小麦重要性状QTL元分析及光合功能与耐湿性QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦的生育期、株高、产量、品质、光合功能、抗病和抗逆性等大多数性状都是由多基因控制的数量性状。随着分子生物学的发展,QTL的定位、克隆和分子标记辅助选育将成为作物产量、品质和抗性改良的重要途径和手段。本研究收集了近年来发表的与小麦株高、产量、品质、赤霉病抗性、穗发芽抗性、种子休眠性相关的QTL定位数据,并对来自不同试验的数据进行整合、比对,进行QTL元分析。同时,利用重组自交系对小麦不同生育阶段的光合功能、农艺性状以及芽期和苗期的耐湿性进行QTL定位,主要结果如下:
     1.收集了近年来发表的56篇有关小麦株高(PH)和赤霉病抗性(FHB) QTL的文献,元分析后获得了27个控制株高的一致性QTL(MQTL)和30个赤霉病抗性一致性QTL(MQTL),比较分析后发现:位于2D、3A、4B、4D和7A上的株高MQTL"Rht-B1"、"Rht-Dl"、"Rht8" "PT"和“P26”均与相应染色体上的赤霉病抗性QTL完全或部分重叠,这些一致性区段或许能从分子水平上解释小麦株高和赤霉病抗性之间的相关性。对于Rht-B1、Rht-D1、Rht8和赤霉病抗性的负相关性,前人已有相关的田间实验报道;但是有关3A和7A上株高和赤霉病抗性QTL的一致性,尚未见相关的报道,其相关性还有待于进一步的田间试验来验证。同时,还发现来源于不同抗源的FHB抗性基因在染色体上聚集在相同的区段;部分染色体区段与两种或三种类型的赤霉病抗性均相关。对这些多效性区段的研究和应用将有助于赤霉病抗性机理的深入了解和多抗型小麦品种的选育。
     2.整合分析了26篇有关小麦穗发芽抗性和种子休眠性QTL的文献数据,在3A、3B、3D和4A上得到了9个主效MQTL。其中,位于3AS上的"PHS2"与4A染色体上的4个主效MQTL均与种皮颜色无关,可用于选育白皮抗穗发芽小麦;对MQTL的染色体区段进行分析,发现小麦3B染色体上穗发芽抗性MQTL"PHS3"和控制休眠的MQTL"SD2"在49.45cM-49.74cM的置信区间内重叠;3D染色体上"PHS6"和“SDY”在69.35 cM-73.15 cM区间重叠,元分析结果进一步证实了种子休眠性是影响穗发芽的一个重要因素。
     3.用元分析软件整合了299个与小麦产量相关的QTL、154个与籽粒硬度和蛋白含量相关的QTL,共得到26个与产量相关的MQTL、14个与品质相关的MQTL。在4A的55.58cM的MY7为主效热点MQTL,能解释22.75%的产量变异;2DS的21.67cM-28.47cM区段与产量和穗粒数均相关,变异解释度分别为20.93%和13.68%,是影响产量的主效区段;4A的54.27cM-56.89cM、4D的27.63cM-41.09cM和7DS上的33.46cM-43.09cM均为与产量相关的主效区段;在5D和1AS上各发现了1个与籽粒硬度相关的主效热点MQTL,且5D上的MQTL与“Ha”基因位置一致;此外,在6B的117.22cM处还发现了一个高蛋白含量MQTL,,贡献率为64.03%,该位点对小麦籽粒蛋白含量改良具有重要的应用价值。
     4.用Opata85×W7984构建的重组自交系对小麦苗期、抽穗期和灌浆期的叶绿素含量(Chl)、叶片净光合速率(Pn)、气孔导度(Cond)、胞间C02浓度(Ci)和蒸腾速率(Trmmol)进行QTL定位,未检测到在三个生长发育时期都表达的QTL,仅发现部分加性QTL在两个生育阶段都有表达,大多数QTL表达均具时空特异性;对两年的QTL数据进行比对,在3A、4D和6A上发现了4个相对稳定的与叶绿素含量相关的QTL位点。其中,位于4D的102.3cM处的QTL与抽穗期Chl相关,两年的变异解释度均超过10%,为主效QTL;在3A上分别检测到了1个与Pn和Cond相关的稳定QTL;在2A上82.9cM也检测到了一个与Cond相关的稳定QTL;在2D上检测到1个控制千粒重和1个控制穗粒数的稳定QTL,在4D上和7B上分别检测到了1个与株高和经济学产量相关的稳定QTL。此外,对控制各性状的QTL进行上位性分析,发现大多数性状都受上位性效应影响,且上位性QTL大多与环境之间存在互作效应,而与环境存在互作效应的加性QTL则相对较少。同时,还在1D、2D和3A上发现了4个与光合功能、产量等多个性状均相关的多效性区段,这些重要区段对于聚合高光效和高产基因,培育高产和超高产小麦有着一定的应用价值。
     5.用两套重组自交系对小麦芽期和苗期的耐湿性进行QTL定位,在芽期检测到了6个耐湿性QTL,其中,用ITMI群体定位的位于7A上57.9cM处的耐湿性QTL能解释23.92%的芽期耐湿性变异;在苗期,用ITMI群体在16条染色体上检测到了28个耐湿性QTL;在SHW-L1×SW8188群体内共检测到11个苗期耐湿性QTL,分别位于1A、1B、5D、6A和7D上;两套重组自交系均未检测到与耐湿性相关的上位性QTL,表明耐湿性主要受加性效应控制;对逆境和非逆境条件下的QTL进行比较,发现仅少量QTL在两个环境中同时表达,大多数QTL均受环境诱导;此外,还在6A、6β、7B和7D上发现了几个与多项耐湿性指标相关的多效性区段,其中7D上的289.4cM处,加性效应来自于SW8188的耐湿性QTL同时与叶绿素含量、根长和株高耐湿性指数相关,能解释30%以上的苗期耐湿性,对该位点的深入研究将有助于了解小麦苗期的耐湿性机制。
Most important traits of wheat, such as earliness, plant height, grain yield, quality, biotic stress and abiotic stress tolerance are generally reflecting quantitative inheritance. With the development of molecular biology, QTL location, isolation and MAS (molecular marker-assisted selection) are playing a much important role in crop genetic improvement on yield, quality and stress resistance. In this study, QTLs on plant height, garin yield, quality, Fusarium head blight, pre-harvesting sprouting and seed dormancy were collected for meta-anlysis. Meanwhile, QTL analysis for photosynthesis, agronomic traits and waterlogging tolerance were performed. The results were described as follows:
     1. QTLs on plant height (PH) and Fusarium head blight (FHB) were investigated by QTL meta-analysis from fifty six experiments. Twenty seven PH meta-QTLs (MQTLs) and thirty FHB MQTLs were predicted by mete-analysis. Coincident MQTLs for PH and FHB were found on chromosomes 2D,3A,4B,4D and 7A. Rht-Bl, Rht-DI, Rht8, MQTLs P7 and P26 were consistent with FHB MQTLs. The meta-analysis results confirmed the negative associations of Rht-Bl, Rht-Dl, and Rht8 with FHB resistance. The associations of PH and FHB resistance on chromosomes 3A and 7A have not been reported and need further investigation. These regions should be given attention in breeding programs. MQTLs derived from several resistance sources were also observed. Some FHB MQTLs for different types of resistance overlapped. These findings could be useful for improving wheat varieties with resistance to FHB.
     2. QTL meta-analysis was performed on pre-harvest sprouting (PHS) and seed dormancy (SD) from twenty six experiments. Nine major MQTLs (R2>10%) were located on 3A,3B,3D and 4A. Furthermore, the MQTL PHS2 on 3AS and four MQTLs on 4A, independent of red kernel colour loci could be used to develop PHS tolerant white wheat varieties. PHS and SD MQTLs were co-located in 49.45cM-49.74cM on chromosome 3B, and 69.35 cM-73.15 cM on 3D. The co-location confirmed that SD was the majore inheritant component of PHS.
     3. Two hundred and ninety nine QTLs for grain yield, one hundred and fifty four QTLs for grain hardness and grain protein content (GPC) were meta-analysed. Twenty six MQTLs on grain yield and fourteen MQTLs on quality were deteced. The major MQTL, located at 55.58cM on 4A could explain 22.75%of phenotypic variance to grain yield. The co-located MQTLs, integrated at 21.67cM-28.47cM on 2DS, could explain 20.93%and 13.68%of phenotypic variance to grain yield and kernels per spike (KPS), respectively. All the genomic regions of 54.27cM-56.89cM on 4A,27.63cM-41.09cM on 4D and 33.46cM-43.09cM on 7DS were major regions for grain yield. One major MQTL was located on 5D and 1AS, individually, and the MQTL on 5D was consistent with Ha gene. The major MQTL, detected at 117.22cM on 6B, was a high GPC locus for protein content improvement, explaining 64.03%of GPC variance.
     4. The recombinant inbread lines (RILs), derived from the cross of Opata85 and W7984 were used for QTL analysis for phosynthesis associated traits. QTLs for chlorophyll content (Chl), net leaf photosynthetic rate (Pn), stomatal conductance (Cond), and internal CO2 concentration (Ci) at seedling stage, heading stage and grain filling stage were deteced. Wheareas, only a few QTLs were deteced at two different growth stages, non-comment QTLs were deteced at all three stages. Four stable QTLs for Chl were located on 3A,4D and 6A. Among them, the QTL, detected at 102.3cM on 4D was a major QTL, with a R2>10%. On chromosome 3A, two major QTLs for Pn and Cond were found. Another major QTL for Cond were located at 82.9cM on 2A. Two major QTLs for grain yield and KPS were deteced on 2D, and major QTLs for PH and economic yield were located on 4D and 7B, individually. Episistas QTLs were detected for most of the photosynthesis related traits and agronomic traits. The effect of Episistas QTLxEnvirnoment was much more important than that of Additive QTLxEnvirnoment. Four regions on 1D,2D and 3A, associated with both photosynthesis and grain yield were observed, which might be uself for developing wheat varieties with high or super high yield.
     5. Two sets of RILs were used for QTL analysis on waterlogging tolerance at germination and seedling stages. Six resistance QTLs at germination stage were deteced. The major QTL, located at 57.9cM on 7A could explain 23.92%of tolerance variance at germination stage. Twenty eight QTLs, located on sixteen chromosomes were observed in ITMI population. In the RILs, derived from SHW-L1 xSW8188,11 QTLs were deteced on 1A, 1B,5D,6A and 7D. None of episistas QTLs were deteced in either population, which indicated that waterlogging tolerance was controlled mainly by additive QTLs. Only a few of QTLs on growth and germination ability were observed both in stress and normal conditions. Co-located regions for different waterlogging tolerancecoefficient (WTC) were found in the study. One of the regions at 289.4cM on 7D, associated with WTC for Chl, root length and PH, accounted for more than 30% waterlogging tolerance at seedling stage. For the QTL, allele from SW8188 contributed for an increase of the tolerance.
引文
1. Ahmed TA, Tsujimoto H, Sasakuma T 2000. QTLs associated with plant height and related characte rs in hexaploid wheat. Breeding science 50:267-273
    2. Ainsworth EA, Long SP 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist 165:351-371
    3. Akbari M, Wenzl P, Caig V, et al.2006. Diversity arrays technology (DART) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet, 113:1409-1420
    4. Anderson JA, Sorrells ME, Tanksley SD 1993. RFLP analysis of genomic regions associated with resistance to preharvest sprouting in wheat. Crop Sci 33:453-459
    5. Anderson JA, Stack RW, Liu S, et al.2001. DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theor Appl Genet 102:1164-1168
    6. Anjum FE and Walker CE 1991. Review on the significance of starch and protein to wheat kernel hardness J Sci Food Agric,56:1-13
    7. Appels R 2004 Wheat composite 2004 http://wheat.pw.usda.gov/ggpages/map_shortlist.html
    8. Araghi SG, Assad MT 1998. Evaluating four screening techniques for drought resistance and their relationship to yield reduction ratio in wheat. Euphytica103:293-299
    9. Araki E, Miura H, Sawada S 1999. Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4 A of wheat. Theor Appl Genet 98:977-984
    10. Araus JI, Bort J, CecCadelli S, et al.1997. Relationship between leaf structure and Carbon isotope discrimination in field grown barley. Plant Physiol. Biochem.35:533-541.
    11. Arcade A, Labourdette A, Chardon F, et al.2005. BioMercator version 2.1. http://generationcp.org
    12. Arcade A, Labourdette A, Falque M, et al.2004. Biomercator:integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324-2326
    13. Atchley WR and Zhu J 1997. Developmental Quantitative genetics conditional epigenetic variability and growth in mice. Genetics 147:765-776
    14. Austin RB 1984. Genetic constrains on photosynthesis and yield in wheat.Advance Photosynthesis Res 4:103-110
    15. Austin RB, Ford A, Morgan CL 1989. Genetic improvement in the yield of winter wheat:a further evaluation. Journal of Agricultural Science (Cambridge) 112:295-301.
    16. Austin RB1980. Physiological limitations to cereal yields and ways of reducing them by breeding. In:Hurd RG, Biscoe PV, Dennis C, eds. Opportunities for increasing crop yields. London:Pitman,3-19
    17. Ayala L, Henry M, Ginkel M, et al.2002. Identification of QTLs for BYDV tolerance in bread wheat. Euphytica128:249-259
    18. Bailey PC, Mckibbin RS, Lenton JR 1999. Genetic map location for orthologous genes in wheat and rice Theor Appl Genet 98:281-284
    19. Bansal UK, Bossolini E, Miah H, et al.2008. Genetic mapping of seedling and adult plant stem rust resistance in two European winter wheat cultivars Euphytica 164:821-828
    20. Beavis W D, Keim P 1996. Identification of QTLs that are affected by the environment. In: New Perspectives on Genotype-by-Environment Interactions. Boca Raton:CRC Press, Inc,
    21. Belknap JK, Atkins AL 2001. The replicability of QTL for murine alcohol preference drinking behavior across eight independent studies. Mamm Genome 12:893-899
    22. Bettge AD and Morris CF 2000. Relationships Among Grain Hardness, Pentosan Fractions, and End-Use Quality of Wheat. CCHEM,77:241-247
    23. Bhattramakki D, Ching A, Morgante M, et al.2000. Conserved single nucleotide polymorphisim (SNP) haplotypes in maize, in Proc Plant Anim Genomes VIII Conf
    24. Blom CWPM 1999. Adaptations to flooding stress:from plant Community to Molecule. Plant Biol 1:261-273.
    25. Borner A, Roder M, Korzun V 1997. Comparative molecular mapping of GA insensitive Rht loci on chromosomes 4B and 4D of common wheat (Triticum aestivum L.). Theor Appl Genet 95:1133-1137
    26. Borner A, Schumann E, Furste A, et al.2002. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921-936
    27. Boru G, Van GM, Kronstad WE, et al.2001. Expression and inheritance of waterlogging tolerance stress in wheat.Euphytica 117:91-98
    28. Botstein D, Wllite RL, Skolrtick M, Davis RW 1980. Construction of a genetic linkage map using restriction fragment length polymorphisms. Alner J Hum Genet 32:314-331
    29. Bougot Y, Lemoine J, Pavoine MT, et al.2006. A major QTL effect controlling resistance to powdery mildew in winter wheat at the adult plant stage. Plant Breeding 125,550-556
    30. Boukhatem N, Baret PV, Mingeot D, et al.2002. Quantitative trait loci for resistance against yellow rust in two wheat-derived recombinant inbred line populations. Theor Appl Genet 104:111-118
    31. Bourdoncle W, Ohm HW 2003. Quantitative trait loci for resistance to Fusarium head blight in recombinant inbred, wheat lines from the cross Huapei 57-2/Patterson. Euphytica 131:131-136
    32. Buerstmayr H, Lemmens M, Hartl L, et al.2002. Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (Type II resistance). Theor Appl Genet 104:84-91
    33. Buerstmayr H, Steiner B, Lemmens M, et al.2000. Resistance to Fusarium head blight in winter wheat:heritability and trait associations. Crop Sci 40:1012-1018.
    34. Bullrich L, Appendino ML, Tranquilli G, et al.2002. Mapping of a thermo-sensitive earliness per se gene on Trticum monococcum chromosome 1Am. Theor Appl Genet 105:585-593
    35. Burgos MS, Messmer MM, Stamp P, chmid JE 2001. Flooding tolerance of spelt (Triticum spelta L.) compared to wheat(Triticum aestivum L.)-A physiological and genetic approach Euphytica 122:287-295
    36. Cadalen T, Sourdille P, Charmet G, et al.1998. Molecular markers linked to genes affecting plant height in wheat using a doubled-haploid population. Theor Appl Genet 96:933-940
    37. Cane K, Spackman M, Eagles HA 2004. Purpindoline genes and their effects on grain quality traits in southern Australian wheat cultivars. Aust J Agric Res 55:89-95
    38. Cannell RQ, Belford RK, Gales K, et al.2006. Effects of waterlogging at different stages of development on the growth and yield of winter wheat. Journal of the Science of Food and Agriculture 31:117-132
    39. Cantrell RG and Joppa LR 1991. Genetic analysis of quantitative traits in wild emmer (Triticum turgidum L. var dicoccoides.Crop Sci 31:645-649
    40. Cao WD, Jia JZ, Jin JY 2004. Identification and interaction analysis of QTL for chlorophyll content in wheat seedlings.Plant Nutr Ferti Sci 10:473-478.
    41. Carver BF, Johnson RC, Rayburn AL 1989. Genetic analysis of photosynthetic variation in hexaploid and tetraploid wheat and their interspecific hybrids. Photosynthesis Research, 20:105-118
    42. Cattivelli LG, Baldi P, Crosatti C, et al.2002. Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Molecular Biology 48: 649-665
    43. Centritto M, Lauteri M, Monteverd MC, et al.2009. Leaf gas exchange, carbon isotope discrimination, and grain yield in contrasting rice genotypes subjected to water deficits during the reproductive stage. Journal of Experimental Botany:2325-2339
    44. Chardon F, Virlon B, Moreau L, et al.2004. Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168:2169-2185
    45. Chicaiza 0, Khan IA, Zhang X, et al.2006. Registration of five wheat isogenic lines for leaf rust and stripe rust resistance genes. Crop Sci 46:485-487
    46. Cho YG, Ishii T, Temnykh S, et al.2000. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L). Theor Appl Genet 100:713-722
    47. Chowdhry MA, Ali M, Subhani GM et al.2000. Path coefficient analysis for water use efficiency, evapo-transpiration efficiency and some yield related traits in wheat. Pak. J. Biol. Sci.32:313-317
    48. Churchill GA, Doerge RW 1994. Empirical threshold values for quantitative trait mapping. Genetics 138:963-971
    49. Cordeiro GM, Casu R, McIntyre CL, et al.2001. Microsatellite markers from sugarcane (Saccharum spp) ESTs cross transferable to eri-anthus and sorghum. Plant Sci 160: 1115-123
    50. Cuthbert PA, Somers DJ, Brule-Babel A 2007. Mapping of Fhb2 on chromosome 6BS:a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet 114:429-437
    51. Cuthbert PA, Somers DJ, Thomas J, et al.2006. Fine mapping Fhbl, a major gene controlling fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet 112:1465-1472
    52. Dangl JL, Jones, JDG 2001. Plant pathogens and integrated defense responses to infection. Nature 411:826-833
    53. Darvasi A, Soller M 1997. A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet 27:125-132
    54. Denc S, Kastori R, Kobiljski B et al.2000. Evaluation of grain yield and its components in wheat cultivars and landraces under near optimal and drought conditions 113:43-52
    55. Derera NF, Bhatt GM, McMasterGJ 1977. On the problem of pre-harvest sprouting of wheat. Euphytica 26:299-308
    56. Derera NF 1982. The harmful harvest rain. J Agric Sci 48:67-78
    57. Dilbirligi M, Erayman M, Sandhu D, et al.2004. Identification of Wheat Chromosomal Regions Containing Expressed Resistance Genes. Genetics 166:461-481
    58. Donis-Keller H, Green P, Helms C, et al.1987. A genetic linkage map of the human genome. Cell 23:319-337
    59. Draeger R, Gosman N, Steed A, et al.2007 Identification of QTLs for resistance to Fusarium head blight, DON accumulation and associated traits in the winter wheat variety Arina. Theor Appl Genet 115:617-625.
    60. Ecochard R, Sarrafi A, Planchon C 1988. Genetic variation of photosynthesis characters in tetraploid wheats. Proceedings of the seventh international wheat genetics symposium held at Cambridge, UK.
    61. Edward MD, Stuber CW, Wendel JF, et al.1987. Molecular-marker-facilitated investigation of quantitative loci in maize I. Numbers, genomic distribution and types of gene action Genetics 116:113-125
    62. Elena G, Pestsova, Bomer A, et al.2006. Development and QTL assessment of Triticum aestivum-Aegilop tauschii introgression lines. Theor Appl Genet 112:634-647
    63. Ellis MH, Rebetzke GJ, Azanza F, et al.2005. Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet 111:423-430
    64. Elmore CD 1980. The paradox of no correlation between leaf photosynthetic rates and crop yields. Predicting Photosynthesis for Ecosystem Models 2:155-167
    65. Erayman M, Sandhu D, Sidhu D et al.,2004. Demarcating the gene-rich regions of the wheat genome. Nucleic Acids Research,32:3546-3565
    66. Eriksen L, Borum F, Jahoor A 2003 Inheritance and localisation of resistance to Mycosphaerella graminicola causing septoria tritici blotch and plant height in the wheat (Triticum aestivum L.) genome with DNA markers. Theor Appl Genet 107:515-527
    67. Eujayl I, Sorrells ME, Baum M, et al. Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet,2002,104:399-407
    68. Evans LT 1993. Crop evolution, adaptation and yield. Cambridge, UK:Cambridge University Press.
    69. Farley G and Adkins SW 2007. An understanding of the physiology of cereal preharvest sprouting through dormancy studies on native grasses.11th International Symposium on Pre-harvest Sprouting in Cereals. November 5-8, Mendoza, Argentina
    70. Flavell AJ, Bolshakov VN, Booth.A, et al.2003.A microarray-based high throughput molecular marker genotyping method:the tagged microarraymarker (TAM) approach. Nucleic Acids Res 31:e115
    71. Flintham J, Adlam R, Bassoi M, et al.2002. Mapping genes for resistance to sprouting damage in wheat. Euphytica 126:39-45
    72. Flintham JE, Adlam R, Gale M 1999. Seed coat and embryo dormancy in wheat. In:Weipert D (ed) Proc 8th Int Symp Preharvest Sprouting Cereals. Association for Cereal Research, Federal Centre for Cereal, Potato and Lipid Research, pp 67-76
    73. Flintham, E, Borner A, Worland AJ, Gale MD 1997. Optimizing wheat grain yield effects of Rht (gibberellin-insensitive) dwarfing genes. J. Agric. Sci. Cambridge,128:11-25
    74. Flintham, JE,2000. Different genetic components control coatimposed and embryo-imposed dormancy in wheat. Seed Sci.10:43-50.
    75. Flowers T.2004. Improving crop salt tolerance. J Exp Bot 55:307-319
    76. Francheboud Y, Ribaut JM, Vargas M, et al.2002. Identification of quantitative trait loci for cold-tolerance of photosynthesis in maize. Journal of Experimental Botany,53:1967-1977
    77. Francki MG, Berzonsky WA, Ohm HW, Anderson JM 2002. Physical location of a HSP70 gene homologue on the centromere of chromosome 1B of wheat (Triticum aestivum L.) Theor Appl Genet 104:184-191
    78. Garcia del Moral LF, Rharrabti Y, Villegas D, Royo C 2003. Evaluation of Grain Yield and Its Components in Durum Wheat under Mediterranean Conditions. Agronomy Journal 95:266-274
    79. Hsing F, Lin JB, and Chang SR 2000. Effects of waterlogging on seed germination, electric conductivity of seed leakage and developments of hypocotyl and radicle in sudangrass. Bot. Bull. Acad. Sin.41:267-273
    80. Gale MD and Youssefian S 1985. Dwarfing genes in wheat. In:Progress in Plant Breeding I.(Russell ed.) Butterworth's, London, pp.1-35
    81. Gao LF, Jing RL, Huo NX, et al.2004. One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. Thero Appl Genet 128:1392-1340
    82. Gardiner JM, Coe EH, Melia-Hancock S, et al.,1993. Developing of a core RFLP map in maize using an immortalized F2 population. Genetics,134:917-930
    83. Gautier MF, Aleman ME, Guirao A, el al.1994. Triticum aestivum puroindolines. two basic cysteinerich seed proteins:cDNA sequence analysis and developmental gene expression. Plant MolBiol25:43-57
    84. Gebeyehou G, Knott DR, Baker RJ 1982. Relationships among Durations of Vegetative and Grain Filling Phases, Yield Components, and Grain Yield in Durum Wheat Cultivars, Crop Sci 22:287-290
    85. Gervais L, Dedryver F, Morlais JY, et al.2003 Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theor Appl Genet 106:961-970
    86. Glass GV 1976. Primary, Secondary, and Meta-Analysis of research. Educational Researcher,5:3-8
    87. Goffinet B, Gerber S 2000. Quantitative Trait Loci:A Meta-analysis. Genetics 155:463-473
    88. Good NE and Bell DH 1980. Photosynthesis, plant productivity, and crop yield. The Biology of Crop Productivity:3-51
    89. Gordon IL 1979. Selection against sprouting damage in wheat. III. Dorm ancy, Germ inative, Alpha-amylase, grain redness and flavanols. Aust J Agile Res 30:387-402
    90. Groos C, Robert N, Bervas E, et al.2003. Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106:1032-1040
    91. Groos C, Gay G, Perretant MR, et al.2000. Study ofthe relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white × red grain bread-wheat cross. Theor Appl Genet 104:39-47
    92. Gupta PK, Rustgi S, Sharma S, et al.2003. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genomics 270:315-323
    93. Gutierrez-Rodriguez M, Reynolds MP, Larque-Saavedra A.2000. Photosynthesis of wheat in a warm, irrigated environment. II. Traits associated with genetic gains in yield. Field Crop Research 66:51-62
    94. Haberle J, Schweizer G, Schondelmaier J, et al.2009 Mapping of QTL for resistance against Fusarium head blight in the winter wheat population Pelikan//Bussard/Ning8026. Plant Breed 128:27-35
    95. Hai L, Guo HJ, Wagner C, et al.2008 Genomic regions for yield and yield parameters in Chinese winter wheat (Triticum aestivum L.) genotypes tested under varying environments correspond to QTL in widely different wheat materials. Plant Science 175:226-232
    96. Halloran GM and Boydell CW 1967. Wheat chromosomes with genes for photoperiodic response. Can J Genet Cytol 19:394-398
    97. Hamachi Y, Furusho M, Yoshida T 1989. Heritability of wet tolerance in barley. Jpn J Breed 39:195-202.
    98. Han ZG, Guo WZ, Song XL, et al.2004. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Genet Genomics 272: 308-327
    99. Handa H, Namiki N, Xu DH, Ban T 2008. Dissecting of the FHB resistance QTL on the short arm of wheat chromosome 2D using a comparative genomic approach:from QTL to candidate gene. Molecular Breed 22:71-84
    100.Hanocq E, Laperche A, Jaminon O, et al.2007. Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor Appl Genet 114:569-584
    101.Hao YF, Liu AF, Wang YH, et al.2008. Pm23:a new allele of Pm4 located on chromosome 2AL in wheat Theor Appl Genet 117:1205-1212
    102.Hao ZF, Cang XP, Guo XJ, et al.2003. QTL Mapping for Drought Tolerance at Stages of Germination and Seedling in Wheat (Triticum aestivum L.) Using a DH Population Agricultural Sciences in China 2:943-949
    103.Herve D, Fabre F, Berrios EF, et al.2001. QTL analysis of photosynthesis and water status traits in sunflower (Helianthus annuus L.) under greenhouse conditions. Journal of Experimental Botany 52:1857-1864
    104.Hilton AJ, Jenkinson P, Hollins TW, et al.1999 Relationship between cultivar height and severity of Fusarium ear blight in wheat. Plant Pathol 48:202-208
    105.Hu TZ, Li HJ, Xie CJ, et al.2008 Molecular Mapping and Chromosomal Location of Powdery Mildew Resistance Gene in Wheat Cultivar Tangmai 4. Acta Agronomica Sinica 34:1193-1198
    106.Hua JP, Xing YZ, Xu CG, et al.2002. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics,162:1885-1895
    107.Huang XQ, Coster H, Ganal MW, et al.2003 Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379-1389
    108.Huang XQ, Kempf H, Ganal MW, et al.2004. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet 109:933-943
    109.Hubbart S, Peng S, Horton P, et al.2007. Trends in leaf photosynthesis in historical rice varieties developed in the Philippines since 1966. Journal of Experimental Botany 58: 3429-3438.
    110.Humphreys DG, Noll J.2002. Methods for characterization of pre-harvest sprouting resistance in a wheat breeding program. Euphytica 26:61-65
    111.Hyne V, Kearsey M, Martinez O, et al.1994. A partial genome assay for quantitative trait loci in wheat (Triticum aestivum) using different analytical techniques. Theor Appl Genet 89:735-741
    112.Iwaki, K., Nishida J., Yanagisawa T. et al.2002. Genetic analysis of Vrn-B1 for vernalization requirement by using linked dCAPS markers in bread wheat (Triticum aestivum L.). Theor Appl Genet 104:571-576.
    113.Jehan T. and Lakhanpaul S.2006. Single nucleotide polymorphism (SNP)-Methods and applications in plant genetics:A review. Indian Journal of Biotechnology,5:435-459
    114.Ji Y, Miao MM, Chen XH 2006. Progress on the molecular genetics of dwarf character in plants. Mol. Plant Breed.6:753-771
    115.Jia GF and Chen PD 2005. QTLs for Fusarium head blight response in a wheat DH population of Wangshuibai/Alondra's'. Euphytica 146:183-191
    116.Jiang CJ and Zeng ZB 1995. Mutiple trait analysis of genetic mapping for quantitative trait loci. Genetic 140:1111-1127
    117.Jiang GL, Dong YH Shi JR, et al.2007a. QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ 9306. Ⅱ. Resistance to deoxynivalenol accumulation and grain yield loss. Theor Appl Genet 115:1043-1052
    118.Jiang GL, Shi JR, Ward RW 2007b. QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ 9306. I. Resistance to fungal spread. Theor Appl Genet 116:3-13
    119.Jolly CJ, Gleen GM, Rahman S.1996. GSP-1 genes are linked to the grain hardness locus (Ha) on wheat chromosome 5D Proc. Nati. Acad. Sci. USA,93.2408-2413
    120.Kanemura T, Homma K, Ohsumi A, et al.2007. Evaluation of genotypic variation in leaf photosynthetic rate and its associated factors by using rice diversity research set of germplasm. Photosynth Res 94:23-30
    121.Kao CH, Zeng ZB, Teasdale RD 1999. Multiple interval mapping for qutatitve trait locil Genetics,152:1203-1216
    122.Kashif M and Khaliq I 2004. Heritability, correlation and path coefficient analysis for some metric traits in wheat. Int. J. Agri. Biology.61:138-142.
    123.Kato K, Miura H, Sawada S 1999. QTL mapping of genes controlling ear emergence time and plant height on chromosome 5 A of wheat. Theor Appl Genet 98:472-477
    124.Kato K, Nakamura W, Tabiki T, et al.2001 Detection of loci controlling seed dormancy in group 4 chromosomes of wheat and comparative mapping with rice and barley genomes. Theor Appl Genet 102:980-985
    125.Kato K, Miura H, Sawada S 1999. QTL mapping of genes controlling ear emergence time and plant height on chromosome 5 A of wheat. Theor Appl Genet 98:472-477
    126.Kawamitsu Y, Agata W 1987. Varietal differences in photosynthetic rate, transpiration rate and leaf conductance for leaves of rice plants. Jpn J Crop Sci 53:563-570
    127.Keller M, Keller B, Schachermayr G et al.1999. Quantitative trait loci for resistance against powdery mildew in a segregating wheatxspelt population Theor Appl Genet:903-912
    128.Kheiralla Al, Whittington WJ 1965.Genetic analysis of growth in tomato:the F1 generation.Ann Bot 26:489-504
    129.Kimball BA 1983. Carbon dioxide and agricultural yield:an assemblage and analysis of 430 prior observations. Agronomy Journal 75:779-788.
    130.Kirigwi FM, Van Ginkel M, Brown-Guedira G et al.2007. Markers associated with a QTL for grain yield in wheat under drought. Molecular Breeding 20:401-413
    131.Klahr A, Zimmermann G, Wenzel G, Mohler V 2007. Effects of environment, disease progress, plant height and heading date on the detection of QTLs for resistance to Fusarium head blight in an European winter wheat cross. Euphytical 54:17-28
    132.Korzun V, Roder M, Ganal MW, et al.1998. Genetic analysis of the dwarfing gene (Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet 96:1104-1109
    133.Korzun V, Roder M, Worland AJ et al.1997. Intrachromosomal mapping of genes for dwarfing(Rhtl2 and vernalization response (Vrnl) in wheat by using RFLP and microsatellite markers. Plant Breed 116:227-232
    134.Kruglyak L 1997. The use of a genetic map of bialleic markers in linkage studies, Nat Genet, 17:21-24
    135.Kuchel H, Hollamby G, Langridge P, et al.2006. Identification of genetic loci associated with ear-emergence in bread wheat. Theor Appl Genet 13:1103-1112
    136.Lander ES and Botstein S 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics,121:185-199
    137.Laurie DA 1986. Wheatxmaize hybridization. Can J GenetCytol,28:313-316
    138.Laurie DA, Bennett MD 1988. The effect of the crossability loci Krl and Kr2 on fertilization frequency in hexaploid wheatxmaize crosses.Theor Appl Genet 76:393-397
    139.Law CN, Sutka J, Worland AJ,1978. A genetic study of daylength response in wheat. Heredity 41::185-191
    140.Li GQ, Fang TL, Zhang HT, et al.2009. Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer Theor Appl Genet, 119:531-539
    141.Lin F, Chen S, Que ZQ, et al.2007. The Blast resistance gene Pi37 encodes a nucleotide binding site-Leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics 177:1871-1880
    142.Lin F, Kong ZX, Zhu HL, et al.2004. Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419xWangshuibai population. Ⅰ. Type Ⅱ resistance. Theor Appl Genet 109:1504-1511
    143.Lin F, Xue SL, Zhang ZZ, et al.2006. Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419xWangshuibai population. Ⅱ:Type Ⅰ resistance. Theor Appl Genet 112:528-535
    144.Lin F, Xue SL, Tian DG, et al.2008. Mapping chromosomal regions affecting flowering time in a spring wheat RIL population. Euphytica 164:769-777
    145.Lincoln SE, Daly MJ, Lander ES 1993.Constructing genetic maps with MAPMAKER/EXP version 3.0, a tutorial and reference manual. Whitehead Inst Biomed Res Tech Rpt,3rd edn. Whitehead Institute for Biomedical Resear Ch, Cambridge:97
    146.Liu DC, Gao MQ, Guan RX,2002. Mapping Quantitative Trait Loci for Plant Height in Wheat (Triticum aestivum L.) Using a F2:3 Population. Acta Genetics Sincia 29:706-711
    147.Liu SB, Zhou RZ, Dong YC, et al.2006. Development,utilization of Introgression lines using a synthetic wheat as donor. Theor Appl Genet 112:1360-1373
    148.Liu ZH, Anderson JA, Hu J, et al.2005. A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor Appl Genet 111:782-794
    149.Lohwasser U, Roder MS, Borner A 2005. QTL mapping of the domestication traits pre-harvest sprouting and dormancy in wheat (Triticum aestivum L.). Euphytica 143:247-249
    150.Long SP, Zhu XG, Naidu SL, Ort DR 2006. Can improvement in photosynthesis increase crop yields? Plant, Cell & Environment 29:315-330
    151.Ma HX, Bai GH, Zhang X, et al.2006a. Main effects, epistasis, and environmental interactions of quantitative trait loci for Fusarium head blight resistance in a recombinant inbred population. Phytopathology 96:534-541
    152.Ma HX, Zhang KM, Gao L, et al.2006b. Quantitative trait loci for resistance to fusarium head blight and deoxynivalenol accumulation in Wangshuibai wheat under field conditions. Plant Pathol 55:739-745
    153.Ma LQ, Zhou EF, Huo NX, et al.2007. Genetic analysis of salt tolerance in a recombinant inbred population of wheat (Triticum aestivum L.). Euphytica 153:109-117
    154.Ma Z, Zhao D, Zhang C, et al.,2007. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Genet Genomics,277:31-42
    155.Ma XQ, Tang JH, Teng WT, et al.2007. Epistatic interaction is an important genetic basis of grain yield and its components in maize. Mol. Breed.20:41-51.
    156.Maccaferri M, Sanguineti MC, Corneti S, et al.2008. Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf. across a wide range of water availability. Genetics 178:489-511
    157.Maccaferri M, Mantovani P, Tuberosa R, et al.2008. A major QTL for durable leaf rust resistance widely exploited in durum wheat breeding programs maps on the distal region of chromosome arm 7BL Theor Appl Genet 117:1225-1240
    158.MacLeod AM and Palmer GH 1967.Gibberellin from barley embryos. Nature 216: 1342-1343
    159.Mae T 1997. Physiological nitrogen efficency in rice:nitrogen utilization, photosynthesis and yield potential. Paint and Soil 196:201-210
    160.Mares DJ 1999. The seed coat and dormancy in wheat grains.In:Weipert D (ed) Eighth international symposium onpre-harvest sprouting in cereals 1998. Association of Cereal Research Federal Centre for Cereal Potato and Lipid Research. Detmold, Germany:77-81
    161.Mares DJ, Mrva K, Cheong J, et al.2005.A QTL located on chromosome 4A associated with dormancy in white-and red-grained wheats of diverse origin. Theor Appl Genet 111:1357-1364
    162.Martin JM, Frohberg RC, Morris CF, el al.2001 Milling and bread baking traits associated with puroindoline sequence type in hard red sprmg wheat. Crop Sci,41:228-234.
    163.Marza F, Bai GH, Carver BF, et al.2005 Quantitative trait loci for yield and related traits in the wheat population Ning7840×Clark. Theor Appl Genet 21:1-11
    164.Mason RE, Mondal S, Beecher FW et al.2010.QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress Euphytica 10.1007/s10681-010-0151-x
    165.Maxwell JJ, Lyerly JH, Cowger C et al.2009. A Triticum timopheevii-derived powdery mildew resistance gene in common wheat on chromosome 7AL. Theor Appl Genet 119:1489-1495
    166.McCaig TN, and Depauw RM,1992. Breeding for pre-harvest sprouting tolerance in white seed color spring wheat. Crop Sci.32:19-23.
    167.McCartney CA, Somers DJ, Humphreys DG, et al.2005. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452×AC Domain. Genome 48: 870-883
    168.McCartney CA, Somers DJ, Lukow O, et al.2006. QTL analysis of quality traits in the spring wheat cross RL44529 AC Domain. Plant Breed 125:565-575
    169.Mesterhazy A 1995 Types and components of resistance to Fusarium head blight of wheat. Plant Breed 114:377-386
    170.Michelmore RW and Meyers BC 1998. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process Genome Res 8:1113-1130.
    171.Miedaner T, Moldovan M, Ittu M 2003. Comparison of spray and point inoculation to assess resistance to Fusarium head blight in a multi environment wheat trial. Phytopathology 93:1068-1072
    172.Miedaner T and Voss HH 2008. Effect of dwarfing Rht genes on Fusarium head blight resistance in two sets of near-isogenic lines of wheat and check cultivars. Crop Sci 48:2115-2122
    173.Miezan K, Heyne EG, Finney KF 1977. Genetic and Environmental Effects on the Grain Protein Content in Wheat. Crop Sci 17:591-593
    174.Mingeot D, Chantret N, Baret PV, et al.2002. Mapping QTL involved in adult plant resistance to powdery mildew in the winter wheat line RE714 in two susceptible genetic backgrounds Plant Breeding 121:2133-140
    175.Miura H and Worland AJ 1994. Genetic control of vernalization, day length response, and earliness per se by homoeologous group-3 chromosomes in wheat. Plant Breed 113: 160-169
    176.Miura H, Nakagawa M, Worland AJ 1999. Control of ear emergence time by chromosome 3 A of wheat. Plant Breed 118:85-87
    177.Morris CF, Paulsen GM 1988. Localization and physical properties of endogenous germination inhibitors in white wheat grain. Cereal Chem 65:404-408
    178.Mruger JE, Hatcher DW, Walker-Simmons MK, et al.1993.The relationships between alpha-amylase and polyphenol oxidase activities in wheat. Sixth international symposium on pre-harvest sprouting in cereals:455-462
    179.Murchie EH, Pinto M, Horton P 2009. Agriculture and the new challenges for photosynthesis research, New Phytologist 181:532-552
    180.Nagy ED and Lelley T.2003. Genetic and physical mapping of sequence-specific amplified polymorphic (SSAP) markers on the IRS chromosome arm of rye in a wheat background. Theor Appl Genet,107:1271-1277
    181.Naz AA, Kunert A, Lind V, et al.2008. AB-QTL analysis in winter wheat:Ⅱ. Genetic analysis of seedling and field resistance against leaf rust in a wheat advanced backcross population Theor Appl Genet 116:1095-1104
    182.Nelson JC, Andreescu C, Breseghello F, et al.2006. Quantitative trait locus analysis of wheat quality traits.Euphytica149:145-159
    183.Nelson JC, Sorrells ME, Van Deyne AE, et al.1995. Molecular mapping of wheat:major genes and rearrangements in homoeologous group 4,5, and 7. Genetics 141:721-731.
    184.Ogihara Y, Shimizu H, Hasegawa K, et al.1994. Chromosome assignment of four photosynthesis-related genes and their variability in wheat species. Theor Appl Genet 88:383-394
    185.Olmos S, Distelfeld A, Chicaiza 0, et al.2003. Precise mapping of a locus affecting grain protein content in durum wheat, Theor Appl Genet 107:1243-1251
    186.Paillard S, Schnurbusch T, Tiwari R, et al.2004. QTL analysis of resistance to Fusarium head blight in Swiss winter wheat (Triticum aestivum L.). Theor Appl Genet 109:323-332
    187.Parry DW, Jenkinson P, McLeod L 1995. Fusarium ear blight (scab) in small grain cereals-a review. Plant Pathol 44:207-238
    188.Paterson, AH, Lander ES, Hewitt JD, et al.1988. Resolution of quantitative traits into mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721-726
    189.Patrick B, Margaret ES, Ralphl O 1997. Rafinose accumulation in maize embryos in the absence of a fully functional gene product. Planta 203.222-228
    190.Peat WE and Whittington WJ 1965 Genetic analysis of growth in tomato:segregating generations. Ann Bot 29:725-738
    191.Peet MM and Kramer PJ 1980 Effects of decreasing source/sink ratio in soybeans on photosynthesis, photorespiration, transpiration and yield. Plant, Cell and Environment 3:201-206
    192.Powell W, Machray GC, Provan J 1996. Polymorphism revealed by simple sequence repeats. Trends Plant Sci 7:215-222
    193.Poysa VW 1984. The genetic control of low temperature, iceencasement, and flooding tolerances by chromosomes 5A,5B, and 5D in wheat. Cereal Res Commun 12:135-141.
    194.Prins R, Pretorius ZA, Bender CM et al.2010. QTL mapping of stripe, leaf and stem rust resistance genes in a Kariega× Avocet S doubled haploid wheat population. Molecular Breeding 10.1007/s11032-010-9428-y
    195.Qiu FZ, Zhang YL, Zhang ZL et al.2007. Mapping of QTL Associated with Waterlogging Tolerance during the Seedling Stage in Maize Annals of Botany 99:1067-1081,
    196.Qiu YC, Zhou RH, Kong XY, et al.2005.Microsatellite mapping of a Triticum urartu Tum. derived powdery mildew resistance gene transferred to common wheat (Triticum aestivum L.) Theor Appl Genet 111:1524-1531
    197.Qu YY, Mu P, Zhang HL, et al.2008. Mapping QTLs of root morphological traits at different growth stages in rice. Genetica 133:187-200
    198.Quarrie SA, Quarrie SP, Radosevic R, et al.2006 Dissecting a wheat QTL for yield present in a range of environments:from the QTL to candidate genes J Exp Bot.57:2627-37
    199.Quarrie SA, Steed A, Calestani C, et al.2005 A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring×SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865-880
    200.Quarrie SA, Gulli M, Calestani C, et al.1994 Location of a gene regulation drought-induced abscisic acid production on the long arm of chromosome 5A of wheat.Theor. Appl. Genet. 89:794-800
    201.Queen RA, Gribbon BM, James C, et al.2004. Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat. Mol Genet Genomics.271:91-97
    202.Rahman S, Jolly CJ, Skerritt JH, el al.1994. Cloning of a wheat 15 kDa grain softness protein (OSP). OSP is a mixture of puroindoline-like polypeptides. Eur J Biochem 223:917-925
    203.Ramburan VP, Pretorius ZA, Louw JH, et al.2004. A genetic analysis of adult plant resistance to stripe rust in the wheat cultivar Kariega.Thero Appl Genet 108:1426-1433
    204.Rebetzke GJ, Condon AG, Farquhar GD, et al.2008. Quantitative trait loci for carbon isotope discrimination are repeatable across environments and wheat mapping populations. Theor Appl Genet 128:123-137
    205.Rebetzke GJ, Condon AG, Farquhar GD, et al.2008. Quantitative trait loci for carbon isotope discrimination are repeatable across environments and wheat mapping populations. Theor Appl Genet 128:123-137
    206.Reynolds MP, Pellegrineschi A, Skovmand B 2005. Sink-limitation to yield and biomass:a summary of some investigations in spring wheat. Annu Appl Biol 146:39-49
    207.Reynolds MP and Pfeiffer WH 2000. Applying physiological strategies to improve yield potential, Ciheam-options Mediterraneennes 95-103
    208.Reynolds MP, van Ginke M, Jean-Marcel R,2000. Avenues for genetic modification of radiation use efficiency in wheat. Journal of Experimental Botany 51:459-473
    209.Roberts DWA 1990. Identification of loci on chromosome 5A of wheat involved in control of cold hardiness, vernalization, leaf length, rosette growth habit, and height of hardened plants. Genome 33:247-259.
    210.Roder MS, Korzun V, Wendehake K, et al.1998. A Microsatellite Map of Wheat Genetics 149:2007-2023
    211.Rosengrant M, Agcaoili-Sombilla M, Perez N.1995. Global food projections to 2020: implications for investment. Washington, DC, USA:IFPRI.
    212.Roy JK, Prasad M., Varshney RK, et al.1999. Identification of a microsatellite on chromosomes 6B and a STS on 7D of breadwheat showing an association with preharvest sprouting tolerance. Theor Appl Genet 99:336-340.
    213.Rudd JC, Horsley RD, McKendry AL, et al.2001. Host Plant Resistance Genes for Fusarium Head Blight:Sources, Mechanisms, and Utility in Conventional Breeding Systems. Crop Sci 41:620-627
    214.Russell WA 1991. Genetic improvement of maize yields. Advances in Agronomy 46, 245-298.
    215.Salmon DF, Helm JH, Duggan TR, et al.1986. The influence of chaff extracts on the germination of spring triticale. Agron J 78:863-867
    216.Samad A, Meisner CA, Saifuzzaman M, et al.2001 Waterlogging tolerance. In Application of Physiology in Wheat Breeding. Eds. M P Reynolds, JI Ortiz-Monasterio and A cNab. pp 136-144. CIMMYT, Mexico.
    217.Schmolke M, Zimmermann G, Buerstmayr H, et al.2005. Molecular mapping of Fusarium head blight resistance in the winter wheat population Dream/Lynx. Theor Appl Genet 111:747-756
    218.Schnurbusch T, Paillard S, Fossati D, et al.2003. Detection of QTLs for Stagonospora glume blotch resistance in Swiss winter wheat. Theor Appl Genet 107:1226-1234
    219.Schroeder HW and Christensen JJ 1963 Factors affecting the resistance of wheat to scab caused by Gibberella zeae. Phytopathology 53:831-838
    220.Scott PR, Benedikz PW, Jones HG, Ford MA 1985. Some effects of canopy structure and microclimate on infection of tall and short wheats by Septoria nodorum. Plant Pathol 34:578-593
    221.Semagn K, Skinnes H, Bjornstad A, et al.2007. Quantitative trait loci controlling Fusarium head blight resistance and low deoxynivalenol content in hexaploid wheat population from 'Arina'and NK93604. Crop Sci 47:294-303
    222.Semagn K, Bjcrnstad A, Skinnes H, et al.2006. Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genom 49:545-555
    223.Setter TL and Waters I 2003. Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant and Soil 253:1-34
    224.Shah MM, Gill KS, Baenziger PS, et al.1999. Molecular Mapping of Loci for Agronomic Traits on Chromosome 3 A of Bread Wheat. Crop Sci 39:1728-1732
    225.Shen X, Zhou M, Lu W, Ohm H 2003a. Detection of Fusarium head blight resistance QTL in a wheat population using bulked segregant analysis. Theor Appl Genet 106:1041-1047
    226.Shen XR, Francki MG, Ohm HW 2006. A resistance-like gene identified by EST mapping and its association with a QTL controlling Fusarium head blight infection on wheat chromosome 3BS, Genome 49:631-635
    227.Shen XR, Ittu M, Ohm HW,2003b. Quantitative trait loci conditioning resistance to Fusarium head blight in wheat line F201R. Crop Sci 43:850-857
    228.Simmonds JR, Fish LJ, Leverington-Waite MA et al.2008. Mapping of a gene (Vir) for a non-glaucous, viridescent phenotype in bread wheat derived from Triticum dicoccoides, and its association with yield variation. Euphytica159:331-341
    229.Simon MR.1994. Gene action and heritability for photosynthetic activity in two wheat crosses. Euphytica 76:235-238
    230.Sing SP and Diwivedi VK 2002. Character association and path analysis in wheat (Triticum aestivum L.) Agri. Sci. Digest.22(4:255-257.
    231.Slafer GA, Satorre EH, Andrade FH.1994. Increases in grain yield in bread wheat from breeding and associated physiological changes. In:Slafer GA, ed. Genetic improvement of field crops. New York, Basel, Hong Kong:Marcel Dekker, Inc.1-68
    232.Smith PH, Hadfield J, Hart NJ, et al.2007. STS markers for the wheat yellow rust resistance gene Yr5 suggest a NBS-LRR-type resistance gene cluster. Genome 50:259-265
    233.Snape JW, Chapman V, Moss J 1979.The cross abilities of wheat varieties with Hordeumbulbousm. Heredity,42:291-298
    234.Snape JW, Foulkes MJ, Simmonds J, et al.2007.Dissecting gene× environmental effects on wheat yields via QTL and physiological analysis. Euphytica 154:401-408.
    235.Snape JW, Law CN, Worland AJ 1977. Whole chromosome analysis of height in wheat. Hereidity 38:25-36
    236.Snijders CHA 1990. Fusarium head blight and mycotoxin contamination of wheat, a review. Netherlands J of Plant Pathol 96:187-198
    237.Somers DJ, Fedak G, Savard M 2003. Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome 46:555-564
    238.Somers DJ, Isaac P Edwards K 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105-1114
    239.Spielmeyer W, Hyles J, Joaquim P, et al.2007. A QTL on chromosome 6A in bread wheat (Triticum aestivum) is associated with longer coleoptiles, greater seedling vigour and final plant height., Theor Appl Genet 115:59-66
    240.Srinivasachary, Gosman N, Steed A, et al.2008. Susceptibility to Fusarium head blight is associated with the Rht-D1b semi-dwarfing allele in wheat. Theor Appl Genet 116:1145-1153
    241.Srinivasachary, Gosman N, Steed A, et al.2009. Semi-dwarfing Rht-B1 and Rht-D1 loci of wheat differ significantly in their influence on resistance to Fusarium head blight. Theor Appl Genet 2009118:695-702
    242.Steiner B, Lemmens M, Griesser M, et al.2004 Molecular mapping of resistance to Fusarium head blight in the spring wheat cultivar Frontana. Theor Appl Genet 109:215-224
    243.Stoy V.1965. Photosynthesis, respiration, and carbohydrate accumulation in spring wheat in relation to yields. Physiol Plant 4:125
    244.Sun HY, Lu JH, Fan YD, et al.2008. Quantitative trait loci (QTLs) for quality traits related to protein and starch in wheat Progress in Natural Science18:825-831
    245.Sutka J and Snape JW 1989. Location of a gene for frostresistance on chromosome 5A of wheat. Euphytica 42:41-44.
    246.Syed N.H., S(?)rensen A.P., Antonise R., et al.2006. A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers. Theor Appl Genet,112:517-527
    247.Symes KJ 1965 The inheritance of grain hardness in wheat as measured by the particle size index. Aust J Agric Res 16:113-123
    248.Taeb M, Koebner RMD, Forster BP,1993. Genetic variation for waterlogging tolerance in the Triticeae and the chromosomal location of genes conferring waterlogging tolerance in Thinopyrum elongatum. Genome 36:825-830
    249.Taeb, M., Koebner R.M.D., Forster B.P.1993. Genetic variation for waterlogging tolerance in the Triticeae and the chromosomal location of genes conferring waterlogging tolerance in Thinopyrum elongatum. Genome 36:825-830.
    250.Takahashi Y, Shomura A, Sasaki T et al.2001. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes theα subunit of protein kinase CK2. PNAS, 98:7922-7927
    251.Tanksley SD, Ganal MW, Martin GB 1995. Chromosome landing:A paradigm for map based gene cloning in plants with large genomes. Trends Genet 11:63-68
    252.Tanksley SD, Medina-Hlilho H, Rick CM 1987.Use of naturally-occuring enzyme variation to detect and map gene controlling quantitative traits in an interspecific backcross of tomato. Heredity 49:11-25
    253.Tanksley SD and Nelson JC 1996. Advanced backcross QTL analysis:a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191-203
    254.Tautz D.1989. Hypervariability of simple sequences as a general polymorphic DNA markers. Nucl Acids Res 17:6463-6471
    255.Tautz D., Renz M.1984. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:4127-4138
    256.Thiel T, Michalek W, Varshney RK, et al.2003. Exploiting EST data-bases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L). Theor Appl Genet 106:411-422
    257.Thomas JA, Jeffrey AC, Atsuko K, et al.2005. Regulating the proton budget of higher plant photosynthesis. PNAS 102:9709-9713.
    258.Thomson MJ, Tai TH, McClung AM, et a 1.2003. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson T heor Appl Genet,107:479-493
    259.Tian DG, Lin F Zhang CQ, et al.2008. Mapping of QTLs Associated with Resistance to Fusarium Head Blight Using an "Immortalized F2" Population,Acta Agronomica Sinica, 34:539-544
    260.Toth B, Galiba G, Feher E, et al.2003. Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theor Appl Genet 107:509-514.
    261.Tripathi SC, Sayre KD Kaul JN 2005. Planting systems on lodging behavior, yield Components, and yield of irrigated spring bread wheat. Crop Science 24:1448-1455
    262.Trought MCT and Drew MC 1980b.The development of waterlogging damage in wheat seedlings (Triticum aestivum L.). Plant and Soil 54:77-94
    263.Trought MCT and Drew MC1980a. The Development of Waterlogging Damage in Young Wheat Plants in Anaerobic Solution Cultures. Journal of Experimental Botany 31: 1573-1585
    264.Ungerer MC, Halldorsdotti SS, Purugganan MD et al.2003. Genotype-environment interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana. Genetics 165:353-365.
    265.Van Eeuwijk FA, Mesterhazy A, Kling CI, et al.1995. Assessing non-specificity of resistance in wheat to head blight caused by inoculation with European strains of Fusarium culmorum, F. graminearum and F. nivale using a multiplicative model for interaction. Theor Appl Genet 90:221-228
    266.Vijayalakshmi K, Fritz AK,Paulsen GM, et al.2010. Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. 10.1007/s11032-009-9366-8
    267.Waldron BL, Moreno-Sevilla B, Anderson JA, et al.1999. RFLP mapping of QTL for Fusarium head blight resistance in wheat. Crop Sci 39:805-811
    268.Wang DG, Fan JB, Siao C, et al.1998. Large scale identification, mapping, an d genotyping of single-nucleotide polymorphisms in the human genome. Science,280:1077-1082
    269.Wang DL, Zhu J, Li ZK, et al.1999. Mapping QTLs with epistatic effects and QTL xenvironment interaction by mixed linear model approaches.99:1255-1264
    270.Wang FH, Wang GX, Li XY, et al.2008. Heredity, physiology and mapping of a chlorophyll content gene of rice (Oryza sativa L.). J Plant Physiol.165,324-330.
    271.Wang RX, Hai L, Zhang XY, et al.2009. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population HeshangmaixYu8679. Theor Appl Genet 118:313-325
    272. Wang DL, Zhu J, Li ZK, et al.1999. Mapping QTLs with epistatic effects and QTLxenvironment interactions by mixed linear model approaches. Theor. Appl. Genet., in printing.
    273.Watanabe N and Koval SF 2003. Mapping of chlorina mutant genes on the long arm of homoeologous group 7 chromosomes in common wheat with partial deletion lines, Euphytica,129:259-263
    274.Watanabe N,Ogawa A, Kitaya T and Furuta Y 1993. Effects of substituted D genome chromosomes on photosynthetic rate of durum wheat (Triticum turgidum L. var. durum). Euphytica,72:127-131
    275.Welsh JR, Keim DL, Pirasteh B et al.1973. Genetic control of photoperiod response in wheat. In:E.R. Sears&L.M.S.Sears (Eds.), Proc 4th Int Wheat Genet Symp, pp:879-884. Agricultural Experimental Station, University of Missouri, Columbia, USA.
    276.Wener JL, Soller M, Burdy T1988. Linkage analysis of quantitative traits in an interspecific cross of tomato (Lycopersicon esculentumxLycopersicon plmplnellifolium) by means of genetic markers. Genetics,118:329-339
    277.Wenzl P, Carling J, Kudma D, et al.2004. Diversity arrays technology(DART) for whole-genome profiling of barley. PNAS,101:9915-9920
    278.Wenzl P, Raman H, Wang J, et al.2007. A DArT platform for quantitative bulked segregant analysis. BMC Genomics,8:196
    279.Wiedenroth EM and Erdmann B 1985. Morphological Changes in Wheat Seedlings (Triticum aestivum L. following Root Anaerobiosis and Partial Pruning of the Root System Annals of Botany 56:307-316,
    280.Williams JG, Kubelik AR, Livak KJ, et al.1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res.,25,18:6531-6535
    281.Witkowski E, Waga J, Witkowska K, et al.2008. Association between frost tolerance and the alleles of high molecular weight glutenin subunits present in Polish winter wheats. Euphytica,159:377-384
    282.Wittenberg AHJ, Lee TVD., Cayla C, et al.2005.Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana. Mol Genet Genomics,274: 30-39
    283.Wolters P, Powell W, Laugudah et al.2000. Nucleotide diversity at homeologous loc in wheat, in Proc Plant Anim Genomes VIII Conf
    284.Xu XY, Bai GH, Carverl BF, et al.2005. A QTL for early heading in wheat cultivar Suwon 92 Euphytica 146:233-237
    285.Xue GP, McIntyre LC, Chapman S, et al.2006. Differential gene expression of wheat progeny with contrasting levels of transpiration efficiency. Plant Mol Biol,61:863-881
    286.Yah JQ, Zhu J, He C, et al.1998b.Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.) TheorAppl Genet 97:267-274
    287.Yamamoto T, kuboki Y, Lin SY, et al.1998. Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. Theor Appl Genet,97:37-44
    288.Yan JQ, Zhu J, He CX, et al.1998a. Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L.).Genetics,150:1257-1265.
    289.Yan JQ, Zhu J, He CX, et al.1998. Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.) Theor Appl Genet.97:261-274
    290.Yang DL, Jing RL, Chang XP et al.2007. Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum.) J. Integr. Plant Biol.49, 646-654.
    291. Yang J, Bai GH, Shaner GE 2005a. Novel quantitative trait loci (QTL) for Fusarium head blight resistance in wheat cultivar Chokwang. Theor Appl Genet 111:1571-1579
    292.Yang J, Sears RG, Gill BS, et al.2002. Quantitative and molecular characterization of heat tolerance in hexaploid wheat. Euphytica 126:275-282
    293.Yang ZP, Gilbert J, Fedak G, et al.2005b. Genetic characterization of QTL associationed with resistance to fusarium head blight in a doubled-haploid spring wheat population. Genome 48:187-196
    294.Yano M, Katayose Y, Ashikari M, et al.2000. Hd-1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant cell 12:2473-2483
    295.Yu GH, Ma HX, Bai GH, et al.2008a. Single-strand conformational polymorphism markers associated with a major QTL for fusarium head blight resistance in wheat. Molecular Biology 42:504-513
    296.Yu J K, Dake T M, Singh S, et al.2004. Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome 47:805-818
    297.Yu JB, Bai GH, Zhou WC, et al.2008b. Quantitative trait Loci for fusarium head blight resistance in a recombinant inbred population of Wangshuibai/Wheaton. Phytopathology 98:87-94
    298.Zanetti SM, Winzeler M, Keller B et al.2000. Genetic analysis of pre-harvest sprouting resistance in a wheat x spelt cross. Crop Sci 40:1406-1417.
    299.Zelitch I 1982. The close relationship between net photosynthesis and crop yield. BioScience 32:796-802
    300.Zeng ZB, Kao CH, Basten CJ 1999. Estimating genetic architecture of quantitative traits.Gent Res 74:279-289
    301.Zeng ZB 1994. Precision mapping of quantitative trait loci. Genetics,136:1457-1468
    302.Zenkteler M and Nitzsche W 1984. Wide hybridization experiments in cereals. Theor Appl Genet,68:311-315
    303.Zhang GR and Mergoum M 2007. Molecular mapping of kernel shattering and its association with Fusarium head blight resistance in a Sumai 3 derived population. Theor Appl Genet 115:757-766
    304.Zhang KP Fang ZJ, Liang Y, et al.2009. Genetic dissection of chlorophyll content at different growth stages in common wheat Journal of Genetics 88:183-189
    305.Zhang KP, Tian JH, Zhao L, et al.2009. Detection of quantitative trait loci for heading date based on the doubled haploid progeny of two elite Chinese wheat cultivars.Genetica 135:257-265
    306.Zhang KP, Tian JC, Zhao L, et al.2008. Mapping QTLs with epistatic effects and QTL× environment interactions for plant height using a doubled haploid population in cultivated wheat. J. Genet. Genomics 35:119-127
    307.Zhang X, Zhou MP, Ren LJ et al.2004. Molecular characterization of Fusarium head blight resistance from wheat variety Wangshuibai. Euphytica 139:59-64
    308.Zhao H, Zhang ZB, Shao HB, et al.2008. Genetic correlation and path analysis of transpiration efficiency for wheat flag leaves. Environmental and Experimental Botany 64:128-134
    309.Zhou MP, Huang YH, Ren LJ 2004a. Detection of QTLs for plant height in wheat using RILs. Jiangsu Journal of Agricultural Sciences 20:201-206
    310.Zhou MP, Ren LJ, Zhang X, et al.2004b. Analysis of QTL for Fusarium Head Blight Resistance in Wheat. Acta Agronomica Sinica 8:786-791
    311.Zhou MX, Li HB, Mendham NJ 2007. Combining ability of waterlogging tolerance in barley. Crop Sci,47:278-284.
    312.Zhou Y, He ZH, Sui XX, et al.2007. Genetic Improvement of Grain Yield and Associated Traits in the Northern China WinterWheat Region from 1960 to 2000. Crop Sci.47:245-253
    313.Zhu J and Weir BS 1998. Mixed model approaches for genetic analysis of quantitative traits. In:Chen LS, Ruan SG, and Zhu J (eds) Advanced Topics in Biomathematics:Proceedings of International Conference on Mathematical Biology, World ScientificPublishing Co., Singapore 321-330
    314.Zuo K, Dong Y, Xu J, et al.2007. Molecular detection of quantitative trait loci for leaf chlorophyll content at different growth-stages of rice (Oryza sativa L.). Asian J Plant Sci 6: 518-522
    315.曹卫东,贾继增,金继运.不同供氮水平下小麦苗期叶绿素含量的QTL及互作研究.植物营养与肥料学报,2004,10(5):473-478
    316.陈锋,李根英,耿洪伟,等.小麦籽粒硬度及其分子遗传基础研究回顾与展望.中国农业科学,2005,38(6):1088-1094
    317.陈海梅,李林志,卫宪云,等.小麦EST-SSR标记的开发、染色体定位和遗传作图.科学通报,2005,50(20):2208-2216
    318.丁声俊.中国的小麦结构与迎接“入世”挑战.粮油食品科技,2001,91:42-43
    319.范平,詹克慧,孙建英,等.小麦主要性状的遗传模型分析.河南农业大学学报,1999,33(3):231-234
    320.方先文,蔡士宾.马卡小麦耐湿性SSR标记及基因定位江苏农业学报,2003,19(4)253-254
    321.傅兆麟,孙其信.超高产基因型小麦冠层叶片生理特性及与有关产量性状的关系南京农业大学学报,2002,25(2):16-20
    322.高雪松,邓良基,张世熔,等.川西丘陵地区土壤湿害问题研究.中国水土保持,200312:26-28
    323.高用民,朱军.植物QTL定位方法的研究进展.遗传,2000,22(3):175-179
    324.龚继明,郑先武,杜保兴,等.控制水稻重要农艺性状的QTL在盐胁迫与非胁迫条件下的对比研究.中国科学C辑,2000,30(6):561-569
    325.郭世华,何中虎,马庆,等.小麦籽粒硬度研究进展.麦类作物学报,2005,25(2):107-111
    326.胡延吉,樊广华,赵檀方.不同时期三个小麦主栽品种叶片光合作用研究.种子,1997, 4: 15-19
    327.胡延吉,赵檀方.小麦高产育种中产量性状的相关及其改良.华北农学报,1997,12(3):671-678
    328.蒋洪蔚,刘春燕,高运来,等.作物QTL定位常用作图群体.生物技术通报,2008.增刊:12-17
    329.雷振生,林作楫.黄淮麦区高产小麦品种的产量结构及其生理基础的研究.华北农学报,1996,1(1):70-75
    330.李金才,常江,魏凤珍.小麦湿害生理及其与小麦生产的关系.植物生理学通讯,1997,33(4):304-312
    331.李卫华,尤明山,刘伟,等.小麦GMP含量发育动态的QTL定位.作物学报,2006,32(7):995-1000
    332.梁燕,张坤普, 赵亮,等.小麦苗期光合作用及其相关性状的QTL分析.作物学报,2010,36(2):267-275
    333.林作楫,董中东,雷振生,等.小麦高产育种中产量构成因素相互关系的研究.河南农业科学,2006,1:44-46
    334.刘丽,李卫华,刘伟,等.小麦谷蛋白膨胀指数发育动态的QTL分析.中国农业科学,2008,41(11):3838-3844
    335.刘桂华,杨雪,李卫华.小麦淀粉、蛋白质特性与面条品质关系的研究进展.新疆农业科学,2007,44(2):176-179
    336.刘建军,何中虎、赵振东,等.小麦面条加工品质研究进展.麦类作物学报,2001,21(2):81-84
    337.刘贞琦、刘振业、马达鹏,等.水稻叶绿素含量及其与光合速率关系的研究.作物学报,1984,101:57-60
    338.牛立元,茹振钢,赵花周,等.小麦叶片叶绿素含量系统变化规律的研究.麦类作物学报,1999,2:36-38
    339.齐照明,孙亚男,陈立君,等.基于Meta分析的大豆百粒重的QTLs定位.中国农业科学,2009,42(11):3795-3803
    340.宋凤英,李兰芬,陈立君.小麦赤霉病的抗性改良研究进展.黑龙江农业科学,2005,(3):41-44
    341.田纪春,邓志英,胡瑞波,等.不同类型超级小麦产量构成因素及籽粒产量的通径分析.作物学报,2006,32(11):1699-1705
    342.王帮太,吴建宇,丁俊强,等.玉米产量及产量相关性状QTL的图谱整合.作物学报,2009,35(10):1836-1843
    343.王关林,方宏筠.植物基因工程.第2版,北京科学出版社,2002
    344.王健康.数量性状基因的完备区间作图方法.作物学报,2009,35(2):239-245
    345.王岩.小麦产量及其构成因素的育种分析.小麦研究,1996,17(3):17-19
    346.吴琼,齐照明,刘春燕,等.基于元分析的大豆生育期QTL的整合.作物学报,2009,35(8):1418-1424
    347.吴建国,刘淑芝,李方荣,周家荣.湿害对冬小麦生长发育及生理影响的研究.河南农业大学学报,1992,26(1):31-37
    348.吴为人,李维明,卢浩然.基于最小二乘估计的数量性状基因座的复合区间定位法.福建农业大学学报.1996,25:394-399
    349.肖世和,闫长生,张海萍,等.小麦穗发芽研究.北京:中国农业科学技术出版社,2002:
    350.邢光南,赵团结,盖钧镒.关于Mapmaker/Exp遗传作图中标记分群和排序操作技术的讨论.作物学报.2008,342:217-223
    351.徐云碧,朱立煌.分子数量遗传学.中国农业出版社,1994
    352.严建兵,汤华.不同发育时期玉米株高QTL的动态分析.科学通报,2003,48(18):1959-1964
    353.杨德武,郝晓玲,张云亭.冬小麦产量性状的遗传效应分析.生物数学学报,1998,13(4):527-530.
    354.张伯桥,张勇,等.小麦抗穗发芽白皮新品种(系)的筛选.安徽农业科学,1999,27(6):575-577
    355.张江丽,蔡士宾,张光祥.马卡小麦耐湿性的RAPD标记及定位研究.南京农业大学学报,2003,262:7-10
    356.张利华,许梅芬.小麦收获指数和其他几个农艺性状的基因效应分析.核农学报,1997,11(3):135-140
    357.张玲丽,王辉,孙道杰.高产小麦品种冠层形成结构及其与产量性状的关系.西北植物学报,2004,24(7):211—1215
    358.张岐军,张艳,何中虎,等.软质小麦品质性状与酥性饼干品质参数的关系研究.作物学报,2005,31(9):1125-1131
    359.张秋英,李发东,刘孟雨.冬小麦叶片叶绿素含量及光合速率变化规律的研究.中国生 态农业学报,2005,13(3):95-98
    360.张荣铣,戴新宾,许晓明,等.A、D组染色体对普通小麦光合碳同化特性的影响.遗传学报,1999,26(6):683-689
    361.周艳华,何中虎,阎俊,等.中国小麦品种磨粉品质研究.中国农业科学,2003,36(6):615-621
    362.周艳华,何中虎,阎俊,等.中国小麦硬度分布及遗传分析.中国农业科学,2002,35(10):1177-1185
    363.朱军.运用混合线性模型定位复杂数量性状基因的方法.浙江大学学报(自然科学版),1999,33(3):327-335
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.