柔性机器人机构动力学分析及振动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代机械向高速、精密、轻型和低噪声等方向发展,为了提高机械产品的动态性能、工作品质,必须十分重视机构动力学的研究。特别对于高速运行的机器人,在外力与惯性力作用下,构件的弹性变形不可忽略,它不仅影响了机构的轨迹精度和定位精度,破坏系统运行的稳定性和可靠性,同时降低了工作效率和整机的使用寿命。对有害动态响应的消减是机械动力学研究的重要问题。本文以柔性机器人机构为研究对象,对其动力学建模、优化综合和振动主动控制的理论和方法进行系统地分析和研究,主要内容如下:
     提出一种建立一般柔性并联机构的模型的子结构方法。该方法的主要思想是根据并联机构是由若干独立运动支链、静平台和动平台组成的特点,将并联机构的运动支链视为柔性子结构,静平台和动平台作为刚性子结构,分别建立它们的运动方程,然后将子结构的运动方程组合成系统的运动方程。它的特点是引入刚性子结构,推导出相邻刚性子结构和弹性子结构之间的几何和运动约束关系。使用动平台质心的微位移和微转角作为系统广义坐标,减少了系统自由度数,简化了模型并便于计算它们。两个算例的动力学分析结果验证了模型的有效性。
     对一种新型高速并联机械手,在弹性动力学层面上以系统的动态性能为目标对其截面参数进行优化设计。采用有限元法建立系统的弹性动力学方程,研究分析了系统第一阶固有频率对截面参数的灵敏度,并据此确定优化设计变量。分别选择基频或重量指标作为目标函数进行优化设计,最后的优化结果都能满足设计要求,能使机构有较小的重量又有较高固有频率。提出的思路和方法可应用于其他机构的优化设计。
     以一种新型两自由度柔性并联机械手为对象,利用假设模态法和拉格朗日乘子法,得到系统的动力学方程为微分—代数方程组,为了设计控制器,采用坐标分块法消除拉格朗日乘子,得到关于独立变量的二阶微分方程组。由于它是非线性和时变的,采用变结构控制策略设计控制器,通过选择合适的关节控制规律,使机械手能够跟踪期望轨迹,又能有效抑制弹性构件的振动。仿真分析的结果表明该控制器的可行性和有效性。
     以一种新型两自由度柔性并联机械手为对象,在含有压电元件的有限元模型基础上,基于实模态理论和滑模变结构理论,研究其振动主动控制。采用有限元法和模态理论建立系统的动力学模型。根据系统的性能要求,采用最优化方法确定滑移面,基于Lyapunov直接法设计滑模控制器,并且考虑了作动器输入电压的界限。仿真结果表明,该控制器可以有效地抑制柔性构件产生的弹性振动,减小了并联机械手的动平台的位置误差,验证了该控制器的可行性和有效性。
     以一柔性5杆机械手为研究对象,应用线性二次型高斯最优控制研究其振动主动控制。采用了一种表征作动能量的可控性指标和表征观测信号能量的可观性指标来确定作动器和传感器的最优位置。在计算线性二次反馈增益矩阵时,分别使用以状态量和输出响应为性能指标。将在模态坐标下的外力、惯性力和量测噪声视为白噪声信号,构造出Kalman状态估计器,连接状态估计器和反馈增益矩阵形成二次型Gauss控制器。仿真分析结果表明设计的两种控制器都能有效地抑制柔性机械手振动响应,通过比较分析,在以输出响应性能为指标的控制器的控制效果更好。
     应用模型预测控制理论设计控制器抑制一柔性5杆机械手振动响应。根据系统状态空间方程推导出系统的预测模型,以此得到预测模型的未来输出值。将模态力和量测噪声作为不确定性外部扰动,并视为白噪声,采用Kalman滤波估计器估计出系统状态量。以控制电压及其变化率为约束条件,将系统性能指标和约束条件化为一个标准二次规划优化问题,最后通过求解这一优化问题来得到最优控制输出。仿真分析结果表明了模型预测控制方法对柔性机械手振动响应抑制是有效的,取得了较为满意的控制效果。
     以柔性5杆机械手为研究对象,应用H_∞控制理论和μ综合方法设计具有鲁棒性的控制器抑制其振动响应。在设计H_∞控制器时,将模态力和量测噪声为不可确定性外部扰动,分别选择模态位移信号和输出应变信号为评价信号,并根据实际信号的幅值和频率特性选择合适的加权函数,形成一个最小灵敏度问题。考虑系统结构参数的不确定性,如固有频率、阻尼比和作动器参数,利用μ综合方法设计控制器。为了验证控制器的有效性,分别在频域和时域内分析它们。分析的结果表明:两个控制器都能够抑制模态力对输出应变的影响;所有控制器都能在系统不确定性情况下满足控制要求,具有一定的鲁棒性;μ控制器的控制性能和鲁棒性较好于H_∞控制器。最后,比较分析了滑模变结构控制、线性二次型高斯控制、模型预测控制和H_∞控制及μ综合控制这几种控制方法在柔性机器人机构振动主动控制应用方面的优缺点和异同点,并分别从时域和频域不同的角度比较分析它们的性能。
     为验证所设计的控制器的有效性,对柔性5杆机械手进行振动主动控制试验。试验分为三个部分:第一个部分为机械手的刚体运动控制;第二个部分为实验模态测试,获得系统固有频率和阻尼比,修正理论模型;第三个部分为振动控制试验。试验数据分析表明,所设计的控制器能够有效地抑制机械手的弹性振动响应。
In order to improve dynamic performance and quality of mechanism, we must pay more attention to mechanism dynamic as modern machinery is developing into high-speed, precise, lightweight and low-noise one. Especially for a high-speed operating robot, the elastic deformation of its component is not ignored under the external force and inertia force. The elastic deformations not only affect trajectory accuracy and positioning precision, destroy the system stability and reliability, but also reduce productivity and machine life. It is an important issue for mechanism dynamic to reduce its hazardous dynamic response. In the paper, theory and methods on the dynamical modeling, optimization, and active vibration control of flexible robot mechanism is systematically analyzed and studied. The main contributions in this thesis are listed as follows:
     A sub-structure modeling method is presented for a general flexible parallel robot. The main idea of the method is that according to the structure character of parallel robot comprised by some independent moving chain, static platform and moving platform, the kinematic substructure is treated as flexible one, the static and moving platform is rigid. Its dynamic equations are established, respectively, and then the system motion equations are obtained by combining all the motion equations of the sub-structure. The characters of the method are as follows: rigid substructure is introduced; the geometric and motion constraint relationship between rigid substructure and flexible one is derived. The model is simplified by using the micro-displacement and micro rotation of the moving platform center as system generalized coordinates to reduce its degrees of freedom and calculate conveniently them. The dynamic analysis results of two examples show the validity of the model.
     For a novel 2-DoF flexible parallel manipulator, the optimal design of sectional parameters is carried out in order to acquire the best dynamic characteristics within the category of elastodynamic. The finite element method is applied to obtain the dynamic equations of the system. The sensitivity analysis of the first order natural frequency with respect to sectional parameters is investigated to determine the optimization design variables. Fundamental frequency or weight is selected as objective function respectively; the final optimization results can meet the design requirements, that is, the manipulator have less weight and a relatively high natural frequency. Ideas and methods presented in the paper can be applied to optimize the design of other mechanisms.
     For a novel 2-DoF flexible parallel manipulator, the dynamic equations of the system were derived by using assumed mode method and Langrange multiplier method. It is a differential algebraic equation. In order to design a controller, the coordinate-partitioned method is used to convert the differential algebraic equations into a second-order differential equations. Beacause the equations are non-linear and time-varying the variable structure control method is applied to design the controller in order to acquire desired trajectory and attenuate the elastic deformation of flexible parts by selecting the appropriate joint control law. The simulation results show the feasibility and effectiveness of the controller.
     Mode theory and variable structure control are applied to design active vibration controller for a novel 2-DoF flexible parallel manipulator with piezoelectric actuators and sensors. The sliding surface is determined by using optimization method according to the performance demand of the system, and sliding controller is designed by applying Lyapunov direct method, and taking account of actuator input voltage limits. The simulation results show the controller can effectively attenuate elastic vibration caused by flexible parts, and reduce the displacement errors of mobile platform of the parallel manipulator, and it is feasible and effective.
     Linear quadratic Gaussian optimal control is applied the active vibration control of the flexible five-link manipulator. The optimum positions of the actuators and sensors are determined by applying a controllable and observable indicator characterized by the energy of actuator and measurement signal. The state variables and the output response are used as the performance index in the calculation of the linear quadratic feedback gain matrix. The external force and inertia force in modal coordinate is treated as white noise, a Kalman state estimator is constructed and connects the state estimator and feedback gain matrix to obtain quadratic Gauss controller. The simulation results show the two controllers can effectively suppress the vibration of flexible manipulator, and through comparative analysis, the controller with output performance can obtain better control effects.
     Model predictive control is applied to suppress elastic vibration response of a flexible five–link robot. According to the system state space equation, its prediction model is derived so as to obtain the future output value of prediction model. The modal force and measurement noise is non-deterministic external disturbance, and are treated as white noise, a Kalman filter estimator to estimate the system states. Considering the control voltages and its change rates as constraints, the system performance index and the constraints is formed into a quadratic programming optimization problem, and finally the optimal control outputs are acquired. The simulation results show that it is effective of the model predictive control method to attenuate vibration response of flexible manipulator, and achieve satisfactory control effects.
     H_∞control theory andμsynthesis is applied to design robust controller to suppress elastic vibration response of a flexible five–link robot. During the design of H_∞controller, the modal force and measurement noise is uncertain external disturbances, modal displacement signal and output response signals are selected as the evaluation signal respectively, and using amplitude and frequency characteristics of actual signal select the appropriate weighting function to form a minimum sensitivity problem. Considering the uncertainty of structural parameters, such as natural frequency, damping ratio and actuator parameters, theμcontroller is designed by usingμsynthesis approach. In order to verify the validity of the controller, the analysis from the frequency domain and time domain are carried out, respectively. Analysis results show that: The two controllers are designed to inhibit the influence of mode force on output strain; The controllers can meet control requirements with uncertainty, and denote that all controllers have some robustness; The control performance and robustness ofμcontroller is better than the H_∞controller. Finally, the comparative analysis of the sliding mode variable structure control, linear quadratic Gaussian control, model predictive control, H_∞control andμcontrol are performed. The advantages and disadvantages, and the similarities and differences of these control method apllied to active vibration control of flexible robot mechanism are analyzed respectively. The control performance compariatve analysis of these controllers is carried out from the point of view of time domain and frequency domain.
     In order to verify the validity of the designed controller, the experiment on active vibration control of a flexible five-link manipulator is carried out. The experiment is divided into three parts: The first part is the rigid motion control of the manipulator; The second part is experimental modal testing to access to natural frequency and damping ration of the system, and modify the theoretical model; The third part is the experiment for the vibration control. The experimental data shows the designed controller can effectively suppress the elastic vibration of the manipulator.
引文
[1]黄文虎,王心清,张景绘,等.航天柔性结构振动控制的若干新进展[J].力学进展,1997,27(1): 5-18.
    [2]江冰,李兴丹,吴代华. Smart结构及其应用[J].力学进展,1994,24(1): 353-361.
    [3]董聪,夏人伟.智能结构设计与控制中的若干核心技术问题[J].力学进展,1996,26(2): 166-178.
    [4]张启先,张玉茹.我国机械学研究的新进展与展望[J].机械工程学报,1996, 32(4): 1-5.
    [5]黎明,雷源忠.机械工程学科“十五”优先领域构想[J].机械工程学报,2001, 37(6): 1-4.
    [6]邹慧君,高峰.现代机构学进展[M].北京:高等教育出版社,2007.4.
    [7]高峰.机构学研究现状与发展趋势的思考[J].机械工程学报, 2005, 41(8):3-17.
    [8]张策.机械动力学[M].北京:高等教育出版社, 2000.
    [9] Santosha Kumar Dwivedy, Peter Eberhard. Dynamic analysis of flexible manipulators, a literature review [J]. Mechanism and Machine Theory, 2006, 41:749-777.
    [10] Gaultier P. E., Cleghorn W. L. Modeling of flexible manipulator dynamics: a literature survey [C]// First Conference of National Applied Mechanism and Robot, 1989, Cincinnati, OH. Cincinnati: ASME, 1989: 1-10.
    [11]黄真,高峰.从并联机器人研究看知识创新和技术传新[J].机械工程学报,2000, 36(2): 18-20.
    [12]汪劲松,黄田.并联机床—机床行业面临的机遇与挑战[J].中国机械工程,1999, 10(10): 1103-1107.
    [13] Book W. J. Modeling, design, and control of flexible manipulator arms: a tutorial review [C]// Institute of Electrical and Electronics Engineering. International Conference on Design and Control, December 5-7, 1996, Honolulu, HI. Honolulu: IEEE, 1996: 500-506.
    [14] Fattah A., Angeles J., Misra A.K. Dynamics of a 3-dof spatial parallel manipulator with flexible links [C]//Proceedings of the IEEE International Conference on Robotics and Automation, Nagoya, Japan, 1995: 627-632.
    [15] Piras G., Cleghorn W.L., Mills J.K. Dynamic finite-element analysis of a planar high-speed, high-precision parallel manipulator with flexible links [J]. Mechanism and Machine Theory, 2005, 40:849-862.
    [16]李兵,王知行.新型并联机床动力学研究[J] .哈尔滨工业大学学报, 1999, 9(9): 13-15.
    [17]蔡胜利,余跃庆,白师贤.弹性平面并联机器人的KED分析[J].机械科学与技术,1997,16(2): 261-265.
    [18] Lee J.D., Geng Z. A dynamic model of a flexible Stewart platform [J]. Computer and Structures, 1993, 48(3): 367-374.
    [19] Kang B., Mills J. K. Dynamic modeling of structurally flexible planar parallel manipulator [J]. Robotica, 2002, 20(3): 329-339.
    [20] Kang B., Yeung B., Mills J. K. Two-time scale controller design for a high speed planar parallel manipulator with structural flexibility [J]. Robotica, 2002, 20(5): 519-528.
    [21] Wang Xiaoyun, James K M. Dynamic modeling of flexible-link planar parallel platform using a substructuing approach [J]. Mechanism and Machine Theory, 2006, 41:671-687.
    [22] Zhang Xianmin, Liu Jike, Shen Yunwen. A high efficient frequency analysis method for closed flexible mechanism systems[J]. Mech. Mach. Theory, 1998, 33(8):1117-1125.
    [23] Zhang Xianmin, Liu Hongzhao, Shen Yunwen. Finite dynamic element analysis for high-speed flexible linkage mechanisms [J]. Computers & Structures, 1996, 60(5): 787-796.
    [24]张宪民,刘济科,沈允文.弹性连杆机构的非线性动力学特性分析[J].应用力学学报,1996, 13(2): 37-44.
    [25] Zhang Xuping, James K M. Dynamic modeling and experimental validation of a 3-PRR parallel manipulator with flexible intermediate links [J]. Intell Robot Syst, 2007, 50: 323-340.
    [26] Zhang Xuping, James K M, William L C. Coupling characteristics of rigid body motion and elastic deformation of a 3-PRR parallel manipulator [J]. Multibody System Dynamic, 2007,
    [27] Imam I., Sandor G N. A general method of kinetoelastodynamic design of high-speed mechanisms [J]. Mechanism and Machine Theory, 1973, 18: 497-516.
    [28] Imam I., Sandor G. N. High-speed mechanism design– a general analytical approach [J]. ASME Journal of Engineering for Industry, 1975, 97: 609-628.
    [29] Khan M. R., Thornton W. A., Willmert K D. Optimality criterion techniques applied to mechanism design [J]. ASME Journal of Mechanical Design, 1978, 100: 319-327.
    [30] Cleghorn W. L., Tenton R. G., Tabarrok R. Optimum design of high-speed flexible mechanisms [J]. Mechanism and Machine Theory, 1981, 16: 399-406.
    [31] Erdman A. G., Sandor G. N. A general method for kinetoelastodynamic analysis andsynthesis of mechanisms [J]. ASME Journal of Engineering for Industry, 1972, 94: 1193-1205.
    [32] Funabashi H., Ogawa K. A. A dynamic synthesis of nonuniform motion mechanisms [J]. Bulletin of JSME, 1976, 19(13): 446-453.
    [33] Zhang C., Grandin H. T. Kinematical refinement of technique in optimum design of flexible mechanisms [J]. ASME paper No. 82-DET-21.
    [34] Zhang C., Grandin H. T. Optimum design of high-speed flexible mechanisms [J]. ASME Journal of Mechanisms, Transmissions, and Automation in Design, 1983, 105: 267-272.
    [35] Zhang Xian Min. Optimal design of flexible mechanisms with frequency constraints [J]. Mechanism and Machine Theory, 1995, 30(1): 131-139.
    [36]杜兆才,余跃庆,苏丽颖.动平台惯性参数对柔性并联机构动力学特性的影响及优化设计[J].光学精密工程,2006,14(6):1009-1016.
    [37] Dado M., Soni A. H. Complete dynamic analysis of elastic linkages [J]. ASME Journal of Mechanisms, Transmissions and Automation Design, 1987, 109(4): 481-486.
    [38] Liou F. W., Erdman A. G., Lin C. S. Dynamic analysis of a motor-gear-mechanism system [J]. Mechanism and Machine Theory, 1991, 26: 139-152.
    [39] Smaili A., Kopparapu M., Sannal M. Elasto-dynamic response of a D.C. motor driven flexible mechanism system with compliant drive train components during start-up [J]. Mechanism and Machine Theory, 1996, 31(5): 659-672.
    [40]岳士岗,白师贤.特定输入转速函数改善柔性连杆机构振动及平衡[J].机械科学与技术,1994,13(2): 103-114.
    [41] Jumarie G. Tracking control of a flexible robot link [J]. IEEE Transactions on Automatic Control, 1988, 33(3): 238-248.
    [42] Book W. J., Lee S. H. Vibration control of a large flexible robot link [C]. Proceedings of 1989 American Control Conference, 1989, 2: 1377-1380.
    [43] Warkentin A., Semercigil S. E. Variable stiffness control of a single-link flexible robotic arm [J]. Journal of Sound and Vibration, 1995, 187(1): 1-21.
    [44] Yue S. G. Weak– vibration configurations for flexible robotic manipulators with kinematic redundancy [J]. Mechanism and Machine Theory, 2000, 35(2): 165-178.
    [45] Zhang X. P., Yu Y. Q. Motion control flexible robot manipulators via optimizing redundant configurations [J]. Mechanism and Machine Theory, 2001, 36(7): 883-892.
    [46] Bayo E., Paden B. On trajectory generation for flexible robots [J]. Journal of Robotic Systems, 1987, 4(2): 229-235.
    [47] Chapnik B. V., Heppler G. R., Aplevich J. D. Controlling the impact response of a one-link flexible robotic arm [J]. IEEE Transactions on Robotics and Automation, 1993, 3: 346-350.
    [48] Lammerts I. M., Veldpaus F. E. Adaptive computed reference torque control for flexible robots [J]. ASME Transactions, Journal of Dynamic Systems, Measurements, and Control, 1995, 117: 31-36.
    [49] Aspinval D. M. Acceleration profiles for minimizing residual response [J]. ASME Transactions, Journal of Dynamic Systems, Measurements, and Control, 1990, 112: 177-185.
    [50] Singer N. C., Seering W. P. Preshaping command inputs to reduce system vibration [J]. ASME Transactions, Journal of Dynamic Systems, Measurements, and Control, 1990, 112: 76-82.
    [51] Cannon R. H., Schmitz E. Initial experiments on end-point control of a flexible one-link robot [J]. International Journal of Robotics Research, 1984, 3(3): 62-75.
    [52] Yigit A S. On the stability of PD control for a two-link rigid-flexible manipulator [J]. ASME Transactions, Journal of Dynamic Systems, Measurement and Control, 1994, 116: 208-215.
    [53] Caracciolo R, Richiedei D, Trevisani A, et al. Robust mixed-norm position and vibration control of flexible link mechanisms [J]. Mechatronics, 2005, 15: 767-791.
    [54] Luo Lei, Wang Shigang, Mo Jinqiu, et al. On the modeling and composite control of flexible parallel mechanism [J]. International Journal Advanced Manufacture Technology, 2006, 29: 786-793.
    [55]罗磊,莫锦秋,王石刚,等.并联机构动力学建模和控制方法分析[J].上海交通大学学报, 2005, 39(1):75-78.
    [56] Mansour A. K. Control of the elastodynamic vibrations of a flexible slider-crack mechanism using synthesis [J]. Mechatronics 2000, 10: 649-668.
    [57] Lane J. S., Dickerson S. L. Contribution of passive damping to the control of flexible manipulators [C]. Proceedings of the International Computers in Engineering Conference, 1984: 175-180.
    [58] Albets T. E., Dickerson S. L., Book W. J. On the transfer function modeling of flexible structures with distributed damping [J]. ASME DSC, 1986, 3: 23-30.
    [59]范子杰.机器人弹性手臂的动力学分析及其粘弹性大阻尼控制的研究[D].西安:西安交通大学,1989.
    [60] Thompson B. S., Sung C. K. A variational formulation for the dynamic viscoelastic finite element analysis of robotic manipulator constructed from composite materials [J]. ASME Transactions, Journal of Mechanisms, Transmissions and Automation in Design, 1986, 106: 183-190.
    [61] Choi S. B., Gandhi M. V., Thompson B. S., et al. An experimental investigation of an articulating robotic manipulator with a graphite-epoxy arm [J]. Journal of Robotic Systems, 1988, 5(1): 73-79.
    [62] Tzou H. S., Wan G. C. Distributed structural dynamics control of flexible manipulators, part I-II [J]. Computers and Structures, 1990, 35(6): 667-687.
    [63] Choi S. B., Thompson B. S., Gandhi M. V. Elastodynamic analysis and control of industrial robotic manipulators with piezoelectric-material-based elastic members [J]. ASME Transactions, Journal of Mechanical Design, 1995, 117: 640-643.
    [64] Gandhi M. V., Thompson B. S., Choi S. B., et al. Electro-rheological-fluid-based articulating robotic systems [J]. ASME Transactions, Journal of Mechanisms, Transmissions and Automation in Design, 1989, 111(3): 328-336.
    [65] Baz A., Iman K., Mccoy J. Active vibration control of flexible beams using shape memory actuators [J]. Journal of Sound and Vibration, 1990, 140(4): 431-456.
    [66] Chen Q., Levy C. Active vibration control of elastic beam by means of shape memory alloy layers [J]. Smart Materials and Structures, 1995, 4: 252-263.
    [67] Sung C. K, Chen Y. C. Vibration control of the elastodynamic response of high-speed flexible linkage mechanism [J]. ASME Journal of Vibration and Acoustics, 1991, 113(1): 14-21.
    [68] Liao C. Y. An elatodynamic analysis and control of flexible linkages using piezoceramic sensors and actuators [J]. Journal of Mechanical Design, 1993, 115: 658-665.
    [69] Choi S. B., Cheong C. C., Thompson B. S., et al. Vibration control of flexible linkage mechanisms using piezoelectric films [J]. Mechanism and Machine Theory, 1994, 29(2): 535-546.
    [70]唐力伟.弹性连杆机构动态响应主动控制的理论与实验研究[D].天津:天津大学, 1996.
    [71]宋轶民.基于神经网络的弹性连杆机构振动主动控制理论、方法与实验研究[D].天津:天津大学, 1999.
    [72] Yuan S. Q., Xu Q. Y., Zhang L. Experiments on active vibration control of a flexible four-bar linkage mechanism [J]. ASME Journal of Vibration and Acoustics, 2000, 122:82-85.
    [73]邵长健,张宪民,卢剑平,等.高速弹性连杆机构振动的鲁棒H∞控制[J].中国机械工程,2002, 13(5): 423-426.
    [74] Zhang Xianmin, Lu Jianwei, Shen Yunwen. Active noise control of flexible linkage mechanism with piezoelectric actuators [J]. Computers & Structures, 2003, 81: 2045-2051.
    [75] Zhang Xianmin,Shao Changjian, Arthur G.Erdman. Active vibration controller design and comparison study of flexible linkage mechanism systems [J]. Mechanism and Machine Theory, 2002, 37:985-997.
    [76]邱志成,谢存禧,吴宏鑫.压电挠性板的H∞鲁棒控制[J].系统仿真学报,2004,16(8): 1816-1818.
    [77]李冬伟,白鸿柏,何忠波,等.基于压电元件的柔性板的H∞鲁棒振动控制实验研究[J].中国机械工程,2008,19(15): 1804-1809.
    [78]李文章,吴凌尧,郭雷.基于LMI的结构振动鲁棒H∞控制[J].振动工程学报,2008,21(2): 157-161.
    [79] Goldenberg A. A., Rakhsha F. Feedforward control of a single-link flexible robot [J]. Mechanism and Machine Theory, 1986, 21(4): 325-335.
    [80] Book W. J. Analysis of massless elastic chain with servo controlled joints [J]. ASME Transactions, Journal of Dynamic Systems, Measurements, and Control, 1979, 101: 187-192.
    [81] Sakawa Y. Modeling and feedback control of flexible arm [J]. Journal of Robotics System, 1985, 2(4): 453-472.
    [82] Ravichandran T., Pang G., Wang D. Robust H-infinity control of a single flexible link [J]. Control– Theory and Advanced Technology, 1993, 9(4): 887-908.
    [83] Li P., Cheng L., Li Y.Y., et al. Robust control of a vibrating plate usingμ-synthesis approach [J]. Thin-Walled Structures, 2003, 41: 973-986.
    [84] Saad M. M., Dugard L., Hammad S. H. A suitable generalized predictive adaptive controller case study: control of a flexible arm [J]. Automatic, 1993, 29(3): 589-608.
    [85] Meng C. H., Chen J. S. Dynamic modeling and payload– adaptive control of a flexible manipulator [C]. Proceedings of the 1988 IEEE International Conference on Robotics and Automation, 1988: 488-493.
    [86] Sasiadek J. Z., Sinivansan R. Dynamic modeling and control of a single-link flexible manipulator [J]. Journal of Guidance, 1989, 12(6): 838-844.
    [87] Nathan P. J., Singh S. N. Sliding mode control and elastic mode stabilization of a robotic arm with flexible links [J]. ASME Transactions, Journal of Dynamic Systems, Measurements, and Control, 1991, 113: 669-676.
    [88] Sicilano B., Book W. A singular perturbation approach to control of light weight manipulators [J]. International Journal of Robotics Research, 1988, 7(4): 79-90.
    [89] Vardegrift M. W., Lewis F. L., Zhu S. Q. Flexible-link robot arm control by a feedback linearization/singular perturbation approach [J]. Journal of Robotic Systems, 1994, 11(7): 591-603.
    [90] Lin Y. J. Intelligent control of flexible robot manipulator utilizing fuzzy logic [C]. Proceedings of the 1992 ASME Winter Annual Meeting, 1992: 85-91.
    [91] Moudgal V. G. Rule-based control for a flexible-link robot [J]. IEEE Transactions on Control System Techniques, 1994, 2(4): 392-405.
    [92] Greene K., Michael E. Indirect adaptive control of a two-link robot arm using regularization neural networks [C]. Proceedings of the 1991 International Conference on Industrial Electronics, Control and Instrumentation, 1991: 252-258.
    [93] Yesildirek A., Vandegrift M. W., Lewis F. L. A neural network controller for flexible-link robots [J]. IEEE International Symptom on Intelligence Control, 1994: 63-68.
    [94]李鹏飞,刘宏昭,原大宁.弹性连杆机构振动的模型预测主动控制研究[J].中国机械工程,2008, 19(3): 266-271.
    [95] Thompson B. S., Tao X. A note on the experimentally determined elastodynamic response of a slider-crank mechanism featuring a macroscopically smart connecting rod with ceramic piezoelectric actuators and gage sensors [J]. ASME Journal of Machine Elements and Machine Dynamics, 1994, 171: 63-69.
    [96] Sannah M., Smaili A. Active control of elastodynamic vibrations of a four-bar mechanism system with a smart coupler link using optimal multivariable control: experimental implementation [C]. Proceedings of ASME 1996 Design Engineering Technical Conference, California, USA, 1996: 18-22.
    [97]黄真,孔令富.并联机器人机构学理论及控制[M].北京:机械工业出版社, 1997.
    [98]张策,黄永强,王子良,等.弹性连杆机构的分析与设计[M].北京:机械工业出版社, 1997.
    [99]张宪民,袁剑锋.一种二维平动两自由度并联的机器人机构:中国, CN1903521 [P]. 2007-01-31.
    [100] Hu Junfeng, Zhang Xianmin, Zhan Jinqing. Trajectory planning of a novel 2-DoFhigh-speed planar parallel manipulator [A]. In: 1st International Conference on Intelligent Robotics and Applications, ICIRA 2008 [C]. Wuhan, China, 2008: 199-207.
    [101]袁剑锋.新型少自由度并联机构运动学分析与控制[D].华南理工大学,2007.
    [102] Choi S.B., Cheong C.C., Shin H.C. Sliding mode control of vibration in a single-link flexible arm with parameter variations [J]. Journal of Sound and Vibration, 1995, 179(5): 737-748.
    [103]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社, 2005.
    [104]方同,薛璞.振动理论及应用[M].西安:西北工业大学出版社, 2005.
    [105] Zhang Xuping, James K. M, William L C. Coupling characteristics of rigid body motion and elastic deformation of a 3-PRR parallel manipulator with flexible links [J]. Multibody System Dynamics, 21: 167-192.
    [106] Karkoub M, Yigit A. S. Vibration control of a four-bar mechanism with a flexible coupler link [J]. Journal of Sound and Vibration, 1999, 222(2): 171-189.
    [107] Luo Lei, Wang Shigang, Mo Jinqiu, et al. On the modeling and composite control of flexible parallel mechanism [J]. Int J Adv Manuf Technol, 2006, 29: 786-793.
    [108]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社, 1998.
    [109]蔡国平,滕悠优,洪嘉振.中心刚体-柔性梁系统的旋转运动控制[J].宇航学报,2005,26(4): 487-491.
    [110] Choi S.B., Cheong C.C., Shin H.C. Sliding mode control of vibration in a single-link flexible arm with parameter variations [J]. Journal of Sound and Vibration, 1995, 179(5): 737-748.
    [111] Li Y.Y., Cheng L., Li P. Modeling and vibration control of a plate coupled with piezoelectric material [J]. Composite Structures, 2003, 62: 155-162.
    [112] Shin H.C., Choi S.B. Position control of a two-link flexible manipulator featuring piezoelectric actuators and sensors [J]. Mechatronics, 2001, 11: 707-729.
    [113] Park H.W., Yang H.S., Park Y.P., et al. Position and vibration control of a flexible robot manipulator using hybrid controller [J]. Robotics and Autonomous Systems, 1999, 28: 31-41.
    [114] Murat Guney, Esref Eskinat. Optimal actuator and sensor placement in flexible structures using closed-loop criteria [J]. Journal of Sound and Vibration, 2008, 312: 210-233.
    [115]张洪铖,王青.最优控制理论与应用[M].北京:高等教育出版社, 2006.
    [116]诸静.智能预测控制及其应用[M].北京:浙江大学出版社, 2002.
    [117]钱积新,赵均,徐祖华.预测控制[M].北京:化学工业出版社, 2007.
    [118]李国勇.智能控制及其MATLAB实现[M].北京:电子工业出版社, 2005.
    [119]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用[M].北京:清华大学出版社, 2008.
    [120]吴敏,桂卫华,何勇.现代鲁棒控制[M].北京:中南大学出版社, 2006.
    [121] Lucian Iorga, Haim Baruh, Ioan Ursu. A review of H∞robust control of piezoelectric smart structures [J]. Transactions of the ASME, 2008, 61: 1-15.
    [122] Stavroulakis G.E., Foutsitzi G., Hadjigeorgiou E., et al. Design and robust optimal control of smart beams with application on vibrations suppression [J]. Advances in Engineering Software, 2005, 36: 806-813.
    [123]郑魁敬,高建设.运动控制技术及工程实践[M].北京:中国电力出版社, 2009.
    [124]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社, 2002.
    [125]葛哲学.精通MATLAB[M].北京:电子工业出版社, 2008.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.