疏水疏油含氟硅聚合物的制备及其在棉织物上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长链全氟烷烃氟碳化合物(CnF2n+n≥8)因其突出的低表面自由能被广泛应用于制备拒水拒油整理剂。然而,越来越多的事实表明,长氟碳链化合物存在环境和生物积累或毒性。近十年来,对环境友好的含短氟碳链(CnF2n+1,n≤6)的织物整理剂倍受关注,但其拒油性不是很令人满意。而氟碳化合物家族中另一重要成员,全氟聚醚化合物(PFPE)因其出色的物理化学性能,如,耐化学腐蚀性,优良的润滑性,低表面自由能及低毒性,有望在拒水拒油整理剂方面取代长链全氟烷烃氟碳化合物。
     本论文以固体表面疏水疏油理论为指导,以2,5-二(三氟甲基)-3,6-二氧杂-全氟壬酰氟(THPF)为重要含氟原料,设计合成了几类的含氟硅杂化聚合物,并将其作为整理剂应用于棉织物表面改性,对整理后织物的润湿性能进行了测试。研究工作由以下几部分组成。
     (1)采用3种设计思路制备了4种不同微观结构的二氧化硅有机衍生物:Rf-SiO2-1、RrSiO2-2、RrSiO2-3(1)及RrSiO2-3(2)。其中具有微米/纳米二元微观结构(MNBS)的RrSiO2-3(2),具有超疏水性及高度疏油性。RrSi02-3(2)在玻片上成膜,水静态接触角为157°,正十四烷和正十二烷接触角分别达到132°和113°。采用FT-IR、XPS、SEM、AFM及元素分析等测试手段对杂化材料的化学组成和表面形态进行了表征。研究了碱性条件下溶胶-凝胶法制备不同粒径纳米SiO2的影响因素;氨基化纳米二氧化硅(APES-SiO2)的制备条件及APES-SiO2的酰胺化反应对杂化材料的疏水疏油性的影响。研究发现,酰胺化反应时间长短影响杂化材料疏水疏油性。热重分析表明,杂化材料RrSiO2-3(2)的初始分解温度大于200℃,最大分解速率所在温度大于300℃,满足一般外墙涂料和织物整理对聚合物热稳定性的要求。将Rf-SiO2-3(2)与聚甲基丙烯酸卿旨共混物整理到棉织物上,Rf-SiO2-3(2)可有效提高绵织物的疏水油性。
     (2)采用原位反应法,应用SiO2前驱体正硅酸四乙酯(TEOS)在棉织物上引入不同粒径的SiO2粒子,并合成两种含氟单体,分别对棉织物进行氟化处理,制备了4种疏水/疏油棉织物S1、S2、S3及S4。研究了原位反应引入SiO2粒子过程中,SiO2粒子大小、TEOS用量对处理后棉织物疏水性的影响。利用FT-IR、NMR表征了含氟单体化学结构,SEM、XPS等分析了处理后棉织物的表面元素组成和表面微观形态。研究表明,在具有微米-亚微米微观结构的棉织物上引入全氟醚链,制得S3与S4,具有高度疏油性和超疏水性。S3与S4比较,S4具有更好的疏水疏油性,水接触角可达到160°,色拉油接触角可达到146°,拒水拒油等级分别为90,4。
     (3)采用乳液聚合方法,应用种子乳液半连续乳液聚合工艺,合成以甲基丙烯酰氧基丙基三甲氧基硅烷修饰过的纳米SiO2为核,含氟丙烯酸酯聚合物为壳的含氟硅聚合物(FSP)。以对环境友好的脂肪醇聚氧乙烯醚代替普遍使用但对环境有害的烷基酚类聚氧乙烯醚为非离子乳化剂,并与阴离子表面活性剂复配,研究了复配乳化剂HLB值(hydrophilic-lipophilic balance value,亲水亲油平衡值)对乳液聚合反应的影响。同时,还研究了复配乳化剂用量、引发剂用量、反应温度、单体浓度、聚合反应工艺等对乳液聚合反应的影响。在最佳工艺条件下,制得FSP具有很好的热稳定性,经FSP乳液整理过的棉织物,具有超疏水性能,且拒油性良好,水接触角可达到154°,正十六烷接触角达到107°。
     (4)采用溶液聚合方法,制备了两个系列POSS基含氟聚合物P(POSS-MMA-(HFPO)3MA)系列和P(POSS-MMA-StRf)系列,并应用NMR、FT-IR、GPC、XRD、DSC及TG等分析测试手段对其进行了表征。TGA, DSC研究表明,POSS基含氟聚合物的热稳定性因POSS单元的引入而显著提高。将两个系列聚合物整理在棉织物表面,研究了聚合物中POSS含量对处理后织物疏水疏油性的影响。对于P(POSS-MMA-(HFPO)3MA)系列,当POSS含量为13.4%时,水和色拉油的接触角分别可达到152°和144°,而对于P(POSS-MMA-StRf)系列,当POSS含量为7.1%时,水和色拉油的接触角分别可达到163°和141°。POSS基含氟聚合物拒油等级可达到5级。通过XPS、SEM及元素分析等测试手段,分析了POSS含量影响其疏水疏油性的原因。此外,POSS基含氟聚合物、含氟聚合物/POSS共混物整理的棉织物的氧极限值结果及燃烧后的SEM图像表明,在我们这个研究体系,POSS以共聚物单元形式存在于聚合物中时,燃烧产生的Si02与有机残碳能形成热辐射和空气的“屏蔽层”,能降低棉织物的易燃性;而Ov-POSS与含氟聚合物共混,不能形成“屏蔽层”,不能降低棉织物易燃性。最后,我们制得的POSS基含氟聚合物中,POSS单元上存在未反应乙烯基,这为该聚合物进一步引入其它官能团,开发其它功能提供了可能。
Fluorocarbons with long perfluoroalkyl chain (CnF2n+1, n≥8) were widely used as water and oil repellent due to their outstanding low surface free energy. However, there are increasing evidences for bioaccumulation and/or toxicity of compounds containing the long perfluoroalkyl chains. Environmental benign finishing reagents containing short fluorocarbon chains (CnF2n+1, n≤6) are highly regarded in recent decade, whereas its oleophobicity is still undesirable. Perfluoropolyether (PFPE) seem to be the promising substitute for long-chain perfluoroalkane due to their excellent physical and chemical properties such as high chemical resistance, high lubricating ability, low surface energy and low toxicity.
     In this study, on the basis of the theory for hydrophobic/oleophobic solid surface, we used 2,3,3,3-tetrafluoro-2-(1,1,2,3,3,3-hexafluoro-2-(perfluoropropoxy)propoxy)propanoyl fluoride (THPF) as fluorine-containing monomer to synthesize several classes of hybrid fluorine-and silicon-containing polymers and applied the polymers as surface modifying agents on cotton fabrics. Wetting properties of the treated cotton fabrics were measured. The main work is described as follows:
     (1) Four types of silica grafted with PFPE (RrSiO2-1, Rf-Si02-2, Rf-Si02-3(1) and RrSi02-3(2)) were prepared. Hybrid material Rf-SiO2-3(2) with micro-nano scale binary structure (MNBS) achieved superhydrophobicity and highly oleophobicity. The chemical composite and surface micromorphology of the hybrid materials were characterized by FT-IR, XPS、SEM、AFM and element analysis. Nano SiO2 was prepared by sol-gel method in alkaline condition. Factors affecting the size of the nano SiO2 were investigated. Preparation of amino SiO2 (APES-SiO2) and the effects of the amidation reaction on hydrophobicity and oleophobicity of the hybrid materials were also studied. It was found that the reaction time for preparing the fluorinated silica from amino nano-silica and THPF plays an important role in water and oil repellency of the coated surface. On the surface of glass substrate coated with RrSi02-3(2), water contact angle could achieve 157°, while for n-tetradecane and n-dodecane contact angle,132°and 113°, respectively. Thermogravimetric analysis showed that the onset decomposition temperature of RrSiO2-3(2) was more than 200℃and the maximum decomposition rate temperature was more than 300℃, which was suitable for common application such as construction coating and textile finishing. The wetting properties of the cotton fabrics changed greatly before and after treated with RrSiO2-3(2)/PMMA blend. Hydrophobicity and oleophobicity of the treated cotton fabrics could be improved by increasing the content of RrSiO2-3(2).
     (2) Four kinds of hydrophobic and oleophobic treated cotton fabrics (S1, S2, S3 and S4) were prepared. The superhydrophobic and highly oleophobic cotton fabrics S3 and S4 were obtained by applying particle-based in situ fabrication procedure with two synthesized fluorinating agent and the silica particles precursor tetraethyl orthosilicate (TEOS). The effects of SiO2 particle size and TEOS dosage during in situ procedure on the hydrophobicity of the treated cotton fabrics were investigated. The chemical composite of the synthesized fluorinating agents were characterized by FT-IR and NMR. The surface composite and micromorphology of the treated cotton fabrics were analyzed by XPS and SEM. The results showed that introduction PFPE chains into cotton fabrics with micro/sub-micro surface structure could improve hydrophobicity and oleophobicity greatly. Compared with S3, S4 is possessed of higher water and oil repellency. The water and salad oil contact angle on S4 surface could achieve 160°,146°respectively, moreover, water and oil repellency ratings were 90 and 4.
     (3) The core-shell polyacrylate emulsion (FSP) containing perfluoropolyether (PFPE) in the shell and 3-(methacryloxy) propyltrimethoxy silane modified nano-silica in the core was synthesized by semi-continuous seeded emulsion polymerization in the presence of anion/nonionic emulsifier. Environmental friendly fatty alcohol-polyoxyethylene ether was applied as nonionic emulsifier rather than alkylphenol ethoxylates which are harm to human and environment. The effects of the HLB value of the anion/nonionic emulsifier on the emulsion were studied, as well as the effects of emulsifier dosage, initiator dosage, reaction temperature, monomer concentration and emulsion polymerization technology. Compared with fluorinated polyacrylate (FP) without nano silica, FSP showed better thermal stability. The cotton fabrics treated with FSP emulsion achieved excellent water and oil repellency. The contact angle reached 154°for water and 107°for n-hexadecane.
     (4) Two series of polyhedral oligomeric silsesquioxane (POSS) based hybrid terpolymers P(POSS-MMA-(HFPO)3MA) and P(POSS-MMA-StRf) were synthesized via solution polymerization and characterized by NMR, FT-IR, GPC, XRD, TGA and DSC. TGA and DSC results showed that the thermal properties of these terpolymers were improved by the introduction of POSS cage. Effects of POSS content on the hydrophobicity and oleophobicity of the cotton fabrics treated with P(POSS-MMA-(HFPO)3MA) and P(POSS-MMA-StRf) were studied. Water and oil repellency of the treated cotton fabrics were improved by the polymer incorporation of POSS unit. For P(POSS-MMA-(HFPO)3MA), water and salad oil contact angle could achieve 152°and 144°, respectively, as POSS content in terpolymer is 13.4 wt.%. For P(POSS-MMA-StRf), water and salad oil contact angle could achieve 163°and 141°, respectively, as POSS content in terpolymer is 7.1 wt.%, and oil repellency rating of the treated cotton fabric was 5. The affecting mechanism of POSS content on the water and oil repellency of the treated cotton fabrics was discussed based on the results of XPS, SEM and elemental analysis. Moreover, the POSS segment in the terpolymer mitigated the burning of the coated cotton fabrics in air to some extent by formation the protective char layer, while the POSS/fluorinated polymer blend didn't reduce the flammability of the cotton fabrics. Finally, the terpolymers is potential to be endowed other functional groups from the unreacted vinyl groups in the POSS segments, and thus to be developed for various potential applications.
引文
[1]Feng, X. J.; Jiang, L. Design and creation of superwetting/antiwetting surfaces [J]. Adv. Mater.,2006,18(23):3063-3078.
    [2]郭志光,刘维民.仿生超疏水性表面的研究进展[J].化学进展,2006,18(6):721-726.
    [3]Oner, D. and McCarthy, T. J. Ultrahydrophobic surfaces. Effects of topography length scales on wettability [J]. Langmuir,2000,16(20):7777-7782.
    [4]Marmur, A. Wetting on hydrophobic rough surfaces:To be heterogeneous or not to be [J]. Langmuir,2003,19 (20):8343-8348.
    [5]Callies, M.; Quere, D. On water repellency [J]. Soft Mat.,2005,1(1):55-61.
    [6]Nosonovsky, M. Multiscale roughness and stability of superhydrophobic biomimetic interfaces [J]. Langmuir,2007,23(6):3157-3161.
    [7]Coffinier, Y.; Janel, S.; Addad, A.; et al. Preparation of superhydrophobic silicon oxide nanowire surfaces [J]. Langmuir,2007,23(4):1608-1611.
    [8]Zhang, G.; Wang, D.; Gu, Z. Z.; et al. Fabrication of superhydrophobic surfaces from binary colloidal assembly [J]. Langmuir,2005,21(20):9143-9148.
    [9]Yabu, H.; Shimomura, M. Single-step fabrication of transparent superhydrophobic porous polymer films [J]. Chem. Mater.,2005,17(21):5231-5234.
    [10]Nakajima, A.; Hashimoto, K.; Watanabe, T. Transparent superhydrophobic thin films with self-cleaning properties [J]. Langmuir,2000,16(17):7044-7047.
    [11]Wang, H.; Dai, D.; Wu, X. D. Fabrication of superhydrophobic surfaces on aluminum [J]. Appl. Surf. Sci.,2008,254(17):5599-5601.
    [12]Sarkar, D. K.; Farzaneh, M.; Paynter, R.W. Superhydrophobic properties of ultrathin rf-sputtered Teflon films coated etched aluminum surfaces [J]. Mater. Lett.,2008,62(8-9):1226-1229.
    [13]Tuteja, A.; Choi, W.; Ma, M.; et al. Designing superoleophobic surfaces [J], Science,2007,318(5856):1618-1622.
    [14]Shafrin, E. G.; Zisman, W. A. Constitutive relations in the wetting of low energy surface and the theory of retraction method of preparing mono layers [J]. J. Phys. Chem.,1960,64 (5):519-524.
    [15]Honda, K.; Morita, M.; Otsuka, H.; et al. Molecular aggregation structure and surface properties of poly(fluoroalkyl acrylate) thin films [J]. Macromolecules, 2005,38 (13):5699-5705.
    [16]倪华钢,张伟,王新平,沈之荃.侧基含氟聚合物结构与表面性质研究进展[J].高分子材料科学与工程,2007,23(2):14-18.
    [17]Ellis, D. A.; Mabury, S. A.; Martin, J. W.; et al. Thermolysis of fluoropolymers as a potential source of halogenated organic acids in the environment [J]. Nature, 2001,412(6844):321-324.
    [18]Lau, C.; Anitole, K.; Hodes, C.; et al. Perfluoroalkyl acids:A review of monitoring and toxicological findings [J]. Toxicol. Sci.,2007,99(2):366-394.
    [19]史亚利,潘媛媛,王杰明等.全氟化合物的环境问题[J].化学进展,2009,21(2/3):369-376.
    [20]Wenzel, R. N. Resistance of solid surfaces to wetting by water [J]. Ind. Eng. Chem.,1936,28(8):988-994.
    [21]Cassie, A. B. D.; Baxter, S. Wettability of porous surfaces [J]. Trans. Faraday Soc.,1994,40:546-551.
    [22]Feng, X.; Zhai, J.; Jiang, L. The fabrication and switchable superhydrophobicity of TiO2 nanorod films [J].Angew. Chem. Int. Ed.,2005,44:5115-5118.
    [23]Liu, H.; Feng, L.; Zhai, J.; et al. Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity [J]. Langmuir,2004,20(14):5659-5661.
    [24]Zhang, X.; Jin, M.; Liu, Z.; et al. Superhydrophobic TiO2 surfaces:preparation, photocatalytic wettability conversion, and superhydrophobic-superhydrophilic patterning [J]. J. Phys. Chem. C,2007,111(39):14521-14529.
    [25]Cao, L.; Price, T. P.; Weiss, M.; et al. Super water- and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films [J]. Langmuir,2008, 24(5):1640-1643.
    [26]Neelesh, A. P. On the modeling of hydrophobic contact angels on rough surfaces [J]. Langmuir,2003,19(4):1249-1253.
    [27]Krupenkin, T. N.; Taylor, J. A.; Wang, E. N.; et al. Reversible wetting-dewetting transitions on electrically tunable superhydrophobic nanostructured surfaces [J]. Langmuir,2007,23(18):9128-9133.
    [28]Barbieri, L.; Wagner, E.; Hoffmann, P. Water wetting transition parameters of perfluorinated substrates with periodically distributed flat-top microscale obstacles [J]. Langmuir,2007,23(4):1723-1734.
    [29]Erbil, H. Y.; Cansoy, C. E. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces [J]. Langmuir,2009, 25(24):14135-14145.
    [30]Bico, J.; Thiele, U.; Quere, D. Wetting of textured surfaces [J]. Colloids Surf. A, 2002,206(1-3):41-46.
    [31]曲爱兰.有机-无机杂化乳液超疏水涂膜的制备及表面微观结构调控[D].广州:华南理工大学,2008.
    [32]Wang, S.; Jiang, L. Definition of superhydrophobic states [J]. Adv. Mater.,2007, 19(21):3423-3424.
    [33]Feng, L.; Zhang, Y.; Xi, J; et al. Petal effect:a superhydrophobic state with high adhesive force [J]. Langmuir,2008,24(8):4114-4119.
    [34]Jin, M.; Feng, X.; Feng, L.; et al. Superhydrophobic aligned polystyrene nanotube films with high adhesive force [J]. Adv. Mater.,2005,17(16): 1977-1981.
    [35]Ahuja, A.; Taylor, J. A.; Lifton, V.; et al. Nanonails:a simple geometrical approach to electrically tunable superhyrophobic surfaces [J]. Langmuir,2008, 24(1):9-14.
    [36]Leng, B.; Shao, Z.; de With, G.; et al. Superoleophobic cotton textiles [J]. Langmuir,2009,25(4):2456-2460.
    [37]Joly, L.; Biben, T. Wetting and friction on superoleophobic surfaces [J]. Soft Mat., 2009,5(13):2549-2557.
    [38]王秀霞,曹成波,冯圣玉.有机氟织物整理剂的研究进展[J].化工进展.2002,21(12):908-911,921.
    [39]张治军,谷国团,党鸿辛.含氟织物整理剂的发展概况及展望[J].高分子材群群学与工程,2004,20(5):24-28.
    [40]孙建英.全氟烷基多功能织物整理剂的分子设计和合成[D].上海:东华大学,2006.
    [41]Lau, C.; Butenhoff, J. L.; Rogers, J. M. The developmental toxicity of perfluoroalkyl acids and their derivatives [J]. Toxicol. Appl. Pharmacol.,2004, 198:231-241.
    [42]Slotkin, T. A.; MacKillop, E. A.; Melnick, R.L.; et al. Developmental neurotoxicity of perfluorinated chemicals modeled in vitro [J]. Environ. Health Perspect.,2008,116(6):716-722.
    [43]Midasch,O.; Schettgen, T.; Angerer, J. Pilot study on the perfluorooctanesulfonate and perfluorooctanoate exposure of the German general population [J]. Int. J. Hyg. Environ.-Health.,2006,209(6):489-496.
    [44]罗正鸿,何腾云,蔺存国.低表面能聚合物的聚合进展.高分子通报,2007,9:9-14.
    [45]幸松民,王一璐.有机硅合成工艺及产品应用[M].北京:化学工业出版社,2000,p445.
    [46]袁利兵,刘海梁.浅谈氟硅系列材料的性能及应用[J].有机氟工业,2002,2:31-33.
    [47]朱章龙,杨勇,陈秉倪.有机硅聚合改性氟碳聚合物的研究进展[J].有机氟工业,2006,2:26-28,6.
    [48]朱淮军,李凤仪,廖洪流.氟硅单体合成的研究进展[J].有机硅材料,2005,19(2):30-32.
    [49]Kim, D. K.; Lee, S. B.; Doh, K. S. Surface properties of fluorosilicone copolymers and their surface modification effects on PVC film [J]. J. Colloid Interface Sci.,1998,205:417-422.
    [50]Fujiwara, H.; Narita, T.; Hamana H.; et al. Radical polyaddition reaction of bis(a-trifluoromethyl-β,β-difluorovinyl) 2,3,5,6-tetrafluoroterephthalate [J]. J. Fluorine Chem.,2004,125(3):381-389.
    [51]Kobayashi, S.; Maeda, K.; Hirashima, Y.; et al. Water based fluorine-containing emulsion [P]. US 5859123,1999.
    [52]周晓东,孙道兴.氟碳树脂的合成及有机硅改性[J].合成树脂与塑料,2004,21(3):69-72.
    [53]房俊卓.有机硅氟改性丙烯酸乳胶漆研究[D].银川:宁夏大学,2005.
    [54]Sawada H, Ohashi A, Oue M. Synthesis and surfactant properties of fluoroalkylated acrylic acid co-oligomers containing dimethylsilicone segments as potential inhibitors of HIV-1 [J]. J. Fluorine Chem.,1995,75:121~129
    [55]Furukawa, Y.; Yoneda, T. Synthesis and properties of fluorosilicone with perfluorooctylundecyl side chains [J]. J. Polym. Sci., Part A:Polym. Chem., 2003,41(17):2704-2714.
    [56]卿凤翎,韦昌青.含氟有机硅聚合物的制备和应用[P],CN 1405209,2003.
    [57]Ameduri, B.; Boutevin, B.; Guida-Pietrasanta, F.; et al. Synthesis of hybrid fluorinated silicones. I. Influence of the spacer between the silicon atom and the fluorinated chain in the preparation and the thermal properties of hybrid homopolymers [J]. Polym. Sci. Part A:Polym. Chem.,1996,34(15):3077-3090.
    [58]Furukawa, Y.; Shin-ya, S.; Miyake, H.; et al. Reactivity of cyclosiloxane with 3,3,4,4,5,5,6,6,6-nonafluorohexyl group and its application to fluorosilicone synthesis [J]. J. Appl. Polym. Sci.,2001,82(13):3333-3340.
    [59]Furukawa, Y.; Shin-ya, S.; Saito, M.; et al. Fluorosilicone elastomer based on the poly[(3,3,3-trifluoropropyl])methyl-siloxane-co-(3,3,4,4,5,5,6,6,6-nonafluorohex yl)methylsiloxane] [J]. Ploym. Adv. Technol.,2002,13(1):60-65.
    [60]Boutevin, B.; Abdellah, L.; Dinia, M. N. Synthesis and applications of photocrosslinkable polydimethyl siloxanes—Part III. Synthesis of polysiloxanes with perfluorinated and acrylated urethane linked pendant groups [J]. Eur. Polym. J.,1995,31(11):1127-1133.
    [61]Smith, D. W. J.; Babb, D. A. Perfluorocyclobutane aromatic polyethers. Synthesis and characterization of new siloxane-containing fluoropolymers [J]. Macromolecules,1996,29(3):852-860.
    [62]Rizzo, J.; Harris, F. W. Synthesis and thermal properties of fluorosilicones containing perfluorocyclobutane rings [J]. Polymer,2004,41(13):5125-5136.
    [63]Michael, P. C. C.; Shoichet, M. S. Synthesis and thermal stability of hybrid fluorosilicone polymers [J]. Polymer,2007,48(18):5233-5240.
    [64]Suzuki, H.; Takeishi, M.; Narisawa, I. Synthesis of polysiloxane-grafted fluoropolymers and their hydrophobic properties [J]. Appl. Polym. Sci.,2000, 78(11):1955-1963.
    [65]Baradie, B.; Lai, P. H. M.; Shoichet, M. S. Synthesis and characterization of novel polysiloxane grafted fluoropolymers [J]. Can. J. Chem.,2005,83(6-7): 553-558.
    [66]Kim, D. K.; Lee, S. B. Comparison of surface properties of random, block,and graft copolymers having perfluoroalkyland silicone-containing side chain [J]. J. Colloid Interface Sci.,2002,247(2):490-493.
    [67]Baradie, B.; Shoichet, M. S. Novel fluoro-terpolymers for coatings applications [J]. Macromolecules,2005,38(13):5560-5568.
    [68]Ball, P. Engineering shark skin and other solutions [J]. Nature,1999,400: 507-509.
    [69]Feng, L.; Li, S. H.; Li, Y. S. Super hydrophobic surfaces:from natural to artificial [J].Adv. Mater.,2002,14(24):1857-1860.
    [70]Guo, C.; Lin, F.; Zai, J.; et al. Large area fabrication of a nanostructure induced hydrophobic surface from a hydrophilic polymer [J]. Chemphys. Chem,,2004, 5(5):750-753.
    [71]Shibuichi, S.; Yamamoto, T.; Onda, T.; et al. Super water and oil repellent surfaces resulting from fractal structure [J]. J. Colloid Interface Sci.,1998, 208(1):287-294.
    [72]Feng, L.; Song, Y.; Zhai, J.; et al. Creation of a superhydrophobic surface form an amphiphilic polymer [J]. Angew. Chem. Int. Ed.2003,42(7):800-802.
    [73]Tadanaga, K.; Katata, N.; Minami, T. Super water repellent Al2O3 coating films with high transparency [J]. J. Am. Ceram. Soc.,1997,80(4):1040-1042.
    [74]Hsieh, C. T.; Chen, J. M.; Kuo, R. R.; et al. Influence of surface roughness on water and oil repellent surface coate with nano particles [J]. Appl. Surf. Sci., 2005,240(1-4):318-326.
    [75]Thies, C. J. Hydrophobic coatings comprising reactive nano particles [P]. EP 1479738,2004.
    [76]. Qian, B.; Shen, Z. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates [J]. Langmuir,2005,21(20):9007-9009.
    [77]Khorasani, M. T.; Mirzadeh, H.; Sammes, P. G. Laser induced surface modification of polydimethylsiloxane as a superhydrophobic material [J]. Radiat. Phys. Chem.,1996,47(6):881-888.
    [78]Li, H; Wang, X; Song, Y.; et al. Super "amphiphobic" aligned carbon nanotube films [J].Angew. Chem. Int. Ed.,2001,40(9):1743-1746.
    [79]Li, Y.; Cai, W.; Duan, G.; et al. Superhydrophobicity of 2D ZnO ordered pore arrays formed by solution dipping template method [J]. J. Colloid Interface Sci., 2005,287(2):634-639.
    [80]Hozumi, A.; Ushiyama, K.; Sugimura, H.; et al. Fluoroalkylsilane monolayers formed by chemical vapor surface modification on hydroxylated oxide surfaces [J]. Langmuir,1999,15(22):7600-7604.
    [81]Nishino, T.; Meguro, M.; Nakamae, K.; et al. The lowest surface free energy based on-CF3 alignment [J]. Langmuir,1999,15(13):4321-4323.
    [82]Woodward, I.; Schofield, W. C. E.; Roucoules, V.; et al. Super-hydrophobic surfaces produced by plasma fluorination of polybutadiene films [J]. Langmuir, 2003,19(8):3432-3438.
    [83]Erbil, Y. H.; Demirel, A. L.; Avci Y, et al. Transformation of a simple plastic into a superhydrophobic surface [J]. Science,2003,299:1377-1380.
    [84]Nakajim, A. A.; Abe, K.; Hashimoto, K.; et al. Preparation of hard super hydrophobic films with visible light transmission [J]. Thin Solid Films,2000, 376 (1-2):140-143.
    [85]Yabu, H.; Takebayashi, M.; Tanaka, M.; et al. Superhydrophobic and lipophobic properties of self-organize honeycomb and pincushion structures [J]. Langmuir, 2005,21(8):3235-3237.
    [86]Pilotek, S.; Schmidt, H. K. Wettability of microstructured hydrophobic Sol-Gel coatings [J]. J. Sol-Gel Sci. Technol.,2003,6(123):789-792.
    [87]Shang, H. M.; Wang, Y.; Limmer, S. J.; et al. Optically transparent superhydrophobic silica-based films [J]. Thin Solid Films,2005,472(1-2):37-43.
    [88]Pu, Z.; Mark, J. E.; Li, Z.; et al. Some block copolymers illustrating the effects of siloxane and silane units on the properties of terephthalate-glycol thermoplastics [J]. Polymer,1999,40(16):4695-4701.
    [89]Rao, A. V.; Kulkarni, M. M.; Bhagat, S. D. Transport of liquids using superhydrophobic aerogels [J]. J. Colloid Interface Sci.,2005,285(1):413-418.
    [90]Sasaki, H.; Shouji, M. Control of hydrophobic character of super-water-repellent surface by UV irradiation [J]. Chem. Lett.,1998,27(4):293-294.
    [91]Feng, X.; Feng L, Jin, M., et al. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films [J]. J. Am. Chem. Soc.,2004,126(1):62-63.
    [92]Yeh, J. T.; Chen, C. L.; Huang, K. S. Preparation and application of fluorocarbon polymer/SiO2 hybrid materials, part 1:preparation and properties of hybrid materials [J]. J. Appl. Polym. Sci.,2007,103(2):1140-1145.
    [93]Yeh, J. T.; Chen, C. L.; Huang, K. S. Preparation and application of fluorocarbon polymer/SiO2 hybrid materials, part 2:water and oil repellent processing for cotton fabrics by sol-gel method [J]. J. Appl. Polym. Sci.,2007,103(5): 3019-3024.
    [94]Yan, H.; Kurogi, K.; Tsujii K. High oil-repellent poly(alkylpyrrole) films coated with fluorinated alkylsilane by a facile way [J]. Colloids Surf. A,2007,292(1): 27-31.
    [100]何小瑜,周丽.全氟聚醚的合成及应用[J].化工生产与技术.2003,10(2):5-7.
    [101]张恒,崔若辉,朱继伟等.全氟聚醚的合成与性能[J].有机氟工业,2008,1(1):31-34.
    [102]Hougham, G.; Cassidy, P. E.; Johns, K.; et al. Fluoropolymers 2:properties [M]. Kluwer Academic Publishers, New York,2002, p146-168.
    [103]Malinverno, G., Colombo, I., Visca, M. Toxicological profile of hydrofluoropolyethers [J]. Regul. Toxicol. Pharm.,2005,41(3):228-239.
    [104]Visca, M.; Silvani, R.; Marchionni, G. Hydrofluoropolyethers:another alternative to CFC [J]. Chem. Tech.1997,27(2):33-37.
    [105]Puukilainen, E.; Koponen, H. K.; Xiao, Z.; et al. Nanostructured and chemically modified hydrophobic polyolefin surfaces [J]. Colloids Surf. A,2006,287(1-3): 175-181.
    [106]Trombetta, T.; Iengo. P.; Turri, S. Fluorinated segmented polyurethane anionomers for water-oil repellent surface treatments of cellulosic substrates [J]. J. Appl. Polym. Sci.,2005,98(3):1364-1372.
    [107]Fabbri, P.; Messori, M.; Montecchi, M.; et al. Perfluoropolyether-based organic-inorganic hybrid coatings [J]. Polymer,2006,47(4):1055-1062.
    [108]Fabbri, P.; Messori; M.; Montecchi; M.; et al. Surface properties of fluorinated hybrid coatings [J]. J. Appl. Polym. Sci.,2006,102 (2):1483-1488.
    [109]Fabbri, P.; Messori; M.; Pilati, F.; et al. Hydrophobic and oleophobic coatings based on perfluoropolyether/silica hybrids by the sol-gel method [J]. Adv. Polym. Tech.,2007,26(3):182-190.
    [110]Yarosh, A. A.; Krukovskya, S. P.; Pryakhinab, T. A.; et al. Synthesis of water-and oil-repellent organofluorosilicon compounds [J]. Mendeleev Commun., 2006,16(3):190-192.
    [111]Guo, Z. G.; Zhou, F.; Hao, J. C.; et al. Effects of system parameters on making aluminum alloy lotus [J]. J. Colloid Interface Sci.,2006,303(1):298-305.
    [112]Zhang, L.; Zhou, Z. L.; Cheng, B.; et al. Superhydrophobic behavior of a perfluoropolyether lotus-leaf-like topography [J]. Langmuir,2006,22(20): 8576-8580.
    [113]Zheng, Y.; Wynne, K. J. Poly(bis-2,2,2-trifluoroethoxymethyl oxetane): enhanced surface hydrophobicity by crystallization and spontaneous asperity formation [J]. Langmuir,2007,23(24):11964-11967.
    [1]张学军,迟伟东,译.功能杂化材料[M].北京:化学工业出版社.2005:1-12.
    [2]张密林,丁立国,景晓燕等.纳米二氧化硅的制备、改性与应用研究进展.应用科技[J].2004,31(6):64-66.
    [3]Guo, Z. G.; Zhou, F.; Hao, J. C.; et al. Effects of system parameters on making aluminum alloy lotus [J]. J. Colloid Interface Sci.,2006,303(1):298-305.
    [4]Zhang, L. B.; Chen, H.; Junqi Sun, J.; et al. Layer-by-Layer deposition of poly(diallyldimethylammonium chloride) and sodium silicate multilayers on silica-sphere-coated substrate—facile method to prepare a superhydrophobic surface [J]. Chem. Mater.2007,19:948-953.
    [5]Ming, W.; Wu, D.; Benthem, R. V.; et al. Superhydrophobic films from raspberry-like particles [J]. Nano Lett.,2005,5(11):2298-2301.
    [6]Sober, W.; Fink, A. Controlled growth of monodisperse silica spheres in the micro size range [J]. J. Colloid Interface Sci.,1968,22:62-69.
    [7]Tuteja, A.; Choi, W.; Ma, M.; et al. Designing superoleophobic surfaces [J], Science,2007,318(5856):1618-1622.
    [8]Moore, E. P., Polymerization of hexafluoropropylene epoxide [P]. U.S. Patent 3322826,1967.
    [9]余锡宾,吴虹.正硅酸四乙酯的水解、缩合过程研究[J].无机材料学报,1996,11(4):703-707.
    [10]Pohl, E. R.; Osterholtz F. D. In molecular characterization of composite interfaces [M]; Ishida, H., Kumar, G., Eds.; Plenum Press:New York,1985; p 157.
    [11]Chu, L; Daniels, M. W.; Francis, L. F. Use of (gycidoxypopl)trimethoxysilane as a bnder in colloidal silica coatings [J]. Chem. Mater.,1997,9(11):2577-2582.
    [12]Eiselt, P.; Lee, K. Y.; and Mooney, D. J. Rigidity of two-component hydrogels prepared from alginate and poly(ethylene glycol)-diamines [J]. Macromolecules, 1999,32 (17):5561-5566.
    [13]Peltonen, J.; Jarn, M.; Areva, S.; et al. Topographical parameters for specifying a three-dimensional surface [J]. Langmuir,2004,20(22):9428-9431.
    [14]Yarosh, A. A.; Krukovsky, S. P.; Pryakhina, T. A.; et al. Synthesis of water-and oil-repellent organofluorosilicon compounds [J]. Mendeleev. Commun.,2006, 16(3):190-192.
    [15]Qu, A. L.; Wen, X. F.; Pi, P. H.; et al. Morphologies and superhydrophobicity of hybrid film surfaces based on silica and fluoropolymers [J]. J. Mater. Sci. Technol., 2008,24(5):693-699.
    [16]刘世宏,王当憨,潘承璜.X射线光电子能谱分析[M].北京:科学出版社,1988,p67-112.
    [17]Fabbri, P.; Messori, M.; Montecchi, M.; et al. Perfluoropolyether-based organic-inorganic hybrid coatings [J]. Polymer,2006,47(4):1055-1062.
    [18]Vaidya, A.; Chaudhury, M. K. Synthesis and surface properties of environmentally responsive segmented polyurethanes [J]. J. Colloid. Interface Sci., 2002,249(1):235-245.
    [19]Abenojar, J.; Torregrosa-Coque, R.; Martinez M. A.; et al. Surface modifications of polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) copolymer by treatment with atmospheric plasma [J]. Surf. Coat. Technol.,2009,203(16): 2173-2180.
    [1]Yeh, J. T.; Chen, C. L.; Huang, K. S. Preparation and application of fluorocarbon polymer/SiO2 hybrid materials, part 2:water and oil repellent processing for cotton fabrics by sol-gel method [J]. J. Appl. Polym. Sci.,2007,103(5): 3019-3024.
    [2]Yu, M.; Gu, G.; Meng, W. D.; et al. Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent [J]. Appl. Surf. Sci.,2007,253:3669-3673.
    [3]Hoefnagels, H. F.; Wu, D.; With, G D.; et al. Biomimetic superhydrophobic and highly oleophobic cotton textiles [J]. Langmuir,2007,23(26):13158-13163.
    [4]Leng, B.; Shao, Z.; With, G D.; et al. Superoleophobic cotton textiles [J]. Langmuir,2009,25(4):2456-2460.
    [5]张治军,谷国团,党鸿辛.含氟织物整理剂的发展概况及展望[J].高分子材料科学与工程,2004,20(4):24-28.
    [6]AATCC Test Method 22-2001, Water Repellency:Spray Test. AATCC Technical Manual 2003.
    [7]AATCC 118-2002, Oil Repellency:Hydrocarbon Resistance Test. AATCC Technical Manual 2003.
    [8]Castelvetro, V.; Francini, G.; Ciardelli, G et al. Evaluating fluorinated acrylic latexes as textile water and oil repellent finishes [J]. Textile Res. J.,2001,71 (5): 399-406.
    [9]He, R.; Toy, P. H.; and Lam, Y. Polymer-supported hantzsch 1,4-dihydropyridine ester:an efficient biomimetic hydrogen source [J]. Adv. Synth. Catal.,2008, 350(1):54-60.
    [10]戴延凤,李凤仪,萧斌.碳纳米管负载络合铂催化苯乙烯硅氢加成反应.现代化工2005,25(5):31-33.
    [11]萧斌,李凤仪,戴延凤.硅氢加成反应高选择性合成甲基苯乙基二氯硅烷[J].分子催化,2006,20(2):153-157.
    [12]Okamoto, M.; Kiya, H.; Matsumura, A.; et al. Vapor-phase hydrosilylation using a transition metal complex catalyst in a liquid polymer medium supported on silica gel [J]. Catal. Lett.,2008,123(1-2):72-79.
    [13]Miao, Q. J.; Fang, Z. P.; Cai, G. P. Silica-supported Karstedt-type catalyst for hydrosilylation reactions [J]. Catal. Commu.,2003,4:637-639.
    [14]Ming, W.; Wu, D.; Benthem, R. V.; et al. Superhydrophobic films from raspberry-like particles [J]. Nano Lett.,2005,5(11):2298-2301.
    [15]Fabbri, P.; Messori, M.; Montecchi, M.; et al. Perfluoropolyether-based organic-inorganic hybrid coatings [J]. Polymer,2006,47(4):1055-1062.
    [16]Vaidya, A.; Chaudhury, M. K. Synthesis and surface properties of environmentally responsive segmented polyurethanes [J]. J. Colloid. Interface Sci., 2002,249(1):235-245.
    [17]Abenojar, J.; Torregrosa-Coque, R.; Martinez M. A.; et al. Surface modifications of polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) copolymer by treatment with atmospheric plasma [J]. Surf. Coat. Technol.,2009,203(16): 2173-2180.
    [18]Feng, X. J.; Jiang, L. Design and creation of superwetting/antiwetting surfaces [J].Adv. Mater.,2006,18(23):3063-3078.
    [19]Castner, D. G.; Kenneth B.; Lewis, J. K. B.; Fischer, D. A.; et al. Determination of Surface Structure and Orientation of Polymerized Tetrafluoroethylene Films by Near-Edge X-ray Absorption Fine Structure, X-ray Photoelectron Spectroscopy, and Static Secondary Ion Mass Spectrometry [J]. Langmuir,1993,9(2):537-542.
    [20]Bindu, V.; Pradeep, T. Investigation of the depth of preferential surface ordering in liquids:A photoelectron spectroscopic investigation of liquid mixtures [J]. J. Chem. Phys.,1997,106 (3):1231-1233.
    [1]张永明,李虹,张恒.含氟功能材料[M].北京:化学工业出版社,2008:287-291.
    [2]Zhang, K; Chen, H.; Chen, X.; et al. Monodisperse silica-polymer core-shell microspheres via surface grafting and emulsion polymerization [J]. Macromol. Mater. Eng.,2003,288:380-385.
    [3]Parka, B. J.; Sunga, J. H.; Kima, K. S.; et al. Preparation and characterization of poly(methyl methacrylate) coated TiO2 nanoparticles [J]. J. Macromol. Sci., Part B Phys.,2006,45(1):53-60.
    [4]Mahdavian, A. R.; Ashjari, M.; Mobarakeh, H. S. Nanocomposite particles with core-shell morphology. I. preparation and characterization of Fe3O4-poly(butyl acrylate-styrene) particles via miniemulsion polymerization [J]. J. Appl. Polym.Sci.,2008,110(2):1242-1249.
    [5]Tang, E.; Cheng, G.; Pang, X.; et al. Synthesis of nano-ZnO/poly(methyl methacrylate) composite microsphere through emulsion polymerization and its UV-shielding property [J]. Colloid. Polym. Sci.,2006,284,(4):422-428.
    [6]Jang, J.; Kim, S.; Lee, K. J. Fabrication of CdS/PMMA core/shell nanoparticles by dispersion mediated interfacial polymerization [J]. Chem. Commun.,2007, 2689-2691.
    [7]Cui, X.; Zhong, S.; Yan, J. Synthesis and characterization of core-shell SiO2-fluorinated polyacrylate nanocomposite latex particles containing fluorine in the shell [J]. Colloids Surf., A Physicochem. Eng. Aspects,2010,360:41-46.
    [8]Qu, A.; Wen, X.; Pi, P.; et al. Synthesis of composite particles through emulsion polymerization based on silica/fluoroacrylate-siloxane using anionic reactive and nonionic surfactants [J]. J. Colloid Interface Sci.,2008,317:62-69.
    [9]史亚利,潘媛媛,王杰明,蔡亚岐.全氟化合物的环境问题[J].化学进展,2009,21(2/3):369-376.
    [10]Malinverno, G.; Colombo, I.; Visca, M. Toxicological Profile of Hydrofluoropolyethers [J]. Regul. Toxicol. Pharm.,2005,41(3):228-239.
    [11]Krupers, M.; Slangen, P. J.; Moller, M. Synthesis and properties of polymers based on oligo(hexafluoropropeneoxide) containing methacrylates and copolymers with methyl methacrylate [J]. Macromolecules,1998,31(8): 2552-2558.
    [12]Paleta, O.; Pale ek, J.; Michalek, J.2,4,4,5,7,7,8,8,9,9,9-Undecafluoro-2,5-bis(trifluoromethyl)-3,6-dioxanonyl metharylate [J]. J. Fluorine Chem.,2002,14: 51-53.
    [13]Nishino, T.; Meguro, M.; Nakamae, K.; et al. The lowest surface free energy based on-CF3 alignment [J]. Langmuir,1999,15(13):4321-4323.
    [14]Ha, J. W.; Park, I. J.; Soo-Bok Lee, S. B. Hydrophobicity and sliding behavior of liquid droplets on the fluorinated latex films [J]. Macromolecules,2005,38(3): 736-744.
    [15]Corpart, J.-M.; Girault, S.; Juhue', D. Structure and surface properties of liquid crystalline fluoroalkyl polyacrylates:role of the spacer [J]. Langmuir,2001,17 (23):7237-7244.
    [16]Graham, P.; Stone, M.; Thorpe, A.; et al. Fluoropolymers with very low surface energy characteristics [J]. J. Fluorine Chem.,2000,104:29-36.
    [17]赵兴顺,隋红英,董艳春,赵洪良,高达.全氟丙烯酸醋的特性及其水基聚合物的制法[J],上海涂料,2007,46(9):20-23.
    [18]焦剑,雷渭媛.高聚物结构、性能与测试[M].北京:化学工业出版社,2003,p272.
    [19]Liang, J.; He, L.; Zheng, Y. Synthesis and property investigation of three core-shell fluoroacrylate copolymer latexes [J]. J. Appl. Polym. Sci.,2009, 112:1614-1621.
    [20]Xiao, X.; Liu J. Synthesis and characterization of fluorine-containing polyacrylate emulsion with core-shell structure [J]. Chin. J. Chem. Eng.,2008, 16(4):626-630.
    [21]汪海伟,袁荞龙,吴树森.含氟丙烯酸酯乳液及膜表面性能[J].华东理工大学学报(自然科学版),2006,32(6):648-654.
    [22]赵美萍,李元宗,常文保.酚类环境雌激素的分析研究进展[J].分析化学,2003,31(1):103-109.
    [23]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用[M].北京:化学工业出版社,1997,p165-176.
    [24]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用[M].北京:化学工业出版社,1997,p353-361.
    [25]Reculusa, S.; Mingotaud, C.; Bourgeat-Lami, E.; et al. Synthesis of daisy-shaped and multipod-like silica/polystyrene nanocomposites [J]. Nano Letters,2004,4 (9):1677-1682.
    [26]Perro, A.; Reculusa, S.; Bourgeat-Lami, E.; et al. Synthesis of hybrid colloidal particles:From snowman-like to raspberry-like morphologies [J]. Colloids Surf., A,2006,284:78-83.
    [27]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用[M].北京:化学工业出版社,1997,p199-218.
    [28]Feng, X. J.; Jiang, L. Design and creation of superwetting/antiwetting surfaces [J]. Adv. Mater.2006,18(23):3063-3078.
    [1]Li, G.; Wang, L.; Ni, H.; et al. Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers:A review [J]. J. Inorg. Organomet. Polym.,2001,11(3): 123-154.
    [2]Phillips, S. H.; Haddad, T. S.; Tomczak, S. J. Developments in nanoscience: polyhedral oligomeric silsesquioxane (POSS)-polymers [J]. Curr. Opin. Solid State Mater. Sci.,2004,8:21-29.
    [3]刘玉荣,黄玉东,张学忠等.POSS改性传统聚合物的研究进展[J].宇航材料式艺,2005,2:6-9.
    [4]林谦,陈超,孙争光等.多面体低聚倍半硅氧烷改性聚合物材料研究进展[J].有机硅材料,2009,23(3):194-198.
    [5]Janowski, B. and Pielichowski, K. Thermo(oxidative) stability of novel polyurethane/POSS nanohybrid elastomers [J]. Thermochimica Acta,2008, 478:51-53.
    [6]Lewicki, J. P.; Patel, M.; Morrell, P.; et al. The stability of polysiloxanes incorporating nano-scale physical property modifiers [J]. Sci. Technol. Adv. Mater.,2008,9:1-8.
    [7]Chen, W. Y.; Wang, Y. Z.; Kuo, S. W.; et al. Thermal and dielectric properties and curing kinetics of nanomaterials formed from poss-epoxy and meta-phenylenediamine [J]. Polymer,2004,45:6897-6908.
    [8]Lu, T. L.; Chen, T.; Liang, G Z. Synthesis, thermal properties, and flame retardance of the epoxy-silsesquioxane hybrid resins [J]. Polym. Eng. Sci., 2007,47:225-234.
    [9]Glodek, T. E.; Boyd, S. E.; McAninch, I. M.; et al. Properties and performance of fire resistant eco-composites using polyhedral oligomeric silsesquioxane (POSS) fire retardants [J]. Compos. Sci. Technol.,2008,68:2994-3001.
    [10]Froehlich, J. D.; Young, R.; Nakamura, T.; et al. Synthesis of multi-functional POSS emitters for OLED applications [J]. Chem. Mater.2007,19:4991-4997.
    [11]Hartmann-Thompson, C.; Keeley, D. L.; Pollock, K. M.; et al. One-and two-photon fluorescent polyhedral oligosilsesquioxane (POSS) nanosensor arrays for the remote detection of analytes in clouds, in solution, and on surfaces [J]. Chem. Mater.,2008,20:2829-2838.
    [12]Lee, Y. J.; Kuo, S. W.; Huang, C. F.; et al. Synthesis and characterization of polybenzoxazine networks nanocomposites containing multifunctional polyhedral oligomeric silsesquioxane (POSS) [J]. Polymer,2006,47:4378-4386.
    [13]. Ni, Y.; Zheng, S. X. Epoxy resin containing octamaleimidophenyl polyhedral oligomeric silsesquioxane [J]. Macromol. Chem. Phys.,2005,206:2075-2083.
    [14]Raftopoulos, K. N.; Pandis, C.; Apekis, L.; et al. Polyurethane-POSS hybrids: Molecular dynamics studies [J]. Polymer,2010,50:709-718.
    [15]Huang, C. F., Kuo, S. W.; Lin, F. J.; et al. Influence of PMMA-chain-end tethered polyhedral oligomeric silsesquioxanes on the miscibility and specific interaction with phenolic blends [J]. Macromolecules,2006,39:300-308.
    [16]Yang, B. H.; Xu, H. Y.; Wang, J. F.; et al. Preparation and thermal property of hybrid nanocomposites by free radical copolymerization of styrene with octavinyl polyhedral oligomeric silsesquioxane [J]. J. Appl. Polym. Sci.,2007,106:320-326.
    [17]Li, H. Y.; Yu, D. S.; Zhang, J. Y. A novel and facile method for direct synthesis of cross-linked polysiloxanes by anionic ring-opening copolymerization with Ph12-POSS/D4/Ph8D4 [J]. Polymer,2005,46:5317-5323.
    [18]Zhang, H.; Shin, Y.; Yoon, K.; et al. Preparation and properties of propylene/POSS copolymer with rac-Et(Ind)2ZrCl2 catalyst [J]. Eur. Polym. J. 2009,45:40-46.
    [19]Randriamahefa, S.; Lorthioir, C.; Guegan, P; et al. Synthesis and bulk organization of polymer nanocomposites based on hemi/ditelechelic poly(propylene oxide) end-functionalized with POSS cages [J]. Polymer,2009, 50:3887-3894.
    [20]Iacono, S. T.; Budy, S. M.; Mabry, J. M. et al. Synthesis, characterization, and surface morphology of pendant polyhedral oligomeric silsesquioxane perfluorocyclobutyl aryl ether copolymers [J]. Macromolecules,2007,40:9517-9522.
    [21]Haddad, T. S.; Lichtenhan, J. D. Hybrid organic-inorganic thermoplastics: styryl-based polyhedral oligomeric silsesquioxane polymers [J]. Macromolecule, 1996,29(22):7302-7304.
    [22]Phillips, S. H.; Haddad, T. S.; Tomczak, S. J. Developments in nanoscience: polyhedral oligomeric silsesquioxane (POSS)-polymers [J]. Curr. Opin. Solid State Mater. Sci.,2004,8:21-29.
    [23]Lichtenhan, J. D.; Otonari, Y. A.; Carr, M. J. Linear hybrid polymer-building blocks -methacrylate functionalised polyhedral silsesquioxane monomers and polymers [J]. Macro. Molecules.,1995,28 (24):8435-8437.
    [24]Abad, M. J.; Barral, L.; Fasce, D. P.; et al. Epoxy networks containing large mass fractions of a monofunctional polyhedral oligomeric silsesquioxane (POSS) [J]. Macromolecules,2003,36(9):3128-3135.
    [25]Devaux, E.; Rochery, M.; Bourbigot, S. Polyurethane/clay and polyurethane /POSS nanocomposites as flame retarded coating for polyester and cotton fabrics [J]. Fire and materials,2002,26:149-154.
    [26]Bourbigot, S.; Duquesne, S.; Jama, C. Polymer nanocomposites:How to reach low flammability [J]. Macromol. Symp.,2006,233:180-190.
    [27]Tuteja, A.; Choi, W.; Ma, M. L.; et al. Designing superoleophobic surfaces [J]. Science,2007,318:1618-1622.
    [28]Xu, J. W.; Li, X.; Cho, C. M.; et al. Polyhedral oligomeric silsesquioxanes tethered with perfluoroalkylthioether corner groups:Facile synthesis and enhancement of hydrophobicity of their polymer blends [J]. J. Mater. Chem., 2009,19:4740-4745.
    [29]Xu, H. Y.; Yang, B. H.; Wang, J. F.; et al. Preparation, Tg improvement, and thermal stability enhancement mechanism of soluble poly(methyl methacrylate) nanocomposites by incorporating octavinyl polyhedral oligomeric silsesquioxanes [J]. J. Polym. Sci. Part A Polym. Chem.2007;45(22):5308-5317
    [30]Krupers, M.; Slangen, P-J.; Moller, M. Synthesis and properties of polymers based on oligo(hexafluoropropeneoxide) containing methacrylates and copolymers with methyl methacrylate [J]. Macromolecules,1998,31(8): 2552-2558.
    [31]Yang, B.; Xu, H.; Wang, J.; et al. Preparation and thermal property of hybrid nanocomposites by free radical copolymerization of styrene with octavinyl polyhedral oligomeric silsesquioxane [J].J. Appl. Polym. Sci.,2007,106:320-326.
    [32]Hussain, H.; Mya, K. Y.; Xiao, Y.; et al. Octafunctional cubic silsesquioxane (CSSQ)/poly(methyl methacrylate) nanocomposites:Synthesis by atom transfer radical polymerization at mild conditions and the influence of CSSQ on nanocomposites [J]. J. Polym. Sci. Part A Polym. Chem.,2008,46(3):766-776.
    [33]Feng, X. J.; Jiang, L. Design and creation of superwetting/antiwetting surfaces. Adv. Mater.,2006,18(23):3063-3078.
    [34]Bourbigot, S.; Duquesne, S.; Jama, C. Polymer nanocomposites:How to reach low flammability [J]. Macromol. Symp.,2006,233:180-190.
    [35]Bourbigot, S.; Duquesne, S. Fire retardant polymers:recent developments and opportunities [J]. J. Mater. Chem.,2007,17:2283-2300.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.