高非线性函数的构造及其在序列编码中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最佳非线性函数即Bent函数和完全非线性函数分别是抵抗线性密码攻击和差分密码攻击能力最强的密码函数,故其在密码学中扮演着非常重要的角色。而且,最佳非线性函数在编码理论、序列设计和组合理论等领域中亦有重要的应用。
     本论文的第一个主要研究内容是Bent函数的构造。基于环上的二次型理论和线性化方程途径,本文首先构造出几类新的二次广义布尔Bent函数。结合布尔Bent函数与广义布尔Bent函数之间的关系并将构造广义布尔Bent函数的方法应用于奇特征域中,本文相继得到新的二次布尔Bent函数和二次p-元Bent函数,其中p是-奇素数。而对于高次Bent函数,本文着重研究了具有最佳代数次数的Dillon型Bent函数和Niho型Bent函数。通过对有限域中某些部分指数和的讨论,本文成功刻画出几类新的Dillon型布尔Bent函数和Dillon型p-元Bent函数,并推广了部分已知结果。将研究Dillon型Bent函数的方法运用在Niho型函数上,本文推广了偶特征域中Leander-Kholosha类Niho型Bent函数的结论,并给出了其Bent性的一个简洁的证明。同时,本文证明了所考察的Niho型函数在奇特征域中具有四值Walsh谱且确定了其谱值分布。
     本论文的第二个主要研究内容是利用完全非线性函数和几乎完全非线性函数构造最佳循环码。通过利用有限域上低次多项式的因式分解以及不可约多项式次数与其对应方程解之间的关系,本论文成功解决了由Ding和Helleseth提出的一个关于最佳三元单纠错循环码的公开问题。借助于有限域上的二次特征,运用同样的方法,对于正整数m,本论文得到了四类新的参数为[3m-1,3m-2m-1,4]的最佳三元单纠错循环码。更进一步地,通过利用完全非线性函数的性质,本论文亦构造出两类新的参数为[3m-1,3m-2m-2,5]的最佳三元双纠错循环码。而且,本论文亦考虑了上述所得最佳循环码的覆盖半径及其对偶码的重量分布。然而,本论文仅得到部分相关结果,目前仍有较多问题尚未解决。
     本论文的第三个主要研究内容是利用广义布尔Bent函数和高非线性Gold函数研究最佳或几乎最佳四元序列集。借助于环上的二次型理论和广义布尔Bent函数的性质,本论文考察了环上一类指数和的性质进而确定了两类最佳序列集的精确相关分布。而且,基于环上二次型理论,本文利用统一的方法得到了一类已知的最佳四元序列集和一类新的低相关四元序列集。另一方面,通过对伽罗华环上Gold函数性质的考察,本论文确定了四元Gold序列集的精确相关分布。而且,依据四元序列与二元序列之间的关系,本文确定了四元Gold序列集的MSB序列的最大非平凡相关值以及四元Gold序列集的Gray序列的精确相关分布。
Optimal nonlinear functions, i.e., Bent functions and perfect nonlinear functions, appose optimal resistances to linear cryptanalysis and difference cryptanalysis respectively, thus they play an important role in cryptography. Moreover, optimal nonlinear functions also have significant applications in coding theory, sequence design, combinatorial theory and so on.
     The first main topic of this thesis is the construction of Bent functions. From the ap-proach of linearized equations, several new classes of quadratic generalized Boolean Bent functions are obtained based on the theory of Z4-valued quadratic forms. This together with the link between Boolean Bent functions and generalized Boolean Bent functions leads to new Boolean Bent functions, and new p-ary Bent functions are also presented by using the same method in the finite fields with odd characteristic p. For the Bent functions with high degree, this thesis mainly focuses on the Bent functions of Dillon type and Niho type which have the optimal algebraic degree. Through the discussions on some partial exponential sums over finite fields, several new classes of Dillon type Boolean Bent and p-ary Bent functions are characterized, which generalize some known results. By adopting the same techniques, this thesis generalizes the well-known Leander-Kholosha's class of Niho type Boolean Bent functions and a much simpler proof regarding the bentness is also given. Meanwhile, the investigated function of Niho type in the finite fields of odd characteristic is proven to be four-valued Walsh spectra and the spectra distribution is also determined.
     The second main topic of this thesis is the construction of optimal cyclic codes from perfect nonlinear and almost perfect nonlinear functions. By using the canonical factoriza-tions of polynomials with low degrees over finite fields, and the relation between the degree of an irreducible polynomial and its roots in finite fields, an open problem proposed by D-ing and Helleseth about optimal single-error correcting ternary cyclic codes is successfully solved, and four new classes of such optimal codes with parameters [3m-1,3m-1-2m,4] are also obtained by virtue of the quadratic character over finite fields, where m is a positive integer. Furthermore, two new classes of optimal two-error correcting ternary cyclic codes with parameters [3m-1,3m-2-2m,5] are also presented by making use of the properties of perfect nonlinear functions. In addition, the covering radiuses of the constructed optimal codes and the weight distributions of their dual codes are considered as well. However, only few results are obtained and there still some problems remain open.
     The third main topic of this thesis is the investigation of optimal or almost optimal quaternary sequence families by using generalized Boolean Bent functions and the highly nonlinear Gold functions. According to the theory of Z4-valued quadratic forms and the properties of generalized Boolean Bent functions, a class of exponential sums over Galois rings is investigated and then the exact correlation distributions of two classes of optimal sequences are determined. Moreover, again by the theory of Z4-valued quadratic forms, a class of known optimal quaternary sequences and a new class of quaternary sequences with low correlation are obtained by a unique method. On the other hand, based on the properties of the Gold functions over Galois rings, the correlation distribution of the quaternary Gold sequences is determined. From the constructed quaternary Gold sequences, the maximal nontrivial correlation value of its MSB sequences and the exact correlation distribution of its Gray sequences are also determined in virtue of the relation between quaternary sequences and binary sequences.
引文
[1]C. Shannon. Communication Theory of Secrecy Systems. Bell System Technical Jour-nal.1949,28(4):656-715
    [2]W. Diffie, M. Hellman. New Direction in Cryptography. IEEE Trans. Inf. Theory.1976, 22(6):644-654
    [3]E. Biham, A. Shamir. Differential Cryptanalysis of DES-like Cryptosystems. Journal of Cryptology. 1991,4(1):63-72
    [4]M. Matsui. Linear Cryptanalysis Method for DES Cipher. Advances in Cryptology-EUROCRYPT'93, Springer-Verlag.1994:386-397
    [5]B. Kaliski, M. Robshaw. Linear Cryptanalysis Using Multiple Approximations. Ad-vance in Cryptology-CRYPTO'94, Santa Barbara, California, USA. 1994:26-39
    [6]K. Nyberg. Differentially Uniform Mappings for Cryptography. Advances in Cryptology-EUROCRYPT'93, Springer-Verlag.1994:356-365
    [7]O. S. Rothaus. On Bent Functions. J. Combin. Theory Ser. A.1976,20(3):300-305
    [8]C. Carlet. Vectorial Boolean Functions for Cryptography. Chapter of the Monography Boolean Methods and Models, Cambridge University Press.2006
    [9]F. Chabaud, S. Vaudenay. Links between Differential and Linear Cryptanalysis. Ad-vances in Cryptology-EUROCRYPT'94, Springer-Verlag.1995:356-365
    [10]P. Kumar, R. Scholtz, L. Welch. Generalized Bent Functions and Their Properties. J. Combin. Theory Ser. A.1985,40(1):90-107
    [11]W. Meier, O. Staffelbach. Nonlinearity Criteria for Cryptographic Functions. Advances in Cryptology-EUROCRYPT'89, Springer-Verlag.1990:549-562
    [12]K. Nyberg. Constructions of Bent Functions and Difference Sets. Advances in Cryptology-EUROCRYPT'90, Springer-Verlag.1991:151-160
    [13]K. Nyberg. Perfect Nonlinear S-boxes. Advances in Cryptology-EUROCRYPT'91, Springer-Verlag.1992:378-386
    [14]K. Nyberg. On the Construction of Highly Nonlinear Permutations. Advances in Cryptology-EUROCRYPT'92, Springer-Verlag.1993:92-98
    [15]C. Carlet, S. Dubuc. On Generalized Bent and q-ary Perfect Nonlinear Functions. Proceedings of the fifth International Conference on Finite Fields and Applications. 2000:81-94
    [16]K.-U. Schmidt. Quaternary Constant-amplitude Codes for Multicode CDMA. IEEE Trans. Inf. Theory.2009,55(4):1824-1832
    [17]R. Lidl, H. Niederreiter. Finite Fields, in Encyclopedia of Mathematics and its Appli-cations. Cambridge:Cambridge University Press,1997
    [18]W. Ma, M. Lee, F. Zhang. A New Class of Bent Functions. IEICE Trans. Fundamentals. 2005, E88-A(7):2039-2040
    [19]N. Yu, G. Gong. Constructions of Quadratic Bent Functions in Polynomial Forms. IEEE Trans. Inf. Theory.2006,52(7):3291-3299
    [20]P. Charpin, E. Pasalic, C. Tavernier. On Bent and Semi-bent Quadratic Boolean Func-tions. IEEE Trans. Inf. Theory.2005,51(12):4286-4298
    [21]T. Helleseth, A. Kholosha. Monomial and Quadratic Bent Functions Over the Finite Field of Odd Characteristic. IEEE Trans. Inf. Theory.2006,52(5):2018-2032
    [22]H. Hu, D. Feng. On Quadratic Bent Functions in Polynomial Forms. IEEE Trans. Inf. Theory.2007,53(7):2610-2615
    [23]K. Khoo, G. Gong, D. Stinson. A New Characterization of Semi-bent and Bent Func-tions on Finite Fields. Designs, Codes and Cryptography.2006,38(2):279-295
    [24]S. Li, L. Hu, X. Zeng. Constructions of p-ary Quadratic Bent Functions. Acta.Appl. Math. 2008,100(3):227-245
    [25]N. Li, X. Tang, T. Helleseth. New Constructions of Quadratic Bent Functions in Poly-nomial Forms. IEEE Trans. Inf. Theory, under the Second Round of Review
    [26]A. Canteaut, P. Charpin, G. Kyureghyan. A New Class of Monomial Bent Functions. Finite Fields Appl.2008,14(1):221-241
    [27]P. Charpin, G. Kyureghyan. Cubic Monomial Bent Functions:A Subclass of М. SIAM J. Discr. Math.2008,22(2):650-665
    [28]J. Dillon. Elementary Hadamard Difference Sets. Ph.D. dissertation, Univ. Maryland, Collage Park,1974
    [29]H. Dobbertin, G. Leander, A. Canteaut, et al. Construction of Bent Functions via Niho Power Functions. J. Combin. Theory Ser. A.2006,113(5):779-798
    [30]N. Li, T. Helleseth, X. Tang, et al. Several New Classes of Bent Functions from Dillon Exponents. IEEE Trans. Inf. Theory.2013,59(3):1818-1831
    [31]T. Helleseth, H. D. Hollmann, A. Kholosha, et al. Proofs of Two Conjectures on Ternary Weakly Regular Bent Functions. IEEE Trans. Inf. Theory.2009,55(11):5272-5283
    [32]T. Helleseth, A. Kholosha. New Binomial Bent Functions Over the Finite Fields of Odd Characteristic. IEEE Trans. Inf. Theory.2010,56(9):4646-4652
    [33]T. Helleseth, A. Kholosha. On Generalized Bent Functions. Proceedings of the 2010 IEEE Information Theory and Applications Workshop (ITA).2010:1-6
    [34]T. Helleseth, A. Kholosha. Sequences, Bent Functions and Jacobsthal Sums. Proceed-ings of the 2010 Sequences and Their Applications(SETA 2010). Berlin,2010:416-428
    [35]G. Leander. Monomial Bent Functions. IEEE Trans. Inf. Theory.2006,52(2):738-743
    [36]P. Charpin, G. Gong. Hyperbent Functions, Kloosterman Sums and Dickson Polyno-mials. IEEE Trans. Inf. Theory.2008,54(9):4230-4238
    [37]W. Jia, X. Zeng, T. Helleseth, et al. A Class of Binomial Bent Functions Over the Finite Fields of Odd Characteristic. IEEE Trans. Inf. Theory.2012,58(9):6054-6063
    [38]S. Mesnager. Bent and Hyper-bent Functions in Polynomial Form and Their Link with some Exponential Sums and Dickson Polynomials. IEEE Trans. Inf. Theory.2011, 57(9):5996-6009
    [39]D. Zheng, X. Zeng, L. Hu. A Family of p-ary Binomial Bent Functions. IEICE Trans-actions Fundamentals.2011,94-A(9):1868-1872
    [40]B. Wang, C. Tang, Y. Qi, et al. A New Class of Hyper-bent Boolean Functions in Bino-mial Forms. Arxiv ePrint Archive, avaiable online:http://arxiv.Org/pdf/1112.0062.pdf
    [41]S. Mesnager, J. Flori. A Note on Hyper-bent Functions via Dillon-like Exponents. Avaiable online:eprint.iacr.org/2012/033.pdf
    [42]G. Leander, A. Kholosha. Bent Functions with 2r Niho Exponents. IEEE Trans. Inf. Theory.2006,52(12):5529-5532
    [43]T. Helleseth, A. Kholosha, S. Mesnager. Niho Bent Functions and Subiaco Hyperovals. Proceedings of the 10-th International Conference on Finite Fields and Their Applica-tions, Contemporary Math., AMS, to appear
    [44]H. Dobbertin. One-to-one Highly Nonlinear Power Functions on GF(2n). Appl. Alge-bra Eng. Commun. Comput.1998,9(2):139-152
    [45]H. Dobbertin, P. Felke, T. Helleseth, et al. Niho Type Cross-correlation Function-s via Dickson Polynomials and Kloosterman Sums. IEEE Trans. Inf. Theory.2006, 52(2):613-627
    [46]P. Dembowski, T. Ostrom. Planes of Order n with Collineation Groups of Order n2. Math. Z.1968,193(3):239-258
    [47]R. Coulter, R. Matthews. Planar Functions and Planes of Lenzbarlotti Class Ⅱ. Designs, Codes and Cryptography.1997,10(2):167-184
    [48]C. Ding, J. Yuan. A Family of Skew Hadamard Difference Sets. J. Combin. Theory Ser. A.2006,113(7):1526-1535
    [49]Z. Zha, G. M. Kyureghyan, X. Wang. Perfect Nonlinear Binomials and Their Semi-fields. Finite Fields Appl.2009,15(2):125-133
    [50]Z. Zha, X. Wang. New Families of Perfect Nonlinear Polynomial Functions. Journal of Algebra.2009,322(11):3912-3918
    [51]A. Canteaut, P. Charpin, H. Dobbertin. A New Characterization of Almost Bent Func-tions. Fast Software Encryption, Springer Berlin Heidelberg.1999:186-200
    [52]C. Shannon, W. Weaver. Communication Theory of Secrecy Systems. Univ of Illinois Press,1949
    [53]M. J. E. Golay. Notes on Digital Coding. Proc. IRE.1949,37(6):657
    [54]A. Canteaut, P. Charpin, H. Dobbertin. Weight Divisibility of Cyclic Codes, High-ly Nonlinear Functions on F2m, and Crosscorrelation of Maximum-length Sequences. SIAM. J. Discrete Math.2000,13(1):1O5-138
    [55]C. Carlet, P. Charpin, V. Zinoviev. Codes, Bent Functions and Permutations Suitable for DES-like Cryptosystems. Designs, Codes and Cryptography.1998,15(2):125-156
    [56]J. van Lint, R. Wilson. On the Minimum Distance of Cyclic Codes. IEEE Trans. Inf. Theory.1986,32(l):23-40
    [57]C. Carlet, C. Ding, J. Yuan. Linear Codes from Highly Nonlinear Functions and Their Secret Sharing Schemes. IEEE Trans. Inf. Theory.2005,51(6):2089-2102
    [58]J. Yuan, C. Carlet, C. Ding. The Weight Distribution of a Class of Linear Codes from Perfect Nonlinear Functions. IEEE Trans. Inf. Theory.2006,52(2):712-717
    [59]F. MacWilliams, N. Sloane. The Theory of Error-correcting Codes. North-Holland, 1977
    [60]C. Ding, T. Helleseth. Optimal Ternary Cyclic Codes from Monomials. IEEE Trans. Inf. Theory.2013,59(9):5898-5904
    [61]S. Golomb, G. Gong. Signal Design for Good Correlation-for Wireless Communica-tion, Cryptography and Radar. Cambridge, U.K.:Cambridge University Press,2005
    [62]T. Helleseth, P. Kumar. Sequences with Low Correlation in Handbook of Coding The-ory. Amsterdam, The Netherlands:North-Holland/Elsevier,1998
    [63]P. Fan, M. Darnell. Sequence Design for Communications Applications. London, U.K.: Wiley,1996
    [64]J. Massey. Shift Register Synthesis and BCH Decoding. IEEE Trans. Inf. Theory.1969, 15(1):122-127
    [65]R. Scholtz, L. Welch. GMW Sequences. IEEE Trans. Inf. Theory.1984,30(3):548-553
    [66]M. Antweiler, L. Bomer. Complex Sequences Over GF(p) with a Two-level Autocor-relation Function and a Large Linear Span. IEEE Trans. Inf. Theory. 1992, 38(1):120-130
    [67]A. Klapper. Cascaded GMW Sequences. IEEE Trans. Inf. Theory.1993,39(1):177-183
    [68]G. Gong, q-ary Cascaded GMW Sequences. IEEE Trans. Inf. Theory.1996,42(1):263-267
    [69]C. Ding, T. Helleseth, K. Lam. Several Classes of Binary Sequences with Three-level Autocorrelation. IEEE Trans. Inf. Theory.1999,45(7):2606-2612
    [70]C. Ding, T. Helleseth, H. Martinsen. New Families of Binary Sequences with Optimal Three-valued Autocorrelation. IEEE Trans. Inf. Theory.2001,47(1):428-433
    [71]X. Tang, C. Ding. New Classes of Balanced Quaternary and Almost Balanced Bina-ry Sequences with Optimal Autocorrelation Value. IEEE Trans. Inf. Theory.2010, 56(12):6398-6405
    [72]H. Chung, P. Kumar. A New General Construction for Generalized Bent Functions. IEEE Trans. Inf. Theory.1989,35(1):206-209
    [73]C. Carlet. Generalized Partial Spreads. IEEE Trans. Inf. Theory.1995,41(5):1482-1487
    [74]R. Heimiller. Phase Shift Pulse Codes with Good Periodic Crosscorrelation Properties. IRE Trans. Inf. Theory.1961,7(4):254-257
    [75]R. Frank, S. Zadoff. Phase Shift Pulse Codes with Good Periodic Crosscorrelation Properties. IRE Trans. Inf. Theory.1962,8(6):381-382
    [76]D. Chu. Polyphase Codes with Good Periodic Correlation Properties. IEEE Trans. Inf. Theory.1972,18(4):531-532
    [77]E. Gabidulin. Partial Classification of Sequences with Perfect Auto-correlation and Bent Functions. Proceedings of the 1995 IEEE International Symposium on Informa-tion Theory.1995:467
    [78]V. Sidelnikov. On Mutual Correlation of Sequences. Soviet Math. Dokl.1971,12:197-201
    [79]L. Welch. Lower Bounds on the Maximum Crosscorrelation on the Signals. IEEE Trans. Inf. Theory.1974,20(3):397-399
    [80]R. Gold. Optimal Binary Sequences for Spread Spectrum Multiplexing. IEEE Trans. Inf. Theory.1967,13(4):619-621
    [81]S. Boztas, P. Kumar. Binary Sequences with Gold-like Correlation But Larger Linear Span. IEEE Trans. Inf. Theory.1994,40(2):532-537
    [82]S. Kim, J. No. New Families of Binary Sequences with Low Crosscorrelation Property. IEEE Trans. Inf. Theory.2003,49(11):3059-3065
    [83]X. Tang, T. Helleseth, L. Hu, et al. Two New Families of Optimal Binary Sequences Obtained from Quaternary Sequences. IEEE Trans. Inf. Theory.2009,55(4):433-436
    [84]P. Udaya. Polyphase and Frequency Hopping Sequences Obtained from Finite Rings. Ph.D. dissertation, Dept. Elec. Eng., Indian Inst. Technol., Kanpur,1992
    [85]T. Kasami. Weight Distribution Formula for some Class of Cyclic Codes. Coordinated Sci. Lab., Univ. Illinois, Urbana, IL,Tech. Rep. R-285 (AD 632574).1966
    [86]T. Kasami. Weight Distribution of Bose-Chaudhuri-Hocquenghem Codes. Combinato-rial Mathematics and Its Applications.1969:335-357
    [87]X. Zeng, J. Q. Liu, L. Hu. Generalized Kasami Sequences:The Large Set. IEEE Trans. Inf. Theory.2007,53(7):2587-2598
    [88]S. Liu, J. Komo. Nonbinary Kasami Sequences Over GF(p). IEEE Trans. Inf. Theory. 1992,38(4):1409-1412
    [89]X. Zeng, N.Li, L-Hu. A Class of Nonbinary Codes and Sequence Families. Lecture Notes in Computer Science.2008,5203:81-94
    [90]P. Kumar, O. Moreno. Prime-phase Sequences with Periodic Correlation Properties Better Than Binary Sequences. IEEE Trans. Inf. Theory.1993,37(3):603-616
    [91]J. Olsen, R. Scholtz, L. Welch. Bent-function Sequences. IEEE Trans. Inf. Theory. 1982,28(11):858-864
    [92]P. Kumar. Analysis and Generalization of Bent-function Sequences. Ph.D. dissertation, University of Southern California, Los Angeles, CA,1983
    [93]H. Trachtenberg. On the Cross-correlation Functions of Maximal Recurring Sequences. Ph.D. dissertation, Univ. of Southern California, Los Angeles, CA,1970
    [94]T. Helleseth. Some Results about the Cross-correlation Function between Two Maximal Linear Sequences. Discrete Mathematics.1976,16(3):209-232
    [95]J. No, P. Kumar. A New Family of Binary Pseudorandom Sequences Having Optimal Periodic Correlation Properties and Large Linear Span. IEEE Trans. Inf. Theory.1989, 35(2):371-379
    [96]J. Luo, K. Feng. Cyclic Codes and Sequences from Generalized Coulter-Matthews Function. IEEE Trans. Inf. Theory.2008,54(12):5345-5353
    [97]S. Boztas, R. Hammons, P. Kumar.4-phase Sequences with Near-optimum Correlation Properties. IEEE Trans. Inf. Theory.1992,14(3):1101-1113
    [98]P. Sole. A Quaternary Cyclic Code, and a Familly of Quadriphase Sequences with Low Correlation Properties. Lecture Notes in Computer Science.1989,388:193-201
    [99]P. Udaya, M. Siddiqi. Optimal and Suboptimal Quadriphase Sequences Derived from Maximal Length Sequences Over Z4. Appl. Algebra Eng. Commun. Comput.1998, 9(2):161-191
    [100]X. Tang, P. Udaya. A Note on the Optimal Quadriphase Sequences Families. IEEE Trans. Inf. Theory.2007,53(1):433-436
    [101]W. Jiang, L. Hu, X. Tang, et al. New Optimal Quadriphase Sequences with Larger Linear Span. IEEE Trans. Inf. Theory.2009,55(l):458-470
    [102]X. Tang, T. Helleseth, P. Fan. A New Optimal Quaternary Sequence Family of Length 2(2n - 1) Obtained from the Orthogonal Transformation of Families B and C. Designs, Codes and Cryptography.2009,53(3):137-148
    [103]C. Carlet, C. Ding. Highly Nonlinear Mappings. Journal of Complexity.2004, 20(2):205-244
    [104]Z. Zha, X. Wang. Almost Perfect Nonlinear Power Functions in Odd Characteristic. IEEE Trans. Inf. Theory.2011,57(7):4826-4832
    [105]T. Beth, C. Ding. On Almost Perfect Nonlinear Permutations. Advances in Cryptology-EUROCRYPT'93, Springer-Verlag. New York,1994:65-76
    [106]R. Gold. Maximal Recursive Sequences with 3-valued Recursive Crosscorrelation Functions. IEEE Trans. Inf. Theory.1968,14(1):154-156
    [107]T. Kasami. The Weight Enumerators for Several Classes of Subcodes of the Second Order Binary Reed-Muller Codes. Inform. and Control.1971,18(4):369-394
    [108]H. Dobbertin. Almost Perfect Nonlinear Power Functions on GF(2n):The Welch Case. IEEE Trans. Inf. Theory.1999,45(4):1271-1275
    [109]H. Hollmann, Q. Xiang. A Proof of the Welch and Niho Conjectures on Cross-correlations of Binary m-sequences. Finite Fields Appl.2001,7(2):253-286
    [110]H. Dobbertin. Almost Perfect Nonlinear Power Functions on GF(2n):The Niho Case. Inform, and Comput.1999,151(1):57-72
    [111]H. Dobbertin. Almost Perfect Nonlinear Power Functions on GF(2n):A New Case for n Divisible by 5. Proceedings of the Fifth International Conference on Finite Fields and Their Applications.2001:113-121
    [112]L. Budaghyan, C. Carlet. Classes of Quadratic APN Trinomials and Hexanomials and Related Structures. IEEE Trans. Inf. Theory.2008,54(5):2354-2357
    [113]L. Budaghyan, C. Carlet, G. Leander. Two Classes of Quadratic APN Binomials In-equivalent to Power Functions. IEEE Trans. Inf. Theory.2008,54(9):4218-4229
    [114]L. Budaghyan, C. Carlet, G. Leander. Constructing New APN Functions from Known Ones. Finite Fields Appl.2009,15(2):150-159
    [115]L. Budaghyan, C. Carlet, A. Pott. New Classes of Almost Bent and Almost Perfect Nonlinear Functions. IEEE Trans. Inf. Theory.2006,52(3):1141-1152
    [116]T. Helleseth, C. Rong, D. Sandberg. New Families of Almost Perfect Nonlinear Power Mappings. IEEE Trans. Inf. Theory.1999,45(2):475-485
    [117]H. Dobbertin, D. Mills, E. Muller, et al. APN Functions in Odd Chatacteristic. Discrete Mathematics.2003,267(1-3):95-112
    [118]E. Brown. Generalizations of the Kervaire Invariant. Annals Math.1972,95(2):368-383
    [119]K.-U. Schmidt. Z4-valued Quadratic Forms and Quaternary Sequence Families. IEEE Trans. Inf. Theory.2009,55(12):58O3-5810
    [120]R. Chien. Cyclic Decoding Procedure for the Bose-Chaudhuri-Hocquenghem Codes. IEEE Trans. Inf. Theory.1964,10(4):357-363
    [121]G. Forney. On Decoding BCH Codes. IEEE Trans. Inf. Theory.1965, 11(4):549-557
    [122]E. Prange. Some Cyclic Error-correcting Codes with Simple Decoding Algorithms. Air Force Cambridge Research Center-TN-58-156, Cambridge, Mass.1958
    [123]C. Rong, T. Helleseth. Use Characteristic Sets to Decode Cyclic Codes up to Actual Minimum Distance. Proceedings of the Third International Conference on Finite Fields and Applications.1996:297-312
    [124]T. Klove. Codes for Error Detection. World Scientific,2007
    [125]X. Zeng, L. Hu, W. Jiang, et al. The Weight Distribution of a Class of p-ary Cyclic Codes. Finite Fields Appl.2010,16(1):56-73
    [126]C. Ding, Y. Liu, C. Ma, et al. The Weight Distributions of the Duals of Cyclic Codes with Two Zeros. IEEE Trans. Inf. Theory.2011,57(12):8000-8006
    [127]Z. Zhou, C. Ding. A Class of Three-weight Cyclic Codes. Arxiv ePrint Archive, ava-iable online: http://arxiv.org/abs/1302.0569
    [128]Z. Zhou, A. Zhang, C. Ding, et al. The Weight Enumerator of Three Families of Cyclic Codes. IEEE Trans. Inf. Theory.59(9):6002-6009
    [129]Z. Zhou, C. Ding, J. Luo, et al. A Family of Five-weight Cyclic Codes and Their Weight Enumerators. IEEE Trans. Inf. Theory (to appear)
    [130]P. Sole, N. Tokareva. Connections between Quaternary and Binary Bent Functions. Cryptology ePrint Archives, available online:http://www.eprint.iacr.org/2009/544
    [131]N. Li, X. Tang, T. Helleseth. Several Classes of Codes and Sequences Derived from a Z4-valued Quadratic Form. IEEE Trans. Inf. Theory.2011,57(11):7618-7628
    [132]R. Hammons, P. Kumar, A. Calderbank, et al. The Z4-linearity of Kerdock, Preparata, Goethals, and Related Codes. IEEE Trans. Inf. Theory.1994,40(2):301-319
    [133]X. Hou. p-ary and q-ary Versions of Certain Results about Bent Functions and Resilient Functions. Finite Fields Appl.2004,10(4):566-582
    [134]J. Dillon, H. Dobbertin. New Cyclic Difference Sets with Singer Parameters. Finite Fields Appl.2004,10(3):342-389
    [135]R. Lidl, G. Mullen, G. Turnwald. Dickson Polynomials. Reading, MA:Addison-Wesley, vol.65, Pitman Monographs in Pure and Applied Mathematics,1993
    [136]S. Mesnager. Semibent Functions from Dillon and Niho Exponents, Kloosterman Sums, and Dickson Polynomials. IEEE Trans. Inf. Theory.2011,57(11):7443-7458
    [137]P. Delsarte, J. Goethals. Irreducible Binary Cyclic Codes of Even Dimension. Pro-ceedings of the Second Chapel Hill Conference on Combinatorial Mathematics and its Applications. Univ. North Carolina, Chapel Hill,1970:100-113
    [138]L. Carlitz. Explicit Evualation of Certain Exponential Sums. Math. Scand.1979, 44:5-16
    [139]F. Gologlu. Almost Bent and Almost Perfect Nonlinear Functions, Exponential Sums, Geometries and Sequences. Ph.D. dissertation, University of Magdeburg,2009
    [140]K. Kononen, M. Rinta-aho, K. Vaananen. On Integer Values of Kloosterman Sums. IEEE Trans. Inf. Theory.2010,56(8):4011-4013
    [141]K. Garaschuk, P. Lisonek. On Ternary Kloosterman Sums Modulo 12. Finite Fields Appl.2008,14(4):1083-1090
    [142]P. Charpin. Cyclic Codes with Few Weights and Niho Exponents. J. Combin. Theory Ser. A.2004,108(2):247-259
    [143]T. Helleseth, P. Rosendahl. New Pairs of m-sequences with 4-level Cross-correlation. Finite Fields Appl.2005,11(4):674-683
    [144]Y. Niho. Multi-valued Cross-correlation Functions between Two Maximal Linear Re-cursive Sequences. Ph.D. dissertation, Electron. Sci. Lab., Univ. Southern California, Los Angeles, CA,1972
    [145]J. Luo. Cross Correlation of Nonbinary Niho-type Sequences. Proceedings of the 2010 IEEE International Symposium on Information Theory.2010:1297-1299
    [146]C. Carlet, S. Mesnager. On Dillon's Class H of Bent Functions, Niho Bent Functions and o-polynomials. J. Combin. Theory Ser. A.2011,118(8):2392-2410
    [147]C. Ding. Cyclotomic Constructions of Cyclic Codes with Length Being the Product of Two Primes. IEEE Trans. Inf. Theory.2012,58(4):2231-2236
    [148]C. Ding. Cyclic Codes from the Two-prime Sequences. IEEE Trans. Inf. Theory.2012, 58(6):3881-3891
    [149]C. Ding. Cyclic Codes from Cyclotomic Sequences of Order Four. Finite Fields Appl. 2013,23:8-34
    [150]C. Ding. Cyclic Codes from Dickson Polynomials. Arxiv ePrint Archive, avaiable online:http://arxiv.org/abs/1206.4370
    [151]C. Ding. Cyclic Codes from APN and Planar Functions. Arxiv ePrint Archive, avaiable online:http://arxiv.org/abs/1206.4687
    [152]X. Zeng, J. Shan, L. Hu. A Triple-error-correcting Cyclic Code from the Gold and Kasami-Welch APN Power Functions. Finite Fields Appl.2012,18(1):70-92
    [153]E. Betti, M. Sala. A New Bound for the Minimum Distance of a Cyclic Code from its Defining Set. IEEE Trans. Inf. Theory.2006,52(8):3700-3706
    [154]C. Ding, S. Ling. A q-polynomial Approach to Cyclic Codes. Finite Fields Appl.2013, 20(3):1-14
    [155]C. Ding, J. Yang. Hamming Weights in Irreducible Cyclic Codes. Discrete Mathemat-ics.2013,313(4):434-446
    [156]T. Feng. On Cyclic Codes of Length 22r - 1 with Two Zeros Whose Dual Codes have Three Weights. Designs, Codes and Cryptography. 2012,62(3):253-258
    [157]Y. Jia, S. Ling, C. Xing. On Self-dual Cyclic Codes Over Finite Fields. IEEE Trans. Inf. Theory.2011,57(4):2243-2251
    [158]K. Feng, J. Luo. Weight Distribution of some Reducible Cyclic Codes. Finite Fields Appl.2008,14(4):390-409
    [159]J. Luo, K. Feng. On the Weight Distributions of Two Classes of Cyclic Codes. IEEE Trans. Inf. Theory.2008,54(12):5332-5344
    [160]C. Ma, L. Zeng, Y. Liu, et al. The Weight Enumerator of a Class of Cyclic Codes. IEEE Trans. Inf. Theory.2011,57(1):397-402
    [161]B. Wang, C. Tang, Y. Qi, et al. The Weight Distributions of Cyclic Codes and Elliptic Curves. IEEE Trans. Inf. Theory.2012,58(12):7253-7259
    [162]S. Rouayheb, C. Georghiades, E. Soljanin, et al. Bounds on Codes Based on Graph The-ory. Proceedings of the 2007 IEEE International Symposium on Information Theory. 2007:1876-1879
    [163]P. Delsarte. On Subfield Subcodes of Modified Reed-Solomon Codes. IEEE Trans. Inf. Theory.1975,21(5):575-576
    [164]C. Li, N. Li, T. Helleseth, et al. On the Weight Distributions of Several Classes of Optimal Cyclic Codes from APN Exponents. IEEE Trans. Inf. Theory, submitted
    [165]G. Cohen, I. Honkala, S. Litsyn, et al. Covering Codes. Amsterdam, The Netherlands: North-Holland/Elsevier,1997
    [166]C. Li, N. Li, T. Helleseth. Quasi-perfect Cyclic Codes from Planar and Almost Perfect Nonlinear Monomials. Preprint
    [167]K. Arasu, C. Ding, T. Helleseth, et al. Almost Difference Sets and Their Sequences with Optimal Autocorrelation. IEEE Trans. Inf. Theory.2001,47(7):2934-2943
    [168]X. Tang, G. Gong. New Constructions of Binary Sequences with Optimal Autocorrela-tion Value/Magnitude. IEEE Trans. Inf. Theory.2010,56(3):1278-1286
    [169]J. Jang, Y. Kim, S. Kim, et al. New Quaternary Sequences with Ideal Autocorrelation Constructed from Binary Sequences with Ideal Autocorrelation. Proceedings of the 2009 IEEE International Symposium on Information Theory.2009:278-281
    [170]Y. Kim, J. Jang, S. Kim, et al. New Construction of Quaternary Sequences with Ideal Autocorrelation from Legendre Sequences. Proceedings of the 2009 IEEE International Symposium on Information Theory.2009:282-285
    [171]Y. Kim, J. Jang, S. Kim, et al. New Quaternary Sequences with Optimal Autocorrela-tion. Proceedings of the 2009 IEEE International Symposium on Information Theory. 2009:286-289
    [172]X. Tang, J. Lindner. Almost Quadriphase Sequences with Ideal Autocorrelation Prop-erty. IEEE Signal Processing Letters.2009,16(1):38-40
    [173]H. Luke, H. Schotten, H. Hadinejad-Mahram. Binary and Quadriphase Sequences with Optimal Autocorrelation Properties:A Survey. IEEE Trans. Inf. Theory.2003, 49(12):3271-3282
    [174]V. Sidelnikov. Some к-valued Pseudo-random Sequences and Nearly Equidistan-t Codes. Problemy Peredachi Informatsii.1969,5(1):12-16
    [175]D. Green, P. Green. Polyphase-related Prime Sequences. IEE Proceedings of the 2001 Computers and Digital Techniques.2001:53-62
    [176]A. Johansen, T. Helleseth, X. Tang. The Correlation Distribution of Quaternary Se-quences of Period 2(2n-1). IEEE Trans. Inf. Theory. 2008,54(7):3130-3139
    [177]X. Tang, T. Helleseth. Generic Construction of Quaternary Sequences of Period 2N with Low Correlation from Quaternary Sequences of Odd Period N. IEEE Trans. Inf. Theory.2011,57(4):2295-2300
    [178]P. Kumar, T. Helleseth, A. Calderbank, et al. Large Families of Quaternary Sequences with Low Correlation. IEEE Trans. Inf. Theory.1996,42(2):579-592
    [179]X. Tang, P. Udaya, P. Fan. Quadriphase Sequences Obtained from Binary Quadratic Form Sequences. Lecture Notes in Computer Science.2005,3486:243-254
    [180]X. Tang, T. Helleseth, A. Johansen. On the Correlation Distribution of Kerdock Se-quences. Lecture Notes in Computer Science.2008,5023:121-129
    [181]X. Tang, P. Udaya, P. Fan. Generalized Binary Udaya-Siddiqi Sequences. IEEE Trans. Inf. Theory.2007,53(3):1225-1230
    [182]G. Gong. Theory and Applications of q-ary Interleaved Sequences. IEEE Trans. Inf. Theory.1995,41(2):400-411
    [183]N. Li, X. Tang, X. Zeng, et al. On the Correlation Distributions of the Optimal Quater-nary Sequence Family U and the Optimal Binary Sequence Family V. IEEE Trans. Inf. Theory.2011,57(6):3815-3824
    [184]P. Rosendahl. Niho Type Cross Correlation Functions and Related Equations. Ph.D. dissertation, Department of Mathematics, University of Turku, Turku, Finland
    [185]O. Rothaus. Modified Gold Codes. IEEE Trans. Inf. Theory.1993,39(2):654-656
    [186]Z. Zhou, X. Tang. Generalized Modified Gold Sequences. Designs, Codes and Cryp-tography.2011,60(3):241-253
    [187]T. Helleseth, P. Kumar. Codes with the Same Weight Distribution as the Goethals Codes and the Delsarte-Goethals Codes. Designs, Codes and Cryptography.1996,9(3):257-266
    [188]T. Helleseth, L. Hu, A. Kholosha, et al. Period-different m-sequences with at Most Four-valued Cross Correlation. IEEE Trans. Inf. Theory.2009,55(7):3305-3311
    [189]L. Hu, X. Zeng, N. Li, et al. Period-different m-sequences with at Most Four-valued Cross Correlation. Proceedings of the 2008 IEEE Singapore International Conference on Communication Systems.2008:446-450
    [190]A. Bluher. On xq+l+ax+b. Finite Fields Appl.2004,10(3):285-305
    [191]A. Nechaev. Kerdock Code in a Cyclic Form. Discr. Math. Appl.1991, 1(4):365-384
    [192]P. Udaya, M. Siddiqi. Optimal Biphase Sequences with Large Linear Complexity De-rived from Sequences Over Z4. IEEE Trans. Inf. Theory.1996,42(1):206-216
    [193]N. Yu, G. Gong. A New Binary Sequence Family with Low Correlation and Large Size. IEEE Trans. Inf. Theory.2006,52(4):1624-1636
    [194]Z. Zhou, X. Tang. New Families of Binary Sequences with Low Correlation and Lagre Size. IEICE Trans. Fundamentals.2009, E92-A(1):291-297
    [195]K.-U. Schmidt. On the Correlation Distrbution of Delsarte-Goethals Sequences. De-signs, Codes and Cryptography.2001,59(1-3):333-347
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.