K., Thiele, L. Comparison of multiobjective evolutionary algorithms:Empirical results[J]. Evolutionary Computation,2000,8(2):173-195.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.