基于乙烯信号转导元件的采后枇杷果实冷害木质化机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以枇杷(Eriobotrya japonica Lindl.)冷敏果实‘洛阳青’(LYQ)、‘大红袍’(DHP)和非冷敏果实‘白沙’(BS)品种为试材,结合乙烯、1-MCP、程序降温(LowTemperature Conditioning, LTC)和热激(Heat shock, HS)等处理,研究了乙烯信号转导元件调控枇杷果实成熟衰老和冷害木质化的分子机制。主要结果如下:
     1.利用简并引物和抑制性差减杂交(Suppression Subtractive Hybridization, SSH) cDNA文库,从枇杷果实中克隆得到了9个乙烯信号转导元件基因,包括3个EjETRs基因,1个EjCTRl基因,1个EjEIL1基因和4个EjERFs基因。这9个基因在枇杷幼根、幼茎、幼叶、盛花期花瓣和不同发育阶段果实等组织中均广泛表达。EjERS1a、EjCTR1、EjERF2和EjERF3基因在枇杷果实发育的8 WAA到12 WAA过程中维持着较高的表达丰度,表明这些基因可能与该阶段的果实快速生长有关。
     2.采后枇杷果实成熟衰老过程中,9个乙烯信号转导元件基因均呈稳定或下降的表达模式,尤其是在LYQ品种中,可能与枇杷果实采后低浓度的内源乙烯有关。外源乙烯(100μll-1)可强烈诱导EjERS1a、EjERS1b、EjCTR1、EjERF2和EjERF3基因的表达,表明外源乙烯可以通过乙烯信号转导调控非跃变型果实采后成熟衰老进程。
     3.采后枇杷果实低温贮藏过程中,EjETR1、EjCTR1、EjEIL1、EjERF1和EjERF2基因的转录本丰度呈增加的趋势,其中EjETR1、EjEIL1和EERF1基因的上调模式在冷害木质化的LYQ果实中尤为明显。LTC和1-MCP(5μll-1)处理均能减轻LYQ枇杷果实冷害木质化程度,但不同的处理可能通过不同的乙烯信号转导元件起作用,即LTC可能通过调控EjEIL1的基因表达来减轻冷害,而1-MCP可能通过调控EjETR1的转录丰度来减轻冷害,进一步表明EjEIL1可能直接响应低温逆境,而EjETR1可能直接响应乙烯。LTC处理减轻冷害木质化的效果优于1-MCP处理,表明EjEIL1可能是更重要的一个调控位点。
     4.高温处理导致LYQ和DHP枇杷果实乙烯释放量呈峰型变化。EjERS1a、EjERS1b和EjERF2在高温及其处理后的常温恢复中的表达模式与高温逆境导致的乙烯变化呈现一定的正相关性,表明这些基因在高温逆境响应中的重要作用。此外,EjHSP70和EjERF2基因在HS效果明显的DHP果实中维持较高的表达水平,这与枇杷果实冷害程度呈现一定的负相关性。
     综上所述,乙烯信号转导元件不仅参与了非跃变型枇杷果实的成熟衰老,还通过不同调控位点参与了果实冷害木质化进程,研究结果丰富了乙烯信号转导元件调控非跃变型果实成熟衰老与冷害发生的相关生物学理论。
Loquat (Eriobotrya japonica Lindl.) is a non-climacteric fruit, with some cultivars such as 'Luoyangqing'(LYQ) and 'Dahongpao'(DHP) susceptible to chilling injury (CI), while others such as'Baisha'(BS) are resistant. Different levels of ethylene signal transduction elements were isolated and their expression patterns were investigated in loquat fruit at different developmental stages and under different postharvest conditions. These genes were differentially responsive to ethylene,1-methycyclopropene (1-MCP), low temperature conditioning (LTC) and heat shock (HS) treatments. Main results are as follows:
     1. By using degenerate primers and suppression subtractive hybridization (SSH) cDNA library, three ethylene receptor genes, one EjCTRl gene, one EjEIL1 gene, and four EjERFs were isolated and characterized in ripening loquat fruit. All of these genes were expressed in all tissues tested, including young root, young stem, young leaf, petal in full flowering stage, and fruit at different developmental stages. EjERS1a, EjCTR1, EjERF2 and EjERF3 maintained higher expression levels from 8 to 12 WAA, suggesting an important role that ethylene signalling played during the rapid fruit growth stages.
     2. During loquat fruit ripening, all nine genes showed constant or decreased expression patterns in reponse to low level of endogenous ethylene, especially in LYQ cultivar. However, transcripts of EjERS1a, EjERS1b, EjCTR1, EjERF2 and EjERF3 were significantly induced by exogenous ethylene, indicating that external ethylene can stimulate non-climacteric fruit ripening through ethylene signalling.
     3. During low temperature storage, EjETR1, EjCTR1, EjEIL1, EjERF1 and EjERF2 genes showed increased expression pattern and this was particularly notable for EjETR1, EjEIL1 and EjERF1 during CI development in LYQ fruit. Though both LTC and 1-MCP treatments can alleviate chilling-induced lignification, regulation of CI development by ethylene signalling may differ in these two treatments:LTC may alleviate CI through the regulation of EjEILl while 1-MCP may alleviate CI through the regulation of EjETRl at the transcriptional level. These results further indicate that EjEIL1 may directly respond to low temperature, while EjETR1 may directly responed to ethylene. Furthermore, the effect of CI alleviation was more pronounced with LTC treatment than that with 1-MCP treatment, suggesting EjEIL1 might be a more important regulation site for CI prevention in LYQ fruit.
     4. In response to high temperature, ethylene production increased and showed a peak in both LYQ and DHP loquat fruit. Expression patterns of EjERS1a, EjERS1b and EjERF2 during or after high temperature treatment were paralleled with the changes in such ethylene production, suggesting an important role of these genes played in high temperature stress response. Higher expression levels of EjHSP70 and EjERF2 genes were observed in HS treatment, especially in DHP cultivar, which showed better alleviation effect of CI symptom by HS.
     In conclusion, ethylene signalling regulates not only the development and postharevest ripening of non-climacteric loquat fruit, and it regulates chilling-induced lignification by different elements as well. Our study may fullfil the biological theory of ethylene transduction in the regulation of ripening and CI of non-climacteric fruit.
引文
蔡冲,龚明金,李鲜,吕均良,陈昆松.枇杷果实采后质地的变化与调控.园艺学报,2006,33(4):731-73
    胡位荣,张昭其,季作梁,刘顺枝,张辉玲.荔枝冷害过程中果皮色泽、花色素苷和类黄酮含量的变化.园艺学报,2004,31(6):723-726
    蒋天梅.枇杷果实乙烯生物合成及相关基因表达研究.硕士论文,浙江大学
    金微微,徐昌杰,李鲜,王平,张波,孙崇德,陈昆松.采后玉露桃果实冷害发生与ROP基因的表达调控.果树学报,2009,26(5):608-613
    刘凤娟,邵兴峰,屠康,赵妍.采后热处理对枇杷果实冷藏期间品质的影响.果树学报,2009,26(5):649-653
    魏绍冲,陈昆松.成熟猕猴桃果实中乙烯受体基因Ad-ETR2的克隆与序列分析.果树学报,2004,21(6):544-547
    吴光斌,陈发河,张其标,杨姣.热激处理对冷藏枇杷果实冷害的生理作用.植物资源与环境学报,2004,13(2):1-5
    殷学仁.猕猴桃果实后熟进程中乙烯信号转导元件功能及其对非生物胁迫的应答.博士论文,浙江大学
    郑永华,李三玉,席屿芳.枇杷冷藏过程中果肉木质化与细胞壁物质变化的关系.植物生理学报,2000,26(4):306-310
    Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Mortiz T, Van Der Straeten D, Peng J, Harberd NP. Integration of plant responses to environmentally activated phytohormonal signals. Science,2006,311(5757):91-94
    Adams-Phillips L, Barry C, Kannan P, Leclercq J, Bouzayen M, Giovannoni J. Evidence that CTR1-mediated ethylene signal transduction in tomato is encoded by a multigene family whose members display distinct regulatory features. Plant Molecular Biology,2004,54(3):387-404
    Alexander L, Grierson D. Ethylene biosynthesis and action in tomato:a model for climacteric fruit ripening. Journal of Experimental Botany,2002,53(377): 2039-2055
    Almoguera C, Prieto-Dapena P, Diaz-Martin J, Espinosa JM, Carranco R, Jordano J. The HaDREB2 transcription factor enhances basal thermotolerance and longevity of seeds through functional interaction with HaHSFA9. BMC Plant Biology,2009,9(1): 75-86
    Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science,1999,284(5423): 2148-2152
    Antunes MDC, Sfakiotakis EM. Effect of high temperature stress on ethylene biosynthesis, respiration and ripening of'Hayward'kiwifruit. Postharvest Biology and Technology,2000,20(3):251-259
    Barry CS, Giovannoni JJ. Ripening in the tomato green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. Proceedings of the National Academy of Sciences, USA,2006,103(20):7923-7928
    Barry CS, Giovannonil JJ. Ethylene and fruit ripening. Journal of Plant Growth Regulation,2007,26(2):143-159
    Begheldo M, Manganaris GA, Bonghi C, Tonutti P. Different postharvest conditions modulate ripening and ethylene biosynthetic and signal transduction pathways in Stony Hard peaches. Postharvest Biology and Technology,2008,48(1):84-91
    Binder BM, Walker JM, Gagne JM, Emborg TJ, Hemmann G, Bleecker AB, Vierstrab RD. The Arabidopsis EIN3 binding F-Box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling. The Plant Cell,2007,19(2):509-523
    Bleecker AB, Kende H. Ethylene:a gaseous signal molecule in plants. Annual Review of Cell and Developmental Biology,2000,16:1-18
    Bovy AG, Angenent GC, Dons HJM, Altvorst AC. Heterologous expression of the Arabidopsis etrl-1 allele inhibits the senescence of carnation flowers. Molecular Breeding,1999,5(4):301-308
    Cai C, Chen KS, Xu WP, Zhang WS, Li X, Ferguson IB. Effect of 1-MCP on postharvest quality of loquat fruit. Postharvest Biology and Technology,2006a,40(2):155-162
    Cai C, Li X, Chen KS. Acetylsalicylic acid alleviates chilling injury of postharvest loquat (Eriobotrya japonica Lindl.) fruit. European Food Research and Technology,2006b, 223(4):533-539
    Cai C, Xu CJ, Li X, Ferguson IB, Chen KS. Accumulation of lignin in relation to change in activities of lignification enzymes in loquat fruit flesh after harvest. Postharvest Biology and Technology,2006c,40(2):163-169
    Cai C, Xu CJ, Shan LL, Li X, Zhou CH, Ferguson IB, Chen KS. Low temperature conditioning reduces postharvest chilling injury in loquat fruit. Postharvest Biology and Technology,2006d,41(3):252-259
    Candan AP, Graell J, Larrigaudiere C. Roles of climacteric ethylene in the development of chilling injury in plums. Postharvest Biology and Technology,2008,47(1): 107-112
    Chang C, Shockey JA. The ethylene-response pathway:signal perception to gene regulation. Current Opinion in Plant Biology,1999,2(5):352-358
    Chang C, Stadler R. Ethylene hormone receptor action in Arabidopsis. Bioessays,2001, 23(7):619-627
    Chang S, Puryear J, Cairney J. A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reports,1993,11(2):113-116
    Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell,1997,89(7):1133-1144
    Chen G, Hua Z, Grierson D. Differential regulation of tomato ethylene responsive factor LeERF3b, a putative repressor, and the activator Pti4 in ripening mutants and in response to environmental stresses. Journal of Plant Physiology,2008,165(6): 662-670
    Chen YF, Randlett MD, Findell JL, Schaller GE. Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. Journal of Biological Chemistry, 2002,277(22):19861-19866
    Chervin C, El-Kereamy A, Roustan JP, Latche A, Lamon J, Bouzayen M. Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Science,2004,167(6):1301-1305
    Clark KL, Larsen PB, Wang X, Chang C. Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proceedings of the National Academy of Sciences, USA,1998,95(9):5401-5406
    Dal Cin V, Danesin M, Boschetti A, Dorigoni A, Ramina A. Ethylene biosynthesis and perception in apple fruitlet abscission (Malus. domestica L. Borck). Journal of Experimental Botany,2005,56(421):2995-3005
    Dal Cin V, Rizzini FM, Botton A, Tonutti P. The ethylene biosynthetic and signal transduction pathways are differently affected by 1-MCP in apple and peach fruit. Postharvest Biology and Technology,2006,42(2):125-133
    Diaz-Martin J, Almoguera C, Prieto-Dapena P, Espinosa JM, Jordano J. Functional interaction between two transcription factors involved in the developmental regulation of a small heat stress protein gene promoter. Plant Physiology,2005, 139(3):1483-1494
    Djanaguiraman M, Prasad PVV, Al-Khatib K. Ethylene perception inhibitor 1-MCP decreases oxidative damage of leaves through enhanced antioxidant defense mechanisms in soybean plants grown under high temperature stress. Environmental and Experimental Botany,2011,71(2):215-223
    Dong L, Zhou HW, Sonego L, Lers A, Lurie S. Ethylene involvement in the cold storage disorder of 'Flavortop' nectarine. Postharvest Biology and Technology,2001,23(2): 105-115
    El-Kereamy A, Chervin C, Roustan JP, Cheynier V, Souquet JM, Moutounet M, Raynal J, Ford C, Latche A, Pech JC, Bouzayen M. Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynthesis in grape berries. Physiologia Plantarum,2003,119(2):175-182
    El-Sharkawy I, Jones B, Li ZG, Lelievre JM, Pech JC, Latche A. Isolation and characterization of four ethylene perception elements and their expression during ripening in pears (Pyrus communis L.) with/without cold requirement. Journal of Experimental Botany,2003,54(387):1615-1625
    Gamble R, Coonfield M, Schaller GE. Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis. Proceedings of the National Academy of Sciences, USA, 1998,95(13):7825-7829
    Gao Z, Chen YF, Randlett MD, Zhao XC, Findell JL, Kieber JJ, Schaller GE. Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. Journal of Biological Chemistry,2003,278(36):34725-34732
    Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiology,2000,124(4):1854-1865
    Girardi CL, Corrent AR, Lucchetta L, Zanuzo MR, da Costa TS, Brackmann A, Twymand RM. Effect of ethylene, intermittent warming and controlled atmosphere on postharvest quality and the occurrence of woolliness in peach(Prunus persica cv. Chiripa) during cold storage. Postharvest Biology and Technology,2005,38(1): 25-33
    Gonzalez-Aguilar GA, Gayosso L, Cruz R, Fortiz J, Baez R, Wang CY. Polyamines induced by hot water treatments reduce chilling injury and decay in pepper fruit. Postharvest Biology and Technology,2000,18(1):19-26
    Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang C, He X, Han Y, Martin GB. Tomato transcription factors pti4, pti5, and pti6 activate defense responses when expressed in Arabidopsis. Plant Cell,2002,14(4):817-831
    Guo HW, Ecker JR. Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor. Cell,2003,115(6): 667-677
    Hershkovitz V, Friedman H, Goldschmidt EE, Feygenberg O, Pesis E. Induction of ethylene in avocado fruit in response to chilling stress on tree. Journal of Plant Physiology,2009,166(17):1855-1862
    Hibi T, Kosugi S, Iwai T, Kawata M, Seo S, Mitsuhara I, Ohashi Y. Involvement of EIN3 homologues in basic PR gene expression and flower development in tobacco plants. Journal of Experimental Botany,2007,58(13):3671-3678
    Hua J, Meyerowitz EM. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell,1998,94(2):261-271
    Huang S, Sawaki T, Takahashi A, Mizuno S, Takezawa K, Matsumura A, Yokotsuka M, Hirasawa Y, Sonoda M, Nakagawa H, Sato T. Melon EIN3-like transcription factors (CmEIL1 and CmEIL2) are positive regulators of an ethylene- and ripening-induced 1-aminocyclopropane-1-carboxylic acid oxidase gene (CM-ACO1). Plant Science, 2010,178(3):251-257
    Iordachescu M, Verlinden S. Transcriptional regulation of three EIN3-like genes of carnation(Dianthus caryophyllus L. cv. Improved White Sim) during flower development and upon wounding, pollination, and ethylene exposure. Journal of Experimental Botany,2005,56(418):2011-2018
    Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MR Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science,1998,280(5360):104-106
    Jiang YM, Joyce DC, Jiang WB, Lu WJ. Effects of chilling temperatures on ethylene binding by banana fruit. Plant Growth Regulation,2004,43(2):109-115
    Kang H-G, Kim J, Kim B, Jeong H, Choi SH, Kim EK, Lee H-Y, Lim PO. Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances tolerance to cold, drought, and heats tresses in Arabidopsis thaliana. Plant Science,2011,180(4): 634-641
    Katz E, Lagunes PM, Riov J, Weiss D, Goldschmidt EE. Molecular and physiological evidence suggests the existence of system Ⅱ-like pathway of ethylene production in non-climacteric Citrus fruit. Planta,2004,219(2):243-252
    Kevany BM, Tieman DM, Taylor MG, Dal Cin V, Klee HJ. Ethylene receptor degradation controls the timing of ripening in tomato fruit. The Plant Journal,2007, 51(3):458-467
    Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell,1993,72(3):427-441
    Kuang JF, Lu WJ, Jiang YM and Chen JY. Isolation and characterization of three ethylene perception elements and their expressions during longan fruit development. Pakistan Journal of Botany,2010,42(5):3377-3386
    Kosugi S, Ohashi Y Cloning and DNA-binding properties of a tobacco Ethylene-Insensitive3 (EIN3) homolog. Nucleic Acids Research,2000,28(4): 960-967
    Leclercq J, Adams-Phillips LC, Zegzouti H, Jones B, Latche A, Giovannoni JJ, Pech JC, Bouzayen M. LeCTR1, a tomato CTR1-like gene, demonstrates ethylene signalling ability in Arabidopsis and novel expression pattern in tomato. Plant Physiology, 2002,130(3):1132-1142
    Lee JH, Deng XW, Kim WT. Possible role of light in the maintenance of EIN3/EIL1 stability in Arabidopsis seedlings. Biochemical and Biophysical Research Communications,2006,350(2):484-491
    Licausi F, Giorgi FM, Zenoni S, Osti F, Pezzotti M, Perata P. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genomics,2010, 11(1): 719-733
    Lim CJ, Hwang JE, Chen H, Hong JK, Yang KA, Choi MS, Lee KO, Chung WS, Lee SY, Lim CO. Over-expression of the Arabidopsis DRE/CRT-binding transcription factor DREB2C enhances thermotolerance. Biochemical and Biophysical Research Communications,2007,362(2):431-436
    Liu J, Li J, Wang H, Fu Z, Liu J, Yu Y. Identification and expression analysis of ERF transcription factor genes in petunia during flower senescence and in response to hormone treatments. Journal of Experimental Botany,2011,62 (2):825-840
    Luo ZS, Xu XL, Yan BF. Use of 1-methylcyclopropene for alleviating chilling injury and lignification of bamboo shoot(Phyllostachys praecox f. prevernalis) during cold storage. Journal of the Science of Food and Agriculture,2008,88(1):151-157
    Lurie S, Laamim M, Lapsker Z, Fallik E. Heat treatments to decrease chilling injury in tomato fruit. Effects on lipids, pericarp lesions and fungal growth. Physiologia Plantarum,1997,100(2):297-302
    Maldonado R, Molina-Garcia AD, Sanchez-Ballesta MT, Escribano MI, Merodio C. High CO2 atmosphere modulating the phenolic response associated with cell adhesion and hardening of Annona cherimola fruit stored at chilling temperature. Journal of Agricultural and Food Chemistry,2002,50(26):7564-7569
    Martinez PG, Gomez RL, Gomez-Lim MA. Identification of an ETR1-homologue from mango fruit expressing during fruit ripening and wounding. Jounal of Plant Physiology,2001,158(1):101-108
    Mbeguie-A-Mbeguie D, Hubertb O, Fils-Lycaonc B, Chilletd M, Baurens FC. EIN3-like gene expression during fruit ripening of Cavendish banana (Musa acuminata cv. Grande naine). Physiologia Plantarum,2008,133(2):435-448
    Mirdehghan SH, Rahemic M, Martinez-Romero D, Guillen F, Valverde JM, Zapata PJ, Serrano M, Valero D. Reduction of pomegranate chilling injury during storage after heat treatment:role of polyamines. Postharvest Biology and Technology,2007, 44(1):19-25
    Morgan PW, Drew MC. Ethylene and plant responses to stress. Physiologia Plantarum, 1997,100(3):620-630
    Miiller R, Lind-Iversen S, Stummann SM, Serek M. Expression of genes for ethylene biosynthetic enzymes and an ethylene receptor in senescing flowers of miniature potted roses. Journal of Horticultural Science and Biotechnology,2000,75(1):12-18
    Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology,2006,140(2):411-432
    Novi G, Beretta O, Vitulli F, Alpi A, Perata P. Transcript profiling of the anoxic rice coleoptile. Plant Physiology,2007,144(1):218-231
    Novillo F, Medina J, Salinas J. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proceedings of the National Academy of Sciences, USA,2007,104(52): 21002-21007
    Perin C, Gomez-Jimenez MC, Hagen L, Dogimont C, Pech JC, Latche A, Pitrat M, Lelievre JM. Molecular and genetic characterization of a non-climacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit. Plant Physiology,2002,129(1):209-300
    Pesis E, Ackerman M, en-Arie R, Feygenberg O, Feng XQ, Apelbaum A, Goren R, Prusky D. Ethylene involvement in chilling injury symptoms of avocado during cold storage. Postharvest Biology and Technology,2002,24(2):171-181
    Pino MT, Skinner JS, Jeknic Z, Hayes PM, Soeldner AH, Thomashow MF, Chen THH. Ectopic AtCBFl over-expression enhances freezing tolerance and induces cold acclimation-associated physiological modifications in potato. Plant, Cell and Environment,2008,31(4):393-406
    Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, and Genschik P. EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins:EBF1 and EBF2. Cell,2003,115(6):679-689
    Qiao H, Chang KN, Yazaki J, and Ecker JR. Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes and Development,2009,23(4):512-521
    Rasori A, Ruperti B, Bonghi C, Tonutti P, Ramina A. Characterization of two putative ethylene receptor genes expressed during peach fruit development and abscission. Journal of Experimental Botany,2002,53(379):2333-2339
    Resnick JS, Wen CK, Shockey JA, Chang C. VERSION-.TO-ETHYLENE-INSENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proceedings of the National Academy of Sciences, USA,2006, 103(20):7917-7922
    Rodrigo MJ, Zacarias L. Effect of postharvest ethylene treatment on carotenoid accumulation and the expression of carotenoid biosynthetic genes in the flavedo of orange (Citrus sinensis L. Osbeck) fruit. Postharvest Biology and Technology,2007, 43(1):14-22
    Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration -and cold-inducible gene expression. Biochemical and Biophysical Research Communications,2002,290(3):998-1009
    Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proceedings of the National Academy of Sciences, USA,2006,103(49):18822-18827
    Salvador A, Arnal L, Monterde A, Cuquerella J. Reduction of chilling injury symptoms in persimmon fruit cv.'Rojo Brillante' by 1-MCP. Postharvest Biology and Technology, 2004,33(3):285-291
    Salvador A, Carvalho CP, Monterde A, Martinez-Javega JM.1-MCP effect on chilling injury development in 'Nova' and 'Ortanique' mandarins. Food Science and Technology International,2006,12(2):165-170
    Sapitnitskaya M, Maul P, McCollum GT, Guy CL, Weiss B, Samach A, Porat R. Postharvest heat and conditioning treatments activate different molecular responses and reduce chilling injuries in grapefruit. Journal of Experimental Botany,2006, 57(12):2943-2953
    Schirra M, D'hallewin G, Cabras P, Angioni A, Ben-Yehoshua S, Lurie S. Chilling injury and residue uptake in cold-stored 'Star Ruby' grapefruit following thiabendazole and imazalil dip treatments at 20 and 50℃. Postharvest Biology and Technology,2000, 20(1):91-98
    Shan LL, Li X, Wang P, Cai C, Zhang B, Sun CD, Zhang WS, Xu CJ, Ferguson IB, Chen KS. Characterization of cDNAs associated with lignification and their expression profiles in loquat fruit with different lignin accumulation. Planta,2008,227(6): 1243-1254
    Sharma MK, Kumar R, Solanke AU, Sharma R, Tyagi AK, Sharma AK. Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Molecular Genetics and Genomics,2010,284(6): 455-475
    Solano R, Stepanova A, Chao QM, Ecker JR. Nuclear events in ethylene signaling:a transcriptional cascade mediated by ETHYLENEINSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes and Development,1998,12(23): 3703-3714
    Tacken E, Ireland H, Gunaseelan K, Karunairetnam S, Wang D, Schultz K, Bowen J, Atkinson RG, Johnston JW, Putterill J, Hellens RP, Schaffer RJ. The role of ethylene and cold temperature in the regulation of the apple POLYGALACTURONASE1 gene and fruit softening. Plant Physiology,2010,153(1):294-305
    Takada K, Ishimaru K, Minamisawa K, Kamada H, Ezura H. Expression of a mutated melon ethylene receptor gene Cm-ETR1/H69A affects stamen development in Nicotiana tabacum. Plant Science,2005,169(5):935-942
    Takuhara Y, Kobayashi M, Suzuki S. Low-temperature-induced transcription factors in grapevine enhance cold tolerance in transgenic Arabidopsis plants. Journal of Plant Physiology,2011,168 (9):967-975
    Tamura K, Dudley J, Nei M, Kumar S. MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution,2007, 24(8):1596-1599
    Tan H, Liu X, Ma N, Xue J, Lu W, Bai J, Gao J. Ethylene-influenced flower opening and expression of genes encoding Etrs, Ctrs, and Ein3s in two cut rose cultivars. Postharvest Biology and Technology,2006,40(2):97-105
    Tatsuki M, Endob A, Ohkawa H. Influence of time from harvest to 1-MCP treatment on apple fruit quality and expression of genes for ethylene biosynthesis enzymes and ethylene receptors. Postharvest Biology and Technology,2007,43(1):28-35
    Tian Y, Zhang H, Pan X, Chen X, Zhang Z, Lu X, Huang R. Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings. Transgenic Research, DOI:10.1007/s 11248-010-9463-9
    Tieman DM, Ciardi JA, Taylor MQ Klee HJ. Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development. The Plant Journal,2001,26(1):47-58
    Tieman DM, Taylor MG, Ciardi JA, Klee HJ. The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family. Proceedings of the National Academy of Sciences, USA,2000,97(10):5663-5668
    Tournier B, Sanchez-Ballesta MT, Jones B, Pesquet E, Regad F, Latche A, Pech JC, Bouzayen M. New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to the GCC box element. FEBS Letters, 2003,550(1-3):149-154
    Trainotti L, Pavanello A, Casadoro G. Different ethylene receptors show an increased expression during the ripening of strawberries:does such an increment imply a role for ethylene in the ripening of these non-climacteric fruits? Jounal of Experimental Botany,2005,56(418):2037-2046
    Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. the Plant Jounal,2005,41(2):195-211
    Waki K, Shibuya K, Yoshioka T, Hashiba T, Satoh S. Cloning of a cDNA encoding EIN3-like protein (DC-EIL1) and decrease in its mRNA level during senescence in carnation flower tissues. Journal of Experimental Botany,2001,52(355):377-379
    Wang A, Tan D, Takahashi A, Li TZ, Harada T. MdERFs, two ethylene-response factors involved in apple fruit ripening. Journal of Experimental Botany,2007,58(13): 3743-3748
    Wang L, Zhao C-M, Wang Y-J, Liu J. Overexpression of chloroplast-localized small molecular heat-shock protein enhances chilling tolerance in tomato plant. Journal of Plant Physiology and Molecular Biology,2005,31(2):167-174
    Wang WY, Hall AE, O'Malley R, Bleecker AB. Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proceedings of the National Academy of Sciences, USA, 2003,100(1):352-357
    Wang Y, Liu C, Li K, Sun F, Hu H, Li X, Zhao Y, Han C, Zhang W, Duan Y, Liu M, Li X. Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Molecular Biology,2007,64(6):633-644
    Wiersma PA, Zhang H, Lua C, Quail A, Toivonen PMA. Survey of the expression of genes for ethylene synthesis and perception during maturation and ripening of 'Sunrise' and 'Golden Delicious' apple fruit. Postharvest Biology and Technology, 2007,44(3):204-211
    Wilkinson JQ, Lanahan MB, Clark DG, Bleecker AB, Chang C, Meyerowitz EM, Klee HJ. A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nature Biotechnology,1997,15(5):444-447
    Wisniewski M, Norelli J, Bassett C, Artlip T, Macarisin D. Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus × domestica) results in short-day induced dormancy and increased cold hardiness. Planta,2011, 223(5):971-983
    Wuriyanghan H, Zhang B, Cao WH, Ma B, Lei G, Liu YF, Wei W, Wu HJ, Chen LJ, Chen HW, Cao YR, He SJ, Zhang WK, Wang XJ, Chen SY, Zhang JS. The ethylene receptor ETR2 delays floral transition and affects starch accumulation in rice. The Plant Cell,2009,21(5):1473-1494
    Xue J, Li Y, Tan H, Yang F, Ma N, Gao J. Expression of ethylene biosynthetic and receptor genes in rose floral tissues during ethylene-enhanced flower opening. Journal of Experimental Botany,2008,59(8):2161-2169
    Yanagisawa S, Yoo S-D, Sheen J. Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature,2003,425(6957):521-525
    Yang SF, Hoffman NE. Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology,1984,35:155-89
    Yang SL, Sun CD, Wang P, Shan LL, Cai C, Zhang B, Zhang WS, Li X, Ferguson IB, Chen KS. Expression of expansin genes in postharvest lignification and softening of 'Luoyangqing' and 'Baisha' loquat fruit under different storage conditions. Postharvest Biology and Technology,2008,49(1):46-53
    Yin XR, Allan AC, Chen K, and Ferguson IB. Kiwifruit EIL and ERF genes involved in regulating fruit ripening. Plant Physiology,2010,153(3):1280-1292
    Yin XR, Allan AC, Zhang B, Wu RM, Burdon J, Wang P, Ferguson IB, Chen KS. Ethylene-related genes show a differential response to low temperature during 'Hayward' kiwifruit ripening. Postharvest Biology and Technology,2009,52(1): 9-15
    Yin XR, Chen KS, Allan AC, Wu RM, Zhang B, Lallu N, Ferguson IB. Ethylene-induced modulation of genes associated with the ethylene signalling pathway in ripening kiwifruit. Journal of Experimental Botany,2008,59(8):2097-2108
    Zhang B, Chen KS, Bowen J, Allan A, Espley R, Karunairetnam S, Ferguson IB. Differential expression within the LOX gene family in ripening kiwifruit. Journal of Experimental Botany,2006,57(14):3825-3836
    Zhang J, Huang W, Pan Q, Liu Y. Improvement of chilling tolerance and accumulation of heat shock proteins in grape berries (Vitis vinifera cv. Jingxiu) by heat pretreatment. Postharvest Biology and Technology,2005,38(1):80-90
    Zhang Z, Huang R. Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Molecular Biology,2010,73(3):241-249
    Zhang Z, Zhang H, Quan R, Wang XC, Huang R. Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiology,2009,150(1): 365-377
    Zhao XC, Qu X, Mathews DE, Schaller GE. Effect of ethylene pathway mutations upon expression of the ethylene receptor ETR1 from Arabidopsis. Plant Physiology,2002, 130(4):1983-1991
    Zhou CH, Xu CJ, Sun CD, Li X, Chen KS. Carotenoids in white- and red-fleshed loquat fruits. Journal of Agricultural and Food Chemistry,2007,55(19):7822-7830
    Zhou HW, Dong L, Ben-Arie R, Lurie S. The role of ethylene in the prevention of chilling injury in nectarines. Journal of Plant Physiology,2001,158(1):55-61
    Zhou J-Y, Sun C-D, Zhang L-L, Dai X, Xu C-J, Chen K-S. Preferential accumulation of orange-colored carotenoids in Ponkan(Citrus reticulatd) fruit peel following postharvest application of ethylene or ethephon. Scientia Horticulturae,2010,126(2): 229-235
    Zhuang J, Cai B, Peng RH, Zhu B, Jin XF, Xue Y, Gao F, Fu XY, Tian YS, Zhao W, Qiao YS, Zhang Z, Xiong AS, Yao QH. Genome-wide analysis of the AP2/ERF gene family in Populus trichocarpa. Biochemical and Biophysical Research Communications,2008,371(3):468-474
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.