寄生隐丛赤壳菌毒素化学及其致病机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在研究板栗疫病的病原菌产毒条件的基础上,通过有机溶剂浸提获得了病菌的粗提毒素,用生物测定的方法明确了所提取的粗毒素的致病作用及致病范围,并用粗毒素进行了抗性鉴定:进一步采用柱层析、HPLC分析等从粗提毒素中获得了毒素纯品,用质谱、核磁共振、红外光谱对毒素的分子结构进行了鉴定:在板栗植株和细胞的水平,通过对其生理生化的测定及组织超微结构的观察进行致病机理的研究:并以Cp-Ⅱ毒素为诱导因子诱导具有抗性的板栗愈伤组织,获得如下主要结果:
     1.寄生隐丛赤壳菌在供试的液体培养基中可以产生对板栗有毒性作用的毒素,为了得到寄生隐丛赤壳菌的最佳产毒条件,本实验对该病菌的产毒培养条件及致病范围进行了研究。结果表明:不同培养液的产毒能力有明显的差异,7种培养液中,PD+板栗煎汁培养液产毒能力最强;栗疫病病菌产毒能力以培养温度为26℃,培养基pH值为6,振荡培养(120 r/min)条件下培养18 d生物活性最强;最佳氮源为蛋白胨,较好的碳源为糊精。试验选择中国板栗当年生幼嫩枝条进行粗毒素生物检测,表明培养得到的毒素原液具有一定的毒性。通过对致病范围的测定结果显示,在供试的25科33种植物中除对板栗有致病作用外,对其它不同科属的多种植物也具有致病活性,表明该毒素是一种非专化型毒素。
     2.寄生隐丛赤壳菌(Cryphonectria parasitica)经液体培养,石油醚萃取其发酵液获得对板栗带叶嫩枝具有致萎活性的粗提物,以氯仿:石油醚:甲醇(6:2:2)、正丁醇:水:甲醇(8:1:1.5)作洗脱剂,粗提物经硅胶色谱分离,共得到3种纯毒素,分别为Cp-Ⅰ、Cp-Ⅱ、Cp-Ⅲ,3组份都对板栗幼苗致萎活性较高。质谱、核磁共振和红外光谱测定表明:Cp-Ⅰ分子量为278,化学式为C_(16)H_(22)O_4,化学名称为:dibutyl phthalate;Cp-Ⅱ分子量为157,化学式为C_9H_(19)ON,化学名称为1-(4-ethylpiperidin-1-yl)pmpan-2-one;Cp-Ⅲ分子量为128,化学式为C_7H_(14)ON,3-propylmorpholine。其化学结构式分别为:
     3.应用酶活力测定的方法,研究板栗Castanea mollissima Blume不同抗性品种叶组织经栗疫菌Cryphonectria parasitica毒素Cp-处理后对其过氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)、多酚氧化酶(PPO)和苯丙氨酸解氨酶(PAL)活性的影响。结果表明:适宜浓度(25-50μg/mL)的Cp-Ⅱ毒素处理板栗叶片,能提高保护性酶SOD、POD、CAT、APX、PPO和PAL的活性,抗病品种(北裕2号)活性变化幅度最大;随着毒素处理浓度升高,活性氧清除系统开始受到破坏,各品种的酶活性相继下降:Cp-Ⅱ毒素处理浓度达200μg/mL时,破坏了板栗叶片中的抗氧化酶系,造成活性氧过量积累,APX、PPO和PAL的活性随之降低,最终导致植物受到伤害最终导致植物受到破害;可溶性蛋白和可溶性糖含量先升后降,电导率和MDA含量升高,保护性酶SOD和CAT的活性升高及POD活性下降。Cp-Ⅱ毒素引起寄主的这种生理生化规律性变化可作为抗性鉴定的一种评价指标。
     4.用寄生隐丛赤壳菌产生的具致萎活性的Cp-Ⅱ毒素处理板栗带叶嫩枝,研究毒素对叶组织、茎组织超微结构的影响。结果表明:清水处理后的板栗叶片,其叶肉细胞超微结构比较清晰,细胞质致密,可见排列整齐的细胞结构。随着毒素浓度的增加,叶细胞的细胞壁变形,质壁分离,质膜断裂,叶绿体膜、线粒体膜、核膜膨胀、断裂,内部间质电子透明化,叶绿体片层排列紊乱,线粒体脊膨胀甚至消失,损害发生早和严重的是叶绿体片层和质膜,抗病品种的膜系统比感病品种的受害轻。茎组织经毒素处理后,感品种茎组织细胞均出现细胞壁变形甚至断裂,质膜断裂,叶绿体变形严重,类囊体片层解体,叶绿体膜膨胀、断裂;抗病品种变化较小。
     5.本研究以栗疫病抗病品种北裕2号和感病品种红光愈伤组织为材料,用Cp-Ⅱ毒素处理板栗愈伤组织,对处理后的愈伤组织进行细胞超微结构观察,测定其体内β-1,3-葡聚糖酶与几丁质酶活性,筛选具有抗性的愈伤组织。结果显示:Cp-Ⅱ毒素处理后的红光细胞膜对毒素的作用最敏感,北裕2号的愈伤组织变化较红光出现的晚;对毒素处理的愈伤组织的几丁质酶与β-1,3-葡聚糖酶活性测定结果表明,抗病品种比感病品种酶的活性增加幅度大、时间早,且两种酶的活性在毒素处理后均不同程度地高于对照;Cp-Ⅱ毒素浓度为50μg/mL胁迫愈伤组织28 d以后,经抗性分析感病病品种更易诱导出具有抗性的愈伤组织。
On the base of production conditions of the toxin from Cryphonectria parasitica, the pathogenic activity and its host range of the toxin was determined by bioassay methods. The resistance of different chestnut varieties was identified by using the toxin. The toxin was purified by silica gel column chromatography and HPLC, and was identified by the analysis of mass spectrography (MS), nuclear magnetic resonance (NMR) and infrared spectrum (IR). The pathogenesis of C. parasitica toxin was studied by physiological and biochemical determination, ultrastructural observation at plant and cell level. And Cp-Ⅱtoxin was taken as inducible factor to induce resistant callus. The results were as follows.
     1. C. parasitica could produce phytotoxin in fluid media. The conditions of toxin production of C. parasitica were optimized. Results showed the liquid medium had the strongest toxin-producing capacity among 7 media. The optimal cultural conditions for producing toxin were cultured period at temperature 26℃, 18 d, and pH 6. Peptone and dextrin were the best nitrogenous source and carbonic sources respectively. The twigs of Chinese chestnut were selected to test the toxicity of crude toxin, which showed the cultured crude toxin had definite toxicity. C. parasitica toxin was a non-host-specific toxin. It had toxic activity to many plants from different families (33 species of 22 families). It could cause leaf blight and withered.
     2. The strain of C. parasitica was cultivated by liquid fermentation. The crude material with wilt activity to chestnut browse was obtained by extracting antagonistic components with petroleum ether from the fermentation broth. Three compounds were obtained by silica gel column chromatography by using V(chloroform ):V(petroleum ether ):V(alcohol)=6:2:2 as eluent. The results showed the first compound (Cp-Ⅰ) had higher wilt activity than others. The chemical formula of the pathogenic fraction was identified by MS, NMR and IR. Cp-Ⅰwas C_(16)H_(22)O_4 (M=278), Cp-Ⅱwas C_9H_(19)ON (M=157), Cp-Ⅲwas C_7H_(14)ON (M=128). The structure of Cp-Ⅰ,Cp-Ⅱ,Cp-Ⅲwere as follows:
     3. The method of excised leaf test was used to study the effect of Cp-Ⅱtoxin from C. parasitica on Castanea mollissima Blume. including four varieties with different resistance, specially on its activities of the enzymes superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), catalase (CAT), polyphenol oxidase (PPO), phenylalanine pmmonia lyase (PAL). The results suggested: the activities of the protective enzymes, including SOD, POD, CAT, APX, PPO and PAL, increased notably and the change extent of the enzymes activities of the resistant variety was the largest after treated with the Cp-Ⅱtoxin concentration from 25μg/mL to 50μg/mL. With increasing concentration of the Cp-Ⅱtoxin, the activate oxygen metabolism system was destroyed, the balance of the protective enzyme system was broken. The enzymes activities were observed to decrease in all varieties. Finally, the antioxidant enzyme system was damaged, and the excessive accumulation of the active oxygen free radicals was enhanced when the treatment concentration of Cp-Ⅱtoxin was 200 ug/mL. The APX, PPO and PAL activities decreased with its accumulation, and eventually caused plant damage. The regularity change of physiological and biochemical of host caused by Cp-Ⅱtoxin could be used a marker to assess the resistant.
     4. To study the ultra-structure of leaf and stem tissue of resistant and susceptible Chinese chestnut, the toxin of C. parasitica with wilt activity to Chinese chestnut browse was obtained by isolation and purification from its fermentation broth. The Results indicated that the damage on leaf tissue included the transformation of cell wall, the plasmolysis, the swollen and disruption of chloroplast, mitochondria and nuclei the transparency of in ternalmatrix, the disordering of chloroplast lamellae, and the expanding and the disappearing of mitochondria ridges. The lamellae and membrane of chloroplasts are more sensitive to the toxin and change earlier. The damages on membrane systems of the cells are lighter and occur later in the R-type than the S-type one. The stem was treated with Cp-Ⅱtoxin, the results showed that plasmolysis and chloroplast deformation only took place, the ultra-structure of Hongguang stem tissue was badly damaged, including the deformed and broken cell wall, the broken plasmalemma, the misshaped chloroplast, decomposed chloroplast lamellae and broken envolopen of chloroplast. Beiyu 2.
     5. The callus of two chestnut cultivars, Beiyu 2 and Hongguang, which were susceptive and resistant to C. parasitica respectively, were compared at ultra-structural level after callus were treated with Cp-Ⅱtoxin. The callus were used to determine the activities of chitinase andβ-1,3-glucanase. The results indicated that plasma membrane was more sensitive to Cp-Ⅱtoxin than other organs. The changes of Hongguang exhibited earlier than Beiyu 2. The activities of chitinase andβ-1,3-glucanase in the callus cells treated with the Cp-Ⅱtoxin were increased to the higher level at earlier time point in resistant cultivars than these in the susceptible cultivars. Chitinase andβ-1,3-glucanase activities of the resistant varieties and the susceptible ones were higher than the control, suggested that treated with Cp-Ⅱtoxin could induce resistance to C. parasitica through activating chitinase andβ-1,3-glucanase. The resistant callus was obtained by taking Cp-Ⅱtoxin (50μg/mL) as inducible factor, and susceptible variety was induced easier by analysis of resistance.
引文
[1]陈在新,魏天才.板栗的营养保健作用及其开发利用[J].农牧产品开发,1999,4:4-5.
    [2]齐敏,岳崇峰,李玉梅.板栗的药用价值及开发[J].中国林副特产,1997,42(3):51-52.
    [3]Griffin G.J. and Elkins J.R. Chestnut blight in Chestnut blight,other Endothia diseases, and the genus Endothia.American Phytopathological Society Monograph[J]. 1986. 1: 26
    [4]周而勋,王克荣,陆家云.中国东部11省(市)栗疫菌的发生条件[J].南京农业大学学报,1993,16(3):44-49.
    [5]朱天辉,李芳莲.四川省板栗栽培区疫病的鉴定与除害[J].四川林业科技,2008,29(1):50-53.
    [6]Locci, R. Chestnut blight: an epidemic checked by biological control[J]. Friulian Journal of Science, 2003, 4: 27-45.
    [7]章元寿.植物病理生理学[M].南京:江苏科技出版社,1995,51-52.
    [8]Clapper R.B. Relative blight resistance of some chestnut species and hybrids[J]. J. Forest., 1952. 50: 453-455.
    [9]Milgroom M.G. and Wang K.R. Intercontinental population structuer of the chestnut blight fungus Cryphonectria parasitica[S]. Mycologia, 1996, 88 (2): 179-190.
    [10]Shear C.L. and Stevens N.E. The Chestnut-Blight Parasite (Endoihia Parasitica) from China[J]. Science, 1913, 38 (974): 295-297.
    [11]Shear C.L. and Stevens N.E. The Discovery of the Chestnut-Blight Parasite (Endoihia Parasitica) and Other Chestnut Fungi in Japan[J]. Science, 1916, 43: 173-176.
    [12]朴春根,Kyung-hee,K,Sang-hyun,L,et,al.韩国、美国和中国栗疫病菌的遗传变异分析[J].林业科学研究,2007,20(2):283-286.
    [13]王新花,潘若良,王会永,等.栗疫病的侵染循环规律[J].山东林业科技,1998,1:21-23.
    [14]Anagnostakis S.L. and Kranz J. Population dynamics of Cryphonectria parasitica in a mixed-hardwood forestin Connecticut[J]. Phytopathology, 1987, 77: 751-754.
    [15]Pratella G.C. Ordine Diaporthales. In: Goidanich, G. Manuale di Patologia Vegetale. Vol. II.[J]. Edizioni Agricole, Bologna,, 1978, 587-604.
    [16]周而勋.栗疫病菌及其双链RNA的生物学研究[J].南京:南京农业大学植保系,1994,1-184.
    [17]Van Alfen N.K., Jaynes R.A., Bowman J.A. Stability of Endothia parasitica hypovirulence in culture[J]. Phytopathology, 1978, 68: 1075-1079.
    [18]Anagnostakis S.L. and Day P.R. Hypovirulence conversion in Endothia parasitica[J]. Phytopathology , 1979, 69: 1226-1229.
    [19]Andes J.O. Cultural variation in Endothia parasitica[J]. Phytopathology, 1961, 51: 1.
    [20]Anagnostakis S.L. Vegetative incompatibility in Endothia Parasitica[J]. Exp, Mycol, 1977, 1: 306-316.
    [21]Anagnostakis S.L. Genetic analyses of Endothia parasitica: linkage data for four single genes and three vegetative compatibility types[J]. Genetics, 1982, 102: 25-28.
    [22]王克荣,邵见阳,陆家云.苏皖地区栗疫病菌营养体亲和性研究[J].南京农业大学学报,1991,14(4):44-48.
    [23] 徐陈贤,周晓云,王克荣.亚欧美栗疫病菌群体的遗传多样性[J].生态学报,2005,25(2):232-236.
    [24] Bazzigher G. Selection of blight-resistant chestnut trees in Switzerland[J]. Eur. J. For. Path., 1981. 11: 199-207.
    [25] 王克荣,周而勋,丁国云,等.栗疫病菌的培养性状、毒力与dsRNA的关系[J].植物病理学报,1996,26(4):341-346.
    [26] 周而勋,王克荣,陆家云.栗疫病菌不同毒力菌株生物学特性的研究[J].植物病理学报,1996,26(3):263-268.
    [27] Grente J. and Sauret S. Les formes Hypovirulentes d'Endothia parasitica et les espoirs de lutte contre le chancre du chataignier. [J]. Academie d' Agriculture de France, Extrait du Proces-verbal de la Seance., 1969, 51: 1033-1037.
    [28] Van Alfen N.K., Jaynes R.A., Anagnostakis S.L., el al. Chestnut blight: Biological control by transmissible hypovirulence in Endolhia parasilica[J]. Science, 1975, 189(4206): 890-891.
    [29] Moffit E.M. and Lister R.M. Application of a serological screening test . for detecting double-stranded RNA mycoviruses[J]. Phytopathology , 1975, 65: 851-859.
    [30] Day P.R., Dodds J.A., Elliston J.E., et al. Double stranded RNA in Endothia parasitica[J]. Phytopathology , 1997, 67: 1393-1396.
    [31] Dodds J.A. Double-stranded RNA and virus-like particles in Endolhia. parasitica. In W. MacDonald (ed.) American Chestnut Symp.[J]. Proc. Jan. , 1978, 108-110.
    [32] Elliston J.E. 1985.Characterizationof dsRNA-free and dsRNA-eontaining strains of Endothia parasitica in relation to hypovirulence[J]. PhytoPathology, 1985, 75: 151-158
    [33] Enebak S.A., MacDonald W.L., Hillman B.I. Effect of dsRNA associated with isolates of Cryphonectria parasitica from the central Appalachians and their relatedness to other dsRNAs from North America and Europe[J]. Phytopathology , 1994, 84: 528-534.
    [34] Anagnostakis S.L. Cryphonectria parasitica cause of chestnut blight[J]. Advances in Plant Pathology, 1988, 6: 123-136.
    [35] Anagnostakis S.L. Biological control of chestnut blight[J]. Science, 1982, 215: 466-471.
    [36] 周而勋,王克荣,陆家云.栗疫病菌dsRNA的传递及其影响因素[J].华南理工大学学报(自然科学版),1996,24(增刊):93-97.
    [37] Fulbright D.W. and Weidlich W.H. Biological control of chestnut blight with native Michigan hypovirulent strains of Endothia parasitica[i}. Phytopathology, 1982, 72 (7): 957.
    [38] 王克荣,成桂英,刘怡君,等.栗疫病菌的营养体亲和性基因和dsRNA对病毒传播的影响[J].菌物系统,1997,16(1):30-35.
    [39] Biella S., Shmith M.L., Aist J.R., et al. Programmed cell death correlates with virus transmission in a filamentous fungus[J]. Proc. R. Soc. Lond.B Biol. Sci., 2002, 269: 2269-2276.
    [40] 丁平,刘福秀,王克荣.有性生殖对栗疫病菌群体结构的影响[J].菌物学报,2006,25(1):41-47.
    [41] 王克荣,邵见阳,陆家云.栗疫病菌的致病力分化[J].果树科学,1993,10(1):25-28.
    [42] Puhalla J.E. and Anagnostakis S.L. Genetics and nutritional requirements of Endothia parasitica [J]. Phytopathology, 1971, 61: 169-173.
    [43] Milgroom M.G., Lipari S., Liu Y.C. Estimation of the outcrossing rate in the chestnut blight fungus, Cryphonectria parasitica.[J]. Heredity, 1993, 70: 385-392.
    [44] 王克荣,周而勋,陆家云.中国东部栗疫病菌的交配型[J].南京农业大学学报,1997,20(3):117-119.
    [45] Cortesi P., McCulloch C.E., Song H., el al. Genetic Control of Horizontal Virus Transmission in the Chestnut Blight Fungus, Cryphonectria parasitica[J]. Genetics , 2001, 159): 107-118.
    [46] VanAlfen N.K., Hansen D.R., Miller S. High frequency mutation of a virulence regulatory site in Endothia psrasitica (abst ract)[J]. Phytopath., 1984, 74 (7): 833.
    [47] Hcnriett V., Maria V., Ilona S. Chestnut blight and its biological control in the Sopron Hills, Hungary[J]. Acta Silv. Lign. Hung., 2007, 9: 199-205.
    [48] Heiniger U., Graf R., Rigling D. Biologically controllable-Chestnut blight north of the Swiss Alps.[J]. Wald Holz , 2007, 88 (5): 50-53.
    [49] Bissegger M., Rigling D., Heiniger U. Population structure and disease development of Cryphonectria parasitica in European chestnut forests in the presence of natural hypovirulence[J]. Phytopathology, 1997, 87: 50-59.
    [50] Jaynes R.A. and Alfen N.K. Control of American chestnut blight by trunk injection with methyl-2-benzimidazole carbamate (MBC)[J]. Phytopathology, 1974, 64: 1479-1480.
    [51] Milgroom M.G. and Cortesi P. Biological control of chestnut blight with hypovirulence: a critical analysis[J]. Ann. Rev. Phytopath., 2004, 42: 311-338.
    [52] Weidlich W.H. A preliminary report on a method of biological control of the chestnut blight not involving the use of a hypovirulent strain of Endothia parasitica[J]. In: Proceedings of the American Chestnut Symposium. Eds. W. L. MacDonald, F. C. Cech, J. Luchock, and C. Smith.West Virginia University, Morgantown., 1978, 79-83.
    [53] Groome P.C., Tattar T.A., Mount M.S. Bacteria found on American chestnut bark and their potential in biocontrol of chestnut blight[J].Arboricultural Journal, 2001, 25 (3): 221-234.
    [54] MacDonald W.L. Fulbright DW. Biological control of chestnut blight: use and limitations of transmissible hypovirulence[J]. Plant Disease, 1991, 75 (7): 656-661.
    [55] Waterworth H.E. and White G.A. Plant introductions and quarantine: the need for both[J]. Plant Disease, 1982, 66: 87-90.
    [56] Lee J.K., Tattar T.A., Berman P.M., et al. A rapid method for testing the virulence of Cryphonectria parasitica using excised bark and wood of American chestnut[J]. Phytopathology, 1992, 82: 1454-1456.
    [57] 程继鸿,秦岭,高遐红.板栗抗栗疫病的研究进展[J].北京农学院学报,1997,12(2):77-82.
    [58] Anagnostakis S.L. Measuring resistance of chestnut trees to chestnut blight[J]. Canadian Journal of Forest Research, 1992, 22 (4): 568-571.
    [59] Elkins J. and Griffin G. Screeing American chestnut progeny for blightresistance.In: Double ML and MacDonald WL ed. Proceedings of the Internationa] Chestnut Conference[J]. Morgantown, W V,U.S.A.: West Virginia University Press, 1994, 41.
    [60] 万开元,秦岭,黄宏文.栗疫病菌菌株的毒性联合与毒性分离现象的初步研究[J].植物病理学报,2003,33(1):14-18.
    [61] Puhalla J.E. and Anagnostakis S.L. Genetics and nutritional requirements of Endothia Parasitica. Phytopathology, 1971.61:169-173
    [62] Burnham C.R. Breeding for chestnut blight resistance[J]. Nutshell, 1982, 35: 8-9.
    [63] Burnham C.R., Rutter P.A., French D.W. Breeding blight-resistant chestnuts[J]. Plant Breed Rev, 1986, 4: 347-397.
    [64]Bernatzdy R. and Mulcachy D.L. Market aided selection in a backcross breeding program for resistance to chestnut blight in American chestnut[J]. Canadian Journal of Forest Research. 1994, 22 (7): 1031-1035.
    [65]Hebard F.V. Meadowview notes 2001-2002[J]. The Journal of The American Chestnut Foundation , 2002, 16: 7-18.
    [66]Powell W.A. and Catranis C. Synthetic antimicrobial peptide design[J]. Molecular Plant Microbe Interactions, 1995, 8 (5): 792-794.
    [67]祁高富,杨斌,叶建仁.植物病原真菌毒素研究进展[J].南京林业大学学报,2000,24(2):66-70.
    [68]Yoder C. Toxins in Pathogenesis[J]. Annual Review Phytopathology, 1980, 18: 103-129.
    [69]叶建仁,祈高富,包宏,等.松针褐斑病菌毒素对寄主细胞质膜伤害机理的研究[J].林业科学,2000,36(2):82-86.
    [70]Otani H., Kohnobe A., Kodama M., et al. Production of a host-specific toxin by germinating spores of Alternaria brassicicola[J]. Physiological and Molecular Plant Pathology, 1998, 52 (5): 285-295.
    [71]Park P. Origin of inclusive materials between cell walls and invaginated plasma membranes in cells of susceptible leaves of Japanese pear treated with a host-specific toxin from Alternaria kikuchiana Tanaka[J].Physiol Plant Pathol, 1977, 11: 39-42.
    [72]罗孟军,朱天辉.植物病原真菌毒素[J].四川林业科技,2001,22(3):45-49.
    [73]马振国,董金皋,樊慕贞,等.芸苔链格孢毒素致病机理及钝化初步研究[J].河北农业大学学报,2000,23(1):64-66.
    [74]Park P. and Unno K. Temporary acceleration of exocytosis of polysaccharides in susceptible strawberry leaves by AF-toxin I from Alternaria alternata strawberry pathotype[J]. Annual Phytopathology Society. Japan, 1999, 65: 515-520.
    [75]Scheffer R.P. and Pringle R.B. A selective toxin produced by Periconia circinata[J]. Nature, 1961, 191: 912-913.
    [76]Scheffer R.P., Nelson R.R., Ullstrup A.J. Inheritance of toxin Production and Pathogenicity in Cochliobolus carbenum and Cochliobolus victoriae [J]. Phytopathology, 1967, 57: 1288-1291.
    [77]张锐,晁开,刘锦霞.利用植物次生代谢产物开发生物农药[J].甘肃科学学报,1998,10(3):52-54.
    [78]董金皋.玉米大斑病菌致病毒素的分离和硅胶TL层析[J].植物病理学报,1992,22(4):356.
    [79]董金皋.玉米大斑菌Ht-毒素组分分析[J].植物病理学报,1996,26(2):139-144.
    [80]Kwon C.Y., Rasmussen J.B., Francl L.J., et al. A Quantitative Bioassay for Necrosis Toxin from Pyrenophora tritici-repentis Based on Electrolyte Leakage[J]. Phytopathology, 1996, 86: 1360-1363.
    [81]Kim K.K., Fravel D.R., Papavizas G.C. Identification of metabolite produced by Talaromyces flavusas glucose oxidase and its role in biocontrol of Verticillium dahliae[i]. Phytopathology, 1988, 78 (4): 488-492.
    [82]吕金殿.棉花黄萎病菌毒素的纯化与特性研究[J].植物病理学报,1991,21(2):129-132.
    [83]Bournival B.L., Ginoza H.S., Schenck S. Chraracterization of sugarcane response to Bipolaris sacchari: Inoculations and host-specific HS-toxin[J]. Phytopathology. 1994, 672-676.
    [84] Alberto A., Gianluca N., Lucio M., et al. Secondary mould metabolites. Part 41. Structure and biosynthesis of Cercospora beticola toxin (CBT)[J]. J. Chem. Soc., Perkin Trans., 1993, 145-151.
    [85] Doke N. NADPH-dependent O_2 generation in membrane fractions isolated from wounded potato tubers inoculated with Phytotphora infestans[J]. Physiol Plant Pathol . 1985. 27: 311-322.
    [86] 高必达.麦根腐长蠕孢毒素对抗病和感病小麦品种叶组织超微结构的影响[J].植物病理学报,1993,23(2):65-70.
    [87] Sterner B.A., Scheffer R.P., Hart J.H. Isolation of toxins of Hypoxylon mammatum and demonstration of some toxin effects on selected clones of Populus tremuloids[J]. Phytopathology, 1984, 74 (6): 654-658.
    [88] Borgschulte K., Rebuffat S., Trowitzsch W., et al. Isolation and structure elucidation of hymatoxins B-E and other phytotoxins from Hypoxylon mammatum fungal pathogen of leuce poplars[J].Tetrahedron, 1991, 47: 8251-8260.
    [89] Johnson R.D., Johnson L., Itoh Y., et al. Cloning and characterization of a cyclic peptide synthetase gene from Alternaria alternate apple pathotype whose product is involved in AM-Toxin synthesis and pathogenicity[J]. The American Phyotopathological Society, 2000, 13 (7): 742-753.
    [90] 王裕中,Miller J.D.,Neish G.A.中国南京三个禾谷镰刀菌菌株所产生的毒素[J]..植物病理学报,1989,19(1):40.
    [91] Klotz M.G.. The action of tentoxin on membrane processes in plants[J]. Physiol Plant Pathol, 1998, 74: 575.
    [92] Otomo N., Sato H., Sakamura S. Novel phytotoxins produced by the causal fungi of the shoot blight oflarches[J].Agricultural Biological Chemistry, 1983, 47: 1115-1119.
    [93] Amone, A, Assante, G, Montorsi, M, et al. Asteromine, a bioactive secondary metabolite from a strain of Mycosphaerella asteroma[J]. Phytochemistry, 1995, 38: 595-597.
    [94] Nakajina H., Nishimura K., Hamasaki T., et al. Steucture of neovasin in, a new metabolite produced by fungus, Neocosmospora vasinfecta E. F. Smith, and its biological activity to lettuce seedling[J].Agricultural Biological Chemistry, 1987, 51: 2831-2833.
    [95] Holden J.H. and Sze H. Helminthosporium maydis T toxin increased membrane permeability to Ca~(2+) in susceptible corn mito chondria [J].Plant Physiol, 1984, 75: 235-237.
    [96] 崔洋.玉米小斑病菌T小种毒素的分离、纯化及其植物病理反应[J].植物病理学报,1992,22(4):187-191.
    [97] Nukina M., Ikeda M., Sassa T. Two new pyrenolides, fungal morphogenic substances produced by Pyrenophora teres (Diedicke) Drechsler[J]. Agricultural and Biological Chemistyr, 1980, 44: 2761-2762.
    [98] 万佐玺,周光来,强胜.链格孢菌产毒菌株及产毒培养基的筛选[J].湖北民族学院学报(自然科学版),2001,19(3):7-10.
    [99] Biljana A., Igor J., VericaJ., et al. Optimization of the determination of deoxynivalenol in corn samples by liquid chromatography and a comparison of two clean-up principles[J]. J. Serb. Chem. Soc. , 2005, 70 (7): 1005-1013
    [100] 郑凌凌,朱天辉.枯斑拟盘多毛孢的培养条件对其产毒的影响[J].北京林业大学学报, 2006,28(3):115-118.
    [101]鲁绍琴,杨斌,付惠,等.泽兰尾孢菌的产毒培养与毒素提取[J].西南林学院学报,2006,26(2):41-43.
    [102]张志强,程智慧,沈永杰.大蒜叶枯病菌毒素产生条件的研究[J].西北农林科技大学学报(自然科学版),2007,35(12):186-190.
    [103]Miller J.D. Production of deoxynivalenol and related compounds in liquid culture by Fusarium graminearum[J]. Canadian Journal of Microbiology. 1983. 29: 1171-1178.
    [104]陆仕华,魏春妹.禾谷镰孢菌株产毒-脱氧雪腐镰孢菌烯醇的液体培养条件[J].上海农业学报,1988,4(2):57-64.
    [105]樊慕贞,董金皋,杨俊国,等.白菜黑斑病菌(Alternaria brassicae)菌丝生长和毒素产生条件的研究[J].河北农业大学学报,1995,18(4):21-27.
    [106]杨军玉,减少先,刘淑香.玉米黄斑病菌产毒条件及毒素稳定性研究[J].玉米科学,2000,8(2):82-84.
    [107]Umetsu N., Kaji J., Tamari K. Investigation on the. toxin production by several blast fungus strains and isolation of tenuazonic acid as a novel toxin[J]. Agric Biol Chem Tokyo. 1972. 36: 859-866.
    [108]Greenhalgh R., Neish G., Miller J.D. Deoxynivalenol, acetyl deoxynivalenol, and zearalenone formation by Canadian isolates of Fusarium graminearum on solid substrates[J]. Appl Environ Microbiol, 1983, 46 (3): 625-629.
    [109]陆鸣,王裕中.禾谷镰孢菌产毒素培养条件及粗毒素提取法[J].江苏农业学报,1992,8(1):30-34.
    [110]陆宁海,齐尚红,吴利民,等.番茄褐斑病菌产毒培养条件及其毒素的致病范围[J].微生物学杂志,2006,26(4):36-38.
    [111]Zhen X.H. and Li Y.Z. Ultrastructural changes and location of β-1,3-glucanase in resistant and susceptible cotton callus cells in response to treatment with toxin of Verticillium dahliae and salicylic acid[J]. Journal of Plant Physiology. 2004, 161: 1367-1377.
    [112]张艺兵,张鹏,赵卫东,等.荧光光度法快速检测食品中的黄曲霉毒素[J].检验检疫科学,1999,9(6):25-27.
    [113]路戈,刘春霞.应用免疫技术测定饲料中的黄曲霉毒素B1[J].中国饲料,1996,5:42-44.
    [114]范永山,董金皋.植物病原真菌寄主选择性毒素的控制基因[J].河北农业大学学报,2003,26(3):73-78.
    [115]Cheng Y.Q. and Walton J.D. A eukaryotic alanine racemase gene involved in cyclic peptide biosynthesis[J]. J Biol Chem, 2000, 275: 4906-4911.
    [116]Aiko T. and Takashi T. Structural and functional complexity of the genomic region controlling AK-toxin biosynthesis and pathogenicity in the Japanese pear pathotype of Alternaria alternata[J]. Mol Plant-Microbe Interact, 2000, 13: 975-986.
    [117]Brown D., McCormick S.P., Alexander N.J., et al. Agenetic and biochemical approachto studytrichothecene diversity in Fusarium sporotrichioides and Fusarium graminearum[J]. Fungal Genet Biol, 2001, 32: 121-133.
    [118]章元寿.棉花黄萎病菌毒素对棉花作用机制的初步探讨[J].植物病理学报,1991,21(1):49-52.
    [119]王金生.寄主-病原物相互作用[J].植物病理学报,1992,22(4):289-292.
    [120] Damann K.E., Gardner J.M. An assay for Helminthosporium vicloriae toxin based on induced leakage of electrolytes from oat tissue [J]. Phytopathology, 1974, 64): 652-654.
    [121] Gardner J.M. and Scheffer R.P. Effects of cycloheximide and sulfhydry-binding compounds on sensityivity of oat tissues to Helminthosporium victoriae toxin [J]. Plant Pathology, 1973, 3: 147-157.
    [122] Kimber A. and Sze H. Helminthosporium maydis T toxin decreased calcium transport into mito chondria of susceptible corn [J]. Plant Physiol, 1984, 74: 804-809.
    [123] Park P., Fukutomi M., Akai S., et al. Effect of the host-specific toxin from Alternaria kikuchiana on the ultrastructure of plasma membranes of cells in leaves of Japanese pear [J]. Physiological Plant Pathology, 1976, 9(2): 167-174.
    [124] Park P.T.M.., Hayashi Y., Ueno T. Effect of a host-specific toxin (AM-toxin I) produced by Alternaria mali, an apple pathogen, on the ultrastructure of plasma membrane of cells in apple and Japanese pear leaves[J]. Canadian Journal of Botany, 1977, 55 (18): 2383-2393.
    [125] Park P., Ohno T., Nishimura S., et al. Leakage of sodium ions from plasma membrane modification, associated with permeability, in host cells treated with a host-specific toxin from a Japanese pear pathotype of Alternaria alternate [J]. Can J Bot , 1987, 65: 330-339.
    [126] 万佐玺,朱晶晶,强胜.链格孢菌毒素对紫茎泽兰的致病机理[J].植物资源与环境学报,2001,10(3):47-50.
    [127] Singh P., Park P., Bugiani R., et al. Effects of host-selective SV-Toxin from Stemphylium vesicarium, the cause of brown spot of European pear plants, on ultrastructure of leaf cells[J]. Journal of Phytopathology, 2000, 148 (2): 87-93.
    [128] Shimizu N., Hosogi N., Hyon G.S., et al. Reactive oxygen species (ROS) generation and ROS-induced lipid peroxidation are associated with plasma membrane modifications in host cells in response to AK-toxin I from Alternaria alternata Japanese pear pathotype [J]. Journal of General Plant Pathology , 2006, 72 (1): 6-15
    [129] Cahill D. A quantitative bioassay for Necrosis toxin from Phytophthora cinnamomi based on electrolyte leakage[J]. Phytopathology, 1996, 86 (11): 1360-1363.
    [130] 徐玲,张世珖.烟草野火病毒素对烟草叶片组织超微结构的影响[J].云南农业大学学报,2006,21(1):57-60.
    [131] 马丽艳,张俊华,崔崇.南瓜疫病菌(Phytophthora capsici)毒素对寄主叶片超微结构的影响[J].东北农业大学学报,2006,37(4):468-472.
    [132] 李海燕,肖淑琴,刘惕若.辣椒疫霉菌粗毒素对叶片组织超微结构的影响[J].园艺学报,2005,32(4):713-715.
    [133] Geimba M.P., Corbellini V.A., Scrofemeker M.L. Chemical and immunological differentiation of exoantigens from four Bipolaris sorokiniana strains [J]. Process Biochemistry, 2005, 40: 2051-2057.
    [134] Kinya N., Maeli M, He S.Y. Suppression of host defense in compatible plant Pseudomonas syringae interactions[J]. Current Opinion in Plant Biology, 2005, 8: 361-368.
    [135] David J. and Daigo S. Plant innate immunity-direct and indirect recognition of general and specific pathogen associated molecules[J]. Current Opinion in Immunology, 2004, 48 - 62.
    [136] 陈捷.植物病原菌毒素的致病机理[M].北京:中国科技出版社,1997,32-50.
    [137] 姜述君,强胜.马唐生防菌画眉草弯孢霉毒素a,β-dehydrocurvularin对马唐叶片PSⅡ功能 的影响[J].中国农业科学,2005,38(7):1373-1378.
    [138] Chu Z.Q., Jia J.W., Zhou X.J., el al. Isolation of glycoproteins from Verticillium dahliae and their phytotoxicity[J]. Acta Botanica Sinica, 1999, 9(41): 972-976
    [139] Zemanek A.B., Ko T.S., Thimmapuram, J, et al. Changes in β-1,3-glucanase mRNA levels inpeach in response to treatment with pathogen culture filtrates, wounding, and other elicitors, filtrates, wounding, and other elicitors[J]. Plant Physiol, 2002, 159: 877-889.
    [140] Goyer C., Charest P.M., Toussaint V., el al. Ultrastructural effects of thaxtomin A produced by Streptomyces scabies on mature potato tuber tissues [J]. Canadian Journal of Botany. 2000, 78 (3): 374-380
    [141] Pijut P.M., Lineberger R.D., Domir S.C., et al. Ultrastructure of cells of Ulmus americana cultured in vitro and exposed to the culture filtrate of Ceratocystis ulmi [J]. Phytopathology , 1990, 80: 764-767.
    [142] Park P., Ohno T., Kato-Kikuchi H., et al. Alkaline bismuth stain as a tracer for Golgi vesicles of plant cells[J]. Stain Technol , 1987, 62: 253-256.
    [143] Park P., Ohno T., Nishimura S., et al. Temporary activation of cellular metabolism in susceptible Japanese pear leaves responding to AK-toxin. (Ultrastructural morphometric studies) [J]. Nippon Shokubutsu Byori Gakkaiho, 1992, 58 (2): 234-243
    [144] Russo P.S., ISPEN J.D., Miller W.G., et al. The surface activity of the phytotoxin cerato-ulmi[J]. Canadian Journal of botany, 1982, 60 (8): 1414-1422.
    [145] Nordin J.H. and Strobel G.A. Structural and immunochemical studies on the phytotoxic peptidorhamnomannan of Ceratocystisulmi[J]. Plant physiology, 1981, 67 (6): 1208-1213.
    [146] 董金皋,李树正.植物病原真菌毒素研究进展(第一卷)[M].北京:中国科技出版社,1997,153-157.
    [147] Sridhar R. and Mahadevan A. Triggering mechanism in rice blast disease.[J]. Acta Phytopathol, 1968, 3: 415-421.
    [148] Walker J.R. Phenolase inhibitor from cultures of Penicillium expansion which may play a part in fruitrotting[J].Nature, 1970, 227 (5255): 298-299.
    [149] Elzbieta B.K., Arne H.J., Thomas R., et al. Morphological, chemical and molecular differentiation of Fusarium equiseti isolated from Norwegian cereals [J]. International Journal of Food Microbiology, 2005, 99: 195-206.
    [150] 陈茹,刘钟滨.黄曲霉菌aflR基因启动子序列变异与黄曲霉毒素产生相关联[J].细胞生物学杂志,2006,28(6):912-916.
    [151] Penner D., James E.D., Backman P. The influence of syringomycin on ribonucleic acid synthesis[J]. Plant Physiology, 1969, 44: 806-808.
    [152] Lovrekovich L., Klement Z., Farkas G.L. Toxic effect of Pseudomonas tabaci on RNA metabolism in tobacco and its counteraction by kinetin[J]. Science, 1964, 145: 165.
    [153] Miller J.D. and Ewen M.A. Toxic effectcs of deoxynivalenol on ribosomes and tissues of the spring wheat cultivars Frontana and Casavant[J]. Natural Toxins, 1997, 5: 234-237.
    [154] Casale W.L. and Hart L.P. Inhibition of H-leucine incorporation by trichothecene mycotoxins in maize and wheat tissue[J]. Phytopathology, 1988, 78: 1672-1677.
    [155] 康振生,黄丽丽,BUCHENAUER,H.小麦穗组织中脱氧镰刀菌烯醇毒素的免疫细胞化学定位[J].植物病理学报,2004,34(5):419-424.
    [156] Suzuki T., Shinogi T., Unno K., et al. β-1,3-D-glucan transported from golgi apparatus of Japanese pear leaves is a component of extracellular polysaccharides accumulated after AK-toxin I treatment[J]. Journal of General Plant Pathology, 2002, 68 (4): 267-276.
    [157] Suzuki T., Shinogi T., Narusaka Y., et al. Infection behavior of Alternaria alternala Japanese pear pathotype and localization of 1,3-β-D-glucan in compatible and incompatible interactions between the pathogen and host plants[J]. Journal of General Plant Pathology, 2003, 62 (2): 91-100.
    [158] Weaver T. New bioherbicide controls several weeds[J]. Agricultural, 1997, 10: 29.
    [159] Lebeau J.B. and Atkinson T.G. Borax inhibition of cyanogenesis in snow mold of alfalfa[J]. Pytopathology, 1967, 57: 863-865.
    [160] Kern H. and Naef-Roth S. Kupfer, Aluminium und Eisen. als. krankheitshemmende. Faktoren bei der Fubkrankheitder Erbsen[J]. Phytopathology, 1966, 57: 289-297.
    [161] Bolla R.L., Haheen P., Winter R.E.K. Effect of phytotoxin from nematode-induced pine wilt on Bursaphelenchus xylophilus and Ceratocystis[J]. Journal of Nematology, 1984, 16: 297-303.
    [162] Triole E. and Lorenzini G. Some characteristics of culture filtrates of seiridium cardinale causal agent of Cupressus canker [J]. Rivista di Patologia Vegetable Ⅳ, 1980, 16(3): 87-94.
    [163] 吴纯仁,刘后利.油菜菌核病的致病机制[J].植物病理学报,1991,21(2):135-140.
    [164] 强胜.生物除草剂的研究概况[J].杂草科学,1996,2:12-14.
    [165] 李树正,东霞,刘准,等.交链孢酸的抗菌活性及除草活性的研究[M].北京:中国科学技术出版社,1997,227-232.
    [166] 张金林.葱黑斑病菌毒素的分离与除草活性研究[D].保定:河北农业大学,2000,
    [167] Abbas H.K. and Boyette CD. Bioherbicidal potential of Fusarium monoliforme and its phytotoxin, furnonisin[J]. Weed Science, 1991, 39 (4): 673-677.
    [168] Jones R.W. and Hancock D.G. Soilborne fungi for biological control of weeds[J]. In R.E. Hoagland (ed.), Microbes and Microbial Products as Microbial Herbicides, American Chemical Society, Washington, DC, 1990, 276-286.
    [169] Kim K.W. and Cho K.Y. Identification of phytotoxins produced by Drechslera porturlacae, a pathogen of purslane (Porlulaca oleracea) , Isolation of methyldihydroxy-zearalenone and its herbicidal activity[J]. Korean Jouranal of Weed Science, 1994, 14 (3): 184-191.
    [170] 王朝华,张立新,董金皋.植物病原真菌毒素中除草活性物质的筛选[J].河北农业大学学报,2002,25(2):65-70.
    [171] 王裕中,Milier J.D.中国小麦赤霉病菌优势种-禾谷镰刀菌产毒素能力的研究[J].菌物系统,1994,3:71-76.
    [172] 罗士韦,何卓培.高等植物突变细胞系的研究[J].细胞生物学杂志,1982,4(2):1-11.
    [173] Larkin P.J and Scowcraft W.R. Somaclonal variation a novel source of variability from cell culture for plant improvement[J].Theor.Appl.Genet., 1981, 60: 197-214.
    [174] Carlson P.S. Methionine sulfoximine-resistant mutants of tobacco[J]. Science, 1973, 180(93): 1366-1368.
    [175] 周嘉平,周检民,梁思信,等.烟草抗黑胫病突变体的细胞筛选[J].遗传学报,1990,17(3):180-188.
    [176] Sacristan M.D. Resistance responses to Phoma lingam of plants regenerated from from selected cell and embryogenic culture of haploid Brassica napus [J]. Theoretical and Applied Genetics, 1982, 61: 193-200.
    [177]Thanutong P., Furusawa I., Yamamoto M., el al. Resistant tobacco plants from protoplasts-derived calluses selected for their resistance to Pseudomonas and Alternaria toxins.[J]. Theor. Appl.Genet. 1983, 66: 209-215.
    [178]Hartman C.L., McCoy T.J., Knous, T R. Selection of alfalfa (Medicago saliva) cell lines and regeneration of plants resistant to the toxin(s) produced by Fusarium oxysporum f.sp. medicaginis[J]. Plant Science Letters, 1984, 34: 183-194.
    [179]Behnke M. Selection of dihaploid potato callus for resistance to culture filtrate of Fusarium oxysporum[J]. Zeitschrift ffir Pflanzenziichtung, 1980, 85: 254-258.
    [180]卢同,谢世勇,李本金,等.双抗性甘薯新品系的抗病力鉴定和生产力评价[J].江西农业学报,2004,2:33-37.
    [181]任嘉红,张晓刚,张桂萍.利用溃疡菌毒素对抗溃疡病杨树品种的筛选[J].晋东南师范专科学校学报,2003,20(5):11-13.
    [182]李贵玉,韦继光,罗基同,等.板栗疫病在广西区内的危险性分析[J].广西农业生物学,2006,25(4):310-311.
    [183]卢同,种藏文,李本金,等.甘薯青枯病菌毒素产生条件的研究[J].植物病理学报,1999,29(4):339-344.
    [184]Asis R., Barrionuevo D.L., Giorda L.M., el al. Aflatoxin production in six peanut (Arachis hypogaea L.) genotypes infected with Aspergillus flavus and Aspergillus parasiticus, isolated from peanut production areas of Cordoba, Argentina[J]. J Agric Food Chem, 2005, 53 (23): 9274-9280.
    [185]康绍兰,刘国胜,董金皋.几种植物病原真菌毒素的初步研究:I[J].河北农业大学报,1995,18(4):105-111.
    [186]张林青,程智慧.大蒜白腐病病原菌产毒素培养条件的优化[J].园艺学报,2008,35(6):841-846.
    [187]朱天辉.枯斑拟盘多毛孢菌毒素的研究[D].四川雅安:四川农业大学,2003,7.
    [188]章元寿,王建新,顾本康.用棉花黄萎病菌毒素检测棉花抗病性的研究[J].植物保护,1991,17(4):2-5.
    [189]沈永杰,程智慧,张志强.大蒜紫斑病菌产毒培养条件的筛选[J].西北农林科技大学学报(自然科学版),2007,35(9):157-160.
    [190]李承绪.河北土壤[M].石家庄:河北科学技术出版社,1990,411-419.
    [191]Praveen S. and V.R.. Effect of nutritional factors on toxin production in alternaria triticina : A foliar pathogen ofwheat[J]. Plant Diseases, 2002, 10 (1): 103-105.
    [192]Hattori T., Ohta A., Itaya M., el al. The ability of ectomycorrhizal fungi to utilize fatty acids and a lipid as a carbon source for mycelial growth[J]. Can J Bot, 2003. 81 (12): 1285-1292.
    [193]郭学武,汪国轮,龚建华.块磷鹅膏的培养条件及所Amanitins毒素的分析[J].微生物学报,2006,46(3):373-378.
    [194]Akimitsu K., Kohmoto K., Otani H., el al. Host-specific effects of toxin from the rough lemon pathotype Alternaria altrnata on mitochondria[J]. Plant Physology, 1989, 89: 925-931.
    [195]章元寿.植物病理生理学[M].南京:江苏科技出版社,1996,214-219.
    [196]董汉松.植物诱导抗病性原理和研究[M].北京:科学出版社,1996,375-383.
    [197]Bok J.W., Lermer L., Chilton J., et al. Antitumor sterols from the mycelia of Cordyceps sinensis[J]. Phytochemistry, 1999, 51 (7): 891-898.
    [198]Bashan B., Levy R.S., Cojocaru M., et al. Purification and structure determination of a phytotoxic substance from Exserohilum turcicum[S]. Physiological and Molecular Plant Pathology, 1995, 47: 225-235.
    [199]Fumiharu H., Hiroyasu N., Hideo H., et al. Purification and structure determination of glucosides of capsaicin and dihydrocapsaicin from various Capsicum fruits[J]. Journal of Agricultural and Food Chemistry, 2006, 54 (16): 5948-5953.
    [200]Lin B.Z., Meinhardt S.W., Francl L.J. An alternative method for the isolation of the necrosis toxin of Pyrenophora tritic-irepentis[J]. Gen Physiol Biophys, 1993, 12: 95-111.
    [201]Raoudha B.A.M., Samiha S., Lilia F.B.F., et al. Purification and structure determination of four bioactive molecules from a newly isolated Streptomyces sp.TN97 strain.[J]. Process Biochemistry, 2006, 41 (7): 1506-1513.
    [202]Shizawa H., Takahashi M., Takaatsu T., et al. Trachyspic acid, a new metabolite produced by Talaromyces trachyspermus, that inhibits tumor cell heparanase: taxonomy of the producing strain, fermentation, isolation, structural elucidation, and biological activity[J]. The Journal of Antibiotics, 1995, 48 (5): 357-362.
    [203]徐春花,朱天辉,闫晓星.栗疫菌(Endothia parasitica)致病毒素的初步研究[J].四川农业大学学报,2006,24(4):451-454.
    [204]朱天辉,罗孟军.叶华智.枯斑盘多毛孢Pf-毒素活性组分的分离纯化[J].植物病理学报,2003,33(6):541-545.
    [205]董金皋,李正平,薛峰,等.玉米大斑病菌毒素结构的确定及几种类似物的毒性比较[J].植物病理学报,1997,27(3):257-261.
    [206]Brain L.B. and Harold S.G. Characterization of sugarcane response to Bipolaris sacchari: inoculations and host-specific HS-toxin.[J]. Phytopathology, 1994, 84: 672-676.
    [207]Ueno Y., Sato N., Ishii K., et al. Biological and chemical detection of trichothecene mycotoxins of Fusarium species[J]. Appl Environ Microbiology, 1973, 25 (4): 699-704.
    [208]杨斌,叶建仁,包宏,等.松针褐斑病菌毒素LA-Ⅰ的分离纯化及其化学结构[J].林业科学研究,2005,41(2):86-90.
    [209]Zhang H.F., Jordanl J.G., et al. Structral and physical properties of a Necrosis-in-ducing toxin from Pyrenophora triticirepentis[J]. Phytopathology, 1997, 87: 154-160.
    [210]Hardegger E., Rieder W., Walser A. Konstitution des diaporthins und synthese der diaporthinsaure[J].Helvetica ChimicaActa, 1966, 49: 1283-1290.
    [211]朱天辉,罗孟军,叶华智.枯盘斑多毛孢Pf-毒素组分的研究I.活性组分I的结构分析[J].菌物学报,2005,24(1):112-115.
    [212]张利辉,刘云惠,董金皋,等.玉米大斑病菌特异性毒素组分的分离与纯化.[J].植物病理学报,2003,33(1):67-71.
    [213]郑伟,陈勇,崔海兰,等.尖角突脐孢菌粗毒素对稗草生理活性的影响[J].生态学杂志,2008,27(9):1571-1575.
    [214]徐凌飞,赵竑博,马锋旺,等.梨黑星菌粗毒素对抗病和感病梨离体叶片生理特性的影响[J].西北植物学报,2007,27(6):1156-1160.
    [215]Trillas M.I. and Araus J.L. Effects of Fusarium oxysporum culture fitrates on carnation callus cell infrastructure and cytoplasmic calcium distribution[J]. Physiol Mol Plant Pathol, 1993, 42: 231-241.
    [216]Davis D.A., Low P.S., Heinstein P. Purification of a glycopritein elicitor of phytoalexin formation from Verticilium dahliae[J]. Physiol Mol Plant Pathol, 1998, 52: 259-273.
    [217]Zemanek A.B., Ko T.S., Thimmapuram J., et al. Changes in β-1,3-glucanase mRNA levels inpeach in response to treatment with pathogen culture filtrates, wounding, and other elicitors[J]. J Plant Physiol , 2002, 159: 877-889.
    [218]Jiang S.J. and Qiang S. The effect of α,β-dehydrocurvularin, a toxin from a bioherbicidal candidate Curvularia eragrostidis, on chloroplast function of Digitaria sanguinalis.[J]. Acta Phytopathology Sinica, 2005, 35 (4): 312-316.
    [219]Singh P., Park P., Bugiani R., et al. Effects of host-selective SV-toxin from Stemphylium vesicarium, the cause of brown spot of European pear plants, on ultrastructure of leaf cells[J]. Journal of Phytopathology, 2006, 148 (2): 87-93.
    [220]陈捷,蔺瑞明,高增贵,等.玉米弯孢叶斑病菌毒素对寄主防御酶系活性的影响及诱导抗性效应[J].植物病理学报,2002,32(1):43-48.
    [221]房保海,张广民,迟长凤,等.烟草低头黑病菌毒素对烟草丙二醛含量和某些防御酶的动态影响[J].植物病理学报,2004,34(1):27-31.
    [222]张志良.植物生理学实验指导[M].北京:高等教育出版社,1990,
    [223]林植芳,李双顺,林桂珠,等.水稻叶片的衰老与超氧物歧化酶活性及脂质过氧化作用的关系[J].植物学报,1984,26:605-615.
    [224]邹琦.植物生理学实验指导[M].北京:中国农业出版社,2004,111-112.
    [225]Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochem, 1976, 72: 248-254.
    [226]朱广廉,钟海文,张海琴.植物生理学实验[M].北京:科学出版社,1990,51-54,242-248
    [227]李合生,孙群,赵世杰,等.植物生理生化实验原理和技术[M].北京:高等教育出版社.2001,164
    [228]邹琦.植物生理学实验指导[M].北京:中国农业出版社.2000.
    [229]薛应龙,欧阳光察,澳绍根.植物苯丙氨酸解氨酶的研究Ⅳ.水稻幼苗中P AL活性的动态变化[J].植物生理学报,1983,9(3):301-305
    [230]Nakano Y., Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts[J]. Plant Cell Physiol, 1981, 22 (5) : 867-880
    [231]汪斌,兰涛,吴为人.水稻叶绿素含量的QTL定位[J].遗传学报,2003,30(12):1127-1132.
    [232]张木清,陈如凯,于松烈.水分胁迫下蔗叶活性氧代谢的数学分析[J].作物学报,1996,22(6):729-734.
    [233]刘凤权,胡白石.棉花黄萎病菌毒素结合位点初探[J].棉花学报,2005,17(1):29-32.
    [234]唐树戈,王芬,高增贵,等.玉米弯孢菌毒素对寄主细胞过氧化作用的研究[J].玉米科学,2007,15(3):84-86.
    [235]郑莉,杨斌,胡小龙.灰葡萄孢毒素诱发紫茎泽兰电解质渗漏化学物质的研究:可溶性蛋白质和可溶性糖含量变化[J].西南林学院学报,2006,26(6):29-32.
    [236]杨斌,余静,陈勃.松针褐斑病毒素诱发紫茎泽兰电解质渗漏对几种真菌的影响[J].草原与草坪,2005,110(3):52-54
    [237] 刘会宁,朱建强,万幼新.几个欧亚种葡萄品种对霜霉病的抗性鉴定[J].上海农农业学报,2001,17(3):64-67.
    [238] 李玥仁,商鸿生.条锈菌侵染对小麦光合作用和蒸腾作用的影响[J].麦类作物学报,2001,21(2):51-56.
    [239] 沈喜,李红玉,贾秋珍.条锈病对小麦(Triticum aestivum L.)叶片光合功能及光合功能蛋白DI表达的影响[J].生态学报,2008,28(2):669-676.
    [240] 石凤梅.植物病原真菌毒素的研究进展[J].黑龙江农业科学,2006,2:70-73.
    [241] Paczkowska M., Kozlowska M., Golinski P. Oxidative stress enzyme activity in Lemna minor L. exposed to cadmium and lead [J]. Biologica Cracoviensia Series Botanica, 2007,49(2): 33-37.
    [242] He X.Y., Ruan Y.N., Chen W., et al. Responses of the anti-oxidative system in leaves of Ginkgo Biloba to elevated ozone concentration in an urban area[J]. Bot Stud, 2006, 47 (409- 416.
    [243] Avdiushko S.A., Ye X.S., Kuc J. Detection of several enzymatic activities in leaf prints of cucumber plant [J]. Physiological and Molecular Plant Pathology, 1993, 42: 441-454.
    [244] Pellegrini L., Rohfritsch O., Fritig B., et al. Phenylalanine ammonia-lyase in tobacco[J]. Plant Physiol, 1994, 106: 877-886.
    [245] Dorey S., Kopp M., Geoffroy P., et al. Hydrogen peroxide from the oxidative burst is neither necessary nor sufficient for hypersensitive cell death induction, phenylalanineam monia lyase stimulation, salicylic acid accumulation, or scopoletin consumption in cultured tobacco cells treated with elicitin[J]. Plant Physiol, 1999, 121: 163-171.
    [246] Tanaka Y. and Uritani I. Immunochemical studies on Fluctuation of phenylalanine ammonia-lyase activity in sweet potato in response to cut injury [J]. J. Biochem, 1976, 79 (1): 217-219.
    [247] Svabova L. and Lebeda A. In vitro selection for improved plant resistance to toxin-producing pathogens[J]. Journal of Phytopathology, 2005, 153: 52-64.
    [248] Krystyna T., Agnieszka B.Z., et al. Histopathology of Daucus carota L. Root cells treated with toxic metabolites produced by Alternaria radicina and A. alternate.[J]. Acta Biologica Cracoviensia Series Botanica , 2008, 50 (1): 27-34.
    [249] Knoche H.W. and Duvick J.P. The role of fungal toxins in plant disease In: Fungal Infection of Plants (Pegg, G.F. and Ayres, P.G, Eds.)[J]. Cambridge University Press, Cambridge., 1987, 158-191.
    [250] Daub M.E., Herrero S., Chung K.R. Photoactivated perylenequinone toxins in fungal pathogenesis of plants[J]. FEMS Microbiology Letters, 2005, 252: 197-206.
    [251] 于莉,陈捷,李赤,等.黑斑毒素对感病和抗病向日葵叶组织超微结构的影响[J].植物病理学报,2002,32(3):252-255.
    [252] 吕国忠,薛玉梅.玉米弯孢菌叶斑病菌毒素的生物活性测定及对玉米叶片超微结构的影响[J].沈阳农业大学学报,1999,30(3):212-214.
    [253] 王彦杰,洪秀杰,刘惕若,等.禾谷镰刀菌毒素对小麦叶组织超微结构的影响[J].黑龙江八一农垦大学学报,2006,18(3):5-9.
    [254] 姜述君,强胜.马唐生防菌画眉草弯孢霉毒素α,β-dehydrocurvularin对马唐叶绿体功能的影响[J].植物病理学报,2005,35(4):312-316.
    [255] 于莉,李赤,李程.向日葵黑斑病菌(Alternaria helianthi)产毒条件及生物活性测定[J].吉 林农业大学学报,1998,20(增):119.
    [256] Pijut P.M., Lineberger R.D., Domir S.C., et al. Ultrastructure of cells of Ulmus americana cultured in vitro and exposed to the culture filtrate of Ceratocystis ulmi [J]. Phytopathology . 1990, 80: 764-769.
    [257] Uehara T., Arase S., Honda Y., el al. Ultrastructural effects of Magnaporthe grisea Toxin(s) on mitochondria of host and non-host plants [J]. Annals of the Phytopathological Society of Japan (Japan), 1997, 63 (2): 69-77
    [258] Daayf F., Nicole M., Boher B., et al. Early vascular defense reactions of cotton roots infected with a defoliating mutant strain of Verticillium dahliae [J]. Europ J Plant Pathol , 1997, 103: 125-136.
    [259] Ouelettes G.B. Ultra-structural observation on pit membrane alternations and associated effects in elmxylem tissues infected by Ceratocy tisulmi[J]. Can.J. Bot., 1978, 56: 2567-2588.
    [260] Trillas M.I., Cotxarrera L., Casanova E., el al. Ultraestrucutural changes and localization of chitin and callose in compatible and incompatible interactions between carnation callus and Fusarium oxysporum[J]. Physiological and Molecular Plant Pathology, 2000, 56 (3): 107-116.
    [261] Boiler T., Gehri A., Mauch F. Chitinase in bean leaves: Induction by ethylene purification properties and possible function [J]. Planta, 1983, 157: 22-31.
    [262] 肖湘,周樱,王风平,等.高效几丁质降解菌C B101的分离、鉴定及其几丁质酶系的研究[J].海洋学报,2003,25(1):138-142.
    [263] Dygert S., Li L.H., Florida D., el al. Determina-tion of reducing sugar with improved precision[J]. Analytical Biochemistry, 1965, 13: 18-23.
    [264] 于翠梅,张月杰,曹萍,等.水稻抗稻瘟病突变体筛选初报[J].沈阳农业大学学报,2000,31(2):153-157.
    [265] 郭丽娟,胡启德,康绍兰,等.诱发玉米抗小斑病突变体的研究Ⅳ.从玉米单倍体胚性细胞无性系筛选抗玉米小斑病突变体[J].遗传学报,1987,14(5):355-362.
    [266] TantimavanichS., Pantuwatana S., Bhumiratana A., et al. Multiple chitinase enzymes from a single gene of Bacillus licheniformis TP-1[J].J Ferment Bioeng, 1998, 85 (3): 259-265.
    [267] 梁美霞,李景富,许向阳,等.几丁质酶基因在植物抗真菌病基因工程中的应用[J].黑龙江农业科学,2004,50(5):29-31.
    [268] Schlumbaum, A, Mauch, F, Boiler, T. Plant chitinase are potent inhitors of fungal growth [J]. Nature, 1986, 324 (27): 365-367.
    [269] 周自云,胡景江,王俊明,等.病原菌激发子对毛白杨愈伤组织酶活性的诱导作用[J].西北林学院学报,2004,19(2):25-27.
    [270] Lin W.L., Hu X.Y., Zhang W.Q., et al. Hydrogen peroxide mediates defence responses induced by chitosans of different molecular weights in rice[J]. Journal of Plant Physiology , 2005, 162 (8): 937-944.
    [271] 李颖章,郑晓华,唐海林,等.水杨酸和黄萎病菌毒素处理棉花愈伤组织使葡聚糖酶和几丁质酶的活性增加[J].植物学报,2003,45(7):802-808.
    [272] Simeonova E., Sikora A., Charzynska M., et al. Aspects of programmed cell death during leaf senescence of mono- and dicotyledonous plants[J]. Protoplasma, 2000, 214 (1-2): 93-101.
    [273] Greenberg J.T. Programmed cell death: a way of life for plants[J]. Proc. Natl. Acad. Sci. USA., 1996,93:12094-12097.
    [274] 欧阳学智,谢绍萍,陈睦传,等.甜菊愈伤组织分生区细胞中膜内含物的超微结构研究[J].西北植物学报,1997,17(3):326-331.
    [275] Schulz R. and Jensen W. A. Pre-fertilization ovule development in Capsella: the dyad tetrad, developing megaspore, and two-nucleate gametophyte [J]. Can J Bot. 1986. 64: 875-884.
    [276] Dickinson H.G and Andrew S.L. The role of membrane-bound cytoplasmic inclusion during gametogenesis in Lilium longiflorum Thumb[J]. Planta, 1977, 134: 229-240.
    [277] Carlson P.S. Methionine sulfoximine resistant mutants of tobacco[J]. Science, 1973, 180: 1366-1368
    [278] Behnke M. Selection of potato callus for resistance to culture filtrates of Phytophthora infestans and regeneration of resistant plants[J].Theor.Appl. Genet., 1979, 55(2) : 69
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.