桂花种质资源遗传多样性研究及品种鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从形态学、DNA分子标记、DNA序列三个方面,以无锡、南京、杭州和湖南浏阳的88个桂花(Osmanthus fragrans Lour.)栽培品种、野生桂花、木犀属(Osmanthus)2个对照种柊树(O. heterophyllus (G Don.) P. S. Green)和华东木犀(O.cooperi Hemsl.)为材料,对桂花种质资源的遗传多样性、亲缘关系、品种分类鉴定等问题进行了研究和探讨。建立并优化了桂花的SRAP扩增体系。利用SRAP和ISSR分子标记研究了桂花种质资源的遗传多样性和亲缘关系。测定了野生桂花及部分桂花品种的ITS序列和trnL-F序列,并用两个序列联合分析的方式,以木犀属的格树和华东木犀为外类群,初步探讨了桂花四个品种群之间的亲缘关系。依据形态特征编制了88个桂花品种的分类检索表,分别运用SRAP和ISSR分子标记构建了桂花的DNA指纹图谱,旨在为桂花品种的鉴定、培育和开发利用,提供形态和分子依据。研究的主要内容如下:
     1.桂花SRAP扩增体系的建立及遗传多样性与亲缘关系研究
     以早银桂为材料,通过对PCR扩增体系中模板DNA、Mg2+、dNTPs、引物、TaqDNA聚合酶进行单因子不同浓度梯度的比较试验,建立了适合桂花基因组DNA的SRAP-PCR优化体系。结果表明,在10μL反应体系中,SRAP-PCR优化体系中各因子适宜浓度为:模板DNA 30ng、Mg2+ 2.5 mmol·L-1、dNTPs 0.2 mmol·L-1、引物0.4μmol·L-1、Taq DNA聚合酶0.75U。
     运用SRAP优化体系,以格树和华东木犀为对照种,研究了桂花88个品种和野生桂花的遗传多样性及亲缘关系。18对SRAP引物共获得296个位点,其中248个为多态性位点,多态性比率达83.78%。平均每对引物组合产生16.4个位点、13.8个多态性位点。其中,银桂品种群的Shannon信息指数(0.3412)、遗传多样性指数(0.2191)和位点多态性比率(84.46%)最高。桂花遗传分化系数为52.95%,说明大部分变异存在于品种群之间。聚类分析结果表明,以遗传相似系数0.762为截值,可将91份种质分成6类。各品种群的品种基本先聚在一起。四季桂品种群与秋季开花的三个品种群之间的遗传距离较远。色质较深的金桂往往与丹桂品种群的多个品种聚在一起。基于SRAP分子标记的聚类结果与基于形态的传统分类学的结果基本相符。说明将桂花的栽培品种根据开花季节、花序类型和花色等不同,划分为四季桂、银桂、金桂和丹桂四个品种群是可行的。
     2.桂花遗传多样性及亲缘关系的ISSR分析
     利用ISSR分子标记,以格树和华东木犀为对照种,研究了桂花88个品种和野生桂花的遗传多样性及亲缘关系。28个ISSR引物共获得286个位点,其中多态性位点269个,多态性比率达94.06%。在四个品种群中,银桂品种群的Shannon信息指数(0.3884)、遗传多样性指数(0.2532)和位点多态性比率(87.41%)最高。桂花遗传分化系数为56.84%,说明大部分变异存在于品种群之间。聚类分析结果表明,以遗传相似系数0.720为截值,可将91份种质分成7类。各品种群的品种基本先聚在一起。四季桂品种群与秋季开花的三个品种群遗传距离较远。色质较深的金桂往往与丹桂品种群的品种聚在一起。基于ISSR分子标记的聚类结果与基于形态的传统分类学的结果基本相符。说明将桂花的栽培品种根据开花季节、花序类型和花色等不同,划分为四季桂、银桂、金桂和丹桂四个品种群是可行的。
     3.桂花SRAP与ISSR遗传多样性及亲缘关系比较分析
     基于SRAP和ISSR两种分子标记的桂花遗传多样性有异同。结果表明,每对SRAP引物较每个ISSR引物扩增的位点数多(16.4个),而ISSR标记的位点多态性比率较高(94.06%)。两种标记皆表明:在四个品种群中,银桂品种群的观察等位基因数、有效等位基因数、Nei's遗传多样性指数、Shannon信息指数和位点多态性比率均最高,其次为金桂。位点多态性比率排序均为:银桂品种群>金桂品种群>丹桂品种群>四季桂品种群。两种标记均表明变异主要存在于品种群之间,四季桂品种群与秋季开花的银桂、金桂和丹桂品种群关系较远;丹桂品种群与四季桂品种群的遗传距离最远,与金桂品种群距离最近。基于SRAP和ISSR分子标记的聚类结果与基于形态的传统分类学的结果基本相符。利用SRAP标记得到的聚类结果与形态分类更为接近。本研究两个标记的聚类结果均表明,无锡梅园的几个桂花品种桃叶齿银桂、竹叶银桂、多裂银桂、五瓣银、银十字、圆瓣籽金、球橙和银丹,以及南京林业大学的冬香白,不但形态上有别于其他品种,在基因组水平上也与其他品种存在一定差异,因此从分子生物学角度进一步证实可以确立为新品种。
     4.基于ITS和trnL-F序列的桂花亲缘关系的分子系统学初步研究
     通过PCR直接测定法测定了分属四个品种群的4个桂花品种、桂花野生种的ITS序列和trnL-F序列,又在测序基础上,比较了银桂品种群内6个品种的ITS序列。以木犀属的格树、华东木犀为外类群,分析了两个序列的特点;将ITS序列和trnL-F序列进行联合分析,用UPGMA法构建了供试物种的分子系统树以探讨桂花四个品种群之间的亲缘关系。结果表明,所测物种的ITS序列全长在620-650bp之间,经排序后,两端切平,得到617bp的整齐序列;变异位点17个、信息位点2个,分别占全序列的2.76%、0.32%。所测物种的trnL-F序列全长在860-900bp之间,经排序后,两端切平,得到846bp的整齐序列;变异位点11个、信息位点4个,分别占总序列长度的1.28%和0.47%。6个银桂品种之间的ITS序列变异极少,推测ITS序列尚无法揭示桂花同一品种群内品种间的亲缘关系。用ITS和trnL-F序列联合分析的方式可在一定程度上揭示桂花四个品种群之间的亲缘关系。在秋桂类中,丹桂品种群与四季桂品种群亲缘关系最远,与金桂品种群亲缘关系最近;在四个品种群中,丹桂品种群与野生桂花亲缘关系最远,支持多位学者根据形态分类得出的丹桂品种群在秋桂中最进化的结论。ITS和trnL-F序列中皆有一些位点可用于区别格树、华东木犀与桂花(野生种和品种),或者野生桂花与部分栽培品种。
     5.基于形态学和DNA指纹图谱的桂花品种鉴定
     依据形态学构建的桂花品种检索表和依据分子标记构建的桂花DNA指纹图谱,可以分别作为桂花种质资源鉴定的形态依据和分子依据。
     桂花的不同品种在形态上有明显区别。在花期、开花习性、花(花序、花型、花径、花色、花香、雌雄蕊的结实性)、果实和种子、叶、枝、树干等方面,都显著不同。有些性状非常稳定,可以作为桂花品种分类和鉴定的重要形态依据。根据开花季节、花序类型和花色等不同,将88个桂花品种划归四季桂、银桂、金桂和丹桂四个品种群。依据桂花四个品种群及各品种的主要鉴别特征,编制了桂花88个品种的分类检索表。并对无锡梅园和南京林业大学的7个待定新品种进行了形态描述。
     分别运用SRAP-PCR体系和18对SRAP引物,以及ISSR-PCR体系和28个ISSR引物,以格树和华东木犀为对照种,研究了桂花88个品种和野生桂花特有的SRAP和ISSR分子标记,并将两对SRAP引物pm17-em10和sa15-em10结合起来构建了桂花的SRAP指纹图谱,将两个ISSR引物ISSR12和ISSR27结合起来构建了桂花的ISSR指纹图谱。结果表明,76个桂花品种、野生桂花及对照种格树和华东木犀均有特别的SRAP条带;64个桂花品种、野生桂花及对照种格树和华东木犀均有特别的ISSR条带,这些条带作为部分供试材料特有的SRAP和ISSR标记,可用于桂花种质的分子鉴定。构建的桂花SRAP指纹图谱和ISSR指纹图谱,均可将91份种质有效区分开,并可作为桂花种质鉴定的分子依据。将基于形态学的品种检索表与基于分子标记的DNA指纹图谱结合起来可以对桂花种质资源进行更准确有效的鉴定。
     形态学、DNA分子标记、DNA序列三方面的研究结果均表明:桂花种质资源的遗传多样性丰富,桂花的不同品种和品种群不论在形态上还是分子水平都存在明显差异。丹桂品种群与四季桂品种群距离最远,与金桂品种群亲缘关系最近。基于SRAP和ISSR分子标记的品种聚类图均表明,将桂花的栽培品种根据开花季节、花序类型和花色等不同,划分为四季桂、银桂、金桂和丹桂四个品种群是可行的,但花色仅为分类的依据之一,还需考虑其他性状。
     三方面的研究结果表明:桂花的品种分类、品种群演化及品种亲缘关系相当复杂,不同的手段往往得出不同结论。今后,应在传统的形态分类基础上,综合解剖学、孢粉学、数量分类、分子标记、DNA序列等多种分类方法,并采用充足且可靠的材料,相互印证,综合分类,以期更科学地解决相关问题。
This thesis mainly dealt with the genetic diversity, genetic relationships and cultivar identification of Osmanthus fragrans Lour. germplasm by morphology, DNA markers (SRAP and ISSR) as well as DNA sequences (nrDNA ITS and cpDNA trnL-F), with 88 cultivars, wild species of O. fragrans from Wuxi, Nanjing, Hangzhou and Liuyang (Hunan Province) and 2 contrast species in Osmanthus (O. heterophyllus and O. cooperi) as materials. SRAP amplification system suitable for O. fragrans genome was set up and optimized. Genetic diversity and genetic relationships of O. fragrans germplasm resources were studied and discussed with SRAP and ISSR markers. ITS sequence and trnL-F sequence of several cultivars, wild species of O. fragrans were measured, and relationships among the 4 groups of O. fragrans were discussed primarily based on the combination of two sequences, with O. heterophyllus and O. cooperi as outgroups. The keys to 88 cultivars were made based on their major morphological characteristics, and two fingerprinting maps in DNA of O. fragrans were constructed based on SRAP and ISSR markers, and they can be used as morphological and molecular traits respectively for identification, cultivation, development and utilization of O. fragrans germplasm. The main results were as follows:
     1. Establishment of SRAP-PCR Amplification System and Analysis of Genetic Diversity and Genetic Relationships for O. fragrans
     With O. fragrans'Zao Yingui'as material, concentration gradients of template DNA, Mg2+, dNTPs, primer and Taq DNA polymerase enzyme in SRAP-PCR system were compared for genomic DNA of O. fragrans by monofactorial experiment, and the optimal SRAP-PCR amplification system was established. The optimal concentrations of each factor in the total 10μL system are 30 ng DNA,2.5 mmol·L"1 Mg2+,0.2 mmol·L-1 dNTPs, 0.4μmol·L-1 primer and 0.75U Taq polymerase enzyme.
     Genetic diversity and cultivar classification of 88 cultivars and wild species of O. fragrans were evaluated by using sequence-related amplified polymorphism (SRAP) marker, with O. heterophyllus and O. cooperi as contrast species.18 primer pairs produced 296 loci, out of which 248 were polymorphic, the percentage of polymorphic loci was 83.78%.16.4 loci and 13.8 polymorphic loci were amplified by each pair of primers. The Shannon information index (0.3412), genetic diversity (0.2191) and polymorphic loci rate (84.46%) of Albus Group were the highest among the 4 groups of O. fragrans. The measurement of genetic variation showed that the coefficient of genetic differentiation of O. fragrans was 52.95%, most of the genetic variation existed among groups. The cluster analysis showed that six groups could be clustered when genetic similarity coefficient was given as 0.762. The genetic distance between Asiaticus Group and other 3 groups was far. Cultivars with deep color in Luteus Group often clustered together with several cultivars in Aurantiacus Group. Cluster result based on SRAP marker was approximately consistent with taxonomic result based on morphology.
     2. Analysis of the Genetic Diversity and Genetic Relationships of O. fragrans Based on ISSR Markers
     Cultivar classification of 88 cultivars and wild species of O. fragrans were evaluated by using ISSR markers, with O. heterophyllus and O. cooperi as contrast species.28 primers produced 286 loci, out of which 269 were polymorphic, the percentage of polymorphic loci was 94.06%. The Shannon information index (0.3884), genetic diversity (0.2532) and polymorphic loci rate (87.41%) of Albus Group were the highest among the 4 groups of O. fragrans. The measurement of genetic variation showed that the coefficient of genetic differentiation of O. fragrans was 56.84%, most of the genetic variation existed among groups. The cluster analysis showed that seven groups could be clustered when genetic similarity coefficient was given as 0.720. Cultivars within the same group often clustered together first. The genetic distance between Asiaticus Group and other 3 groups was far. Cultivars with deep color in Luteus Group often clustered together with several cultivars in Aurantiacus Group. Cluster result based on ISSR marker was approximately consistent with taxonomic result based on morphology.
     3. Comparison of Analysis on Genetic Diversity and Genetic Relationships Based on SRAP and ISSR Markers
     Genetic diversity and genetic relationships based on SRAP and ISSR markers were both similar and different. The result showed that more (16.4) loci were amplified by each pair of SRAP primers than that by each ISSR primer, whereas the percentage of polymorphic loci produced by ISSR marker was higher (94.06%) than that by SRAP marker. Results based on two markers both showed that observed number of alleles, effective number of alleles Nei's gene diversity, Shannon information index, genetic diversity and polymorphic loci rate of Albus Group were the highest among the 4 groups of O. fragrans, and those indexes of Luteus Group were the second. The sequence of polymorphic loci rate was: Albus Group> Luteus Group> Aurantiacus Group>Asiaticus Group. The genetic distance between Asiaticus Group and other 3 groups was far; the genetic distance between Aurantiacus Group and Asiaticus Group was the farthest while the genetic distance between Aurantiacus Group and Luteus Group was the nearest. Two markers also showed that most of the genetic variation existed among groups. Cluster results based on SRAP and ISSR markers were approximately consistent with taxonomic result based on morphology, and cluster result based on SRAP marker was more similar to morphological classification result. O. fragrans cultivars'Taoye Chi Yin','Zhuye Yin','Duolie Yin','Wuban Yin','Yin Shizi','Yuanban Zi Jin','Qiu Cheng'and'Yin Dan'from Wuxi Plum Garden, were different not only on morphological level but also on gene level compared with other cultivars, so they could be further classified as new cultivars.
     4. Primary Phylogeny Study of O. fragrans Based on nrDNA ITS and cpDNA trnL-F Sequences
     The ITS and trnL-F sequences of 4 cultivars representing 4 groups, wild species of O. fragrans were measured by using direct sequencing of PCR product, and sequences of 6 cultivars from Albus group were compared based on the measured sequences. The sequences of ITS and trnL-F were analyzed with O. heteropyllus and O. cooperi as outgroups, and genetic relationships of the 4 groups of O. fragrans was discussed primarily by setting up UPGMA tree based on the combination of two sequences. The length of ITS sequence of all tested materials was 620-650bp and an regular 617bp sequence was obtained by sequence comparison and sequence cutting on both ends. There were 17 variable sites, out of which 2 were parsim-info ones, accounting for 2.76% and 0.32% of the total length. The length of trnL-F sequence of all tested materials was 860-900bp and an regular 846 bp sequence was obtained by sequence comparison and sequence cutting on both ends. There were 11 variable sites, out of which 4 were parsim-info ones, accounting for 1.28% and 0.47% of the total length. ITS sequences of 6 cultivars from Albus Group varied slightly, so it was deduced that genetic relationships of cultivars in the same group can not be revealed by their ITS sequences.
     Genetic relationships of the 4 groups of O. fragrans could be revealed to some extent based on the combination analysis of two sequences, with O. heterophyllus and O. cooperi as outgroups. Among autumn flowering cultivars, the genetic relationships between Aurantiacus Group and Asiaticus Group was the farthest, the genetic relationships between Aurantiacus Group and Luteus Group was the nearest. Among the 4 groups, the genetic relationships between Aurantiacus Group and wild species of O. fragrans was the farthest, which agreed with the conclusion drawn by several scholars that Aurantiacus Group is the most developed among autumn flowering cultivars based on morphological classification. Both ITS and trnL-F sequences had some variable sites that could be used for distinguishing O. heterophyllus and O. cooperi with O. fragrans (wild species and cultivars), or wild species with some cultivars of O. fragrans.
     5. Cultivar Identification of O. fragrans Based on Morphology and DNA Fingerprinting Maps Based on Molecular Markers
     Keys of O. fragrans cultivars based on morphology and DNA fingerprinting maps based on molecular markers can be used as morphological and molecular traits respectively for identification of O. fragrans germplasm.
     Different cultivars of O. fragrans vary distinctively in morphology, in aspects like flowering season, flower character (inflorescence type, flower type, flower size, flower color, flower smell, stamen, pistil and fertility), fruit and seed, stem, bark, branch, leaf, etc., Some of these morphological characteristics are stable enough to serve as important taxonomic traits of morphology. The 88 cultivars belong to 4 groups, based on different flowering seasons, inflorescence types and flower colors. They are O. fragrans Asiaticus Group, O. fragrans Albus Group, O. fragrans Luteus Group and O. fragrans Aurantiacus Group. The keys to 88 cultivars were made based on their major morphological characteristics.
     Special SRAP and ISSR markers of 88 cultivars, wild species of O. fragrans were obtained by 18 SRAP primer pairs and 28 ISSR primers, with O. heterophyllus and O. cooperi as contrast species. SRAP fingerprinting map in DNA of O. fragrans was constructed by two primer combinations pm17-em10 and sa15-em10; ISSR fingerprint map in DNA of O. fragrans was constructed by the combination of two primers ISSR12 and ISSR27. The result showed that 76 cultivars, wild species of O.fragrans, O. heterophyllus and O. cooperi had special SRAP bands, whereas 64 cultivars, wild species of O. fragrans, O. heterophyllus and O. cooperi had special ISSR bands, and these bands could serve as special SRAP and ISSR markers for molecular identification of O. fragrans germplasm. The SRAP and ISSR fingerprinting maps of O.fragrans constructed both can identify each of 91 germplasm and can be used as molecular marker traits for identification of O. fragrans germplasm. Identification of O. fragrans germplasm can be conducted more effectively and accurately by combining keys of O.fragrans cultivars based on morphology with DNA fingerprinting maps based on molecular markers.
     The results from morphology, DNA markers and DNA sequences showed that O. fragrans germplasm is rich in genetic biodiversity. Different cultivars and groups vary not only on morphological level but also on molecular level. Genetic relationships between Aurantiacus Group and Asiaticus Group is the farthest, while the genetic relationships between Aurantiacus Group and Luteus Group is the nearest. Cluster results based on SRAP and ISSR markers showed that it is rational to divide cultivars of O. fragrans into four groups (Asiaticus Group, Albus Group, Luteus Group and Aurantiacus Group), but flower color is only one criterion, other characteristics also should be considered.
     Analysis based on three aspects showed that cultivar classification, group evolution and genetic relationships of O.fragrans is rather complicated, and different methods might draw different conclusions. In order to solve above problems more scientifically, more methods like anatomy, palynology, quantity research, DNA molecular markers and DNA sequences should be combined and verified with each other, with sufficient and reliable materials.
引文
1 Ahmad R, Potter D, Stiphen M S. Genotyping of peach and nectarine cultivars with SSR and SRAP molecular markers [J]. J Amer Soc Hort Sci,2004,129(2):204-210.
    2 Ainounce M L, Bayer R. On the origins of the tetraploid Bromus species (section Bromus, Poaceae): insights from internal transcribed spacer sequences of nuclear ribosomal DNA [J]. Genome,1997, 730-743.
    3 Alice L A, Campbell C S. Phylogeny of Rubus (Rosaceae) based on nuclear on ribosomal DNA internal transcribed spacer region sequences [J]. Amer J Bot,1999,86(1):81-97.
    4 Anderberg A A, Swenson U. Evolutionary lineages in Sapotaceae (Ericales):A cladistic analysis based on ndhF sequence data [J]. Int. J. Plant Sci.2003,164(5):763-773.
    5 Anderson J K. Chromosome number evolution in the tribe Brassica (Brassicaceae):evidence from isozyme number [J]. Pl Syst Evol,1999,21(5):255-285.
    6 Augusto M, Sergio L, Yael J, et al. DNA Isolation and AFLP Fingerprinting of Nectarine and Peach Varieties (Prunus persica) [J]. Plant Molecular Biology Reporter,1999,17:255-267.
    7 Arus P, Orton T J. Inheritance and linkage relationships of isozyme loci in Brassica oleracea [J]. Journal of Heredit,1983,74:405-412.
    8 Baldwin B G. Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants an example from the Compositae,1992, Mol Phylogenetics Evol,1:3-16.
    9 Baldwin B G. Molecular phylogenetics of Calycadenia (Compositae) based on ITS sequences of nucle ribosomal DNA:chromosomal and morphological evolution reexamined. Amer J Bot,1993,80:222-238.
    10 Bailey C D, Hughes C E; Harris S A. Using RAPDs to Identify DNA Sequence Loci for Species Level Phylogeny Reconstruction:an Example from Leucaena (Fabaceae). Systematic Botany,2004, 29:4-14.
    11 Baldwin B G, Sanderson M J, Porter J M. et al. The ITS region of nuclear ribosomal DNA:A valuable source of evidence on angiosperm phylogeny [J].Annals of the Missouri Bot Gard,1995,82: 247-277.
    12 Bao Y, Ge S. Identification of Oryza species with the CD genome based on RFLP analysis of nuclear ribosomal ITS sequences[J]. Acta Bot Sin,2003,45(7):762-765.
    13 Bellstedt D U, Linder H P, Harley E H. Phylogenetic relationships in Disa based on non-coding trnL-trnF chloroplast sequences:evidence of numerous repeat regions[J]. American Journal of Botany.2001,88:2088-2100.
    14 Bornet B, Branchard M. Nonanchored Inter Simple Sequence Repeat (ISSR) Markers:Reproducible and Specific Tools for Genome Fingerprinting[J]. Plant Molecular Biology Reporter,2001,19: 209-215.
    15 Bostein D R, White R L, Skolnick M. Construction of genetic linkage map in man using Restriction Fragment Length Polykorphism, Am. J. Hum, Genet 1980(31):314-331.
    16 Brickell C D, Baum B R, et al. International Code of Nomenclature for Cultivated Plants [M]. ISHS. Acta Horticulturae,2004,647.
    17 Buckler E S, Holtsford T P, Zeasystematics:ribosomal ITS evidence.Mol Biol Evol,1996,13:612-622.
    18 Budak H, Shearman R C, Parmaksiz I, et al. Molecular characterization of Buffalo grass germplasm using sequence-related amplified polymorphism markers[J]. Theor Appl Genet,2004,108:328-334.
    19 Budak H, Shearman R C, Parmaksiz I, et al. Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs, SSRs, RAPDs, and SRAPs [J]. Theoretical and Applied Genetics,2004,109:280-288.
    20 Campbell C S, Donoghue M J, Baldwin B G. et al. Phylogenetic relationships in Maloideae (Rosaceae) evidence from sequences of the internal transcribed spacers of nuclear ribosomal DNA and ITS congruenc with morphology.Amer J Bot,1995,82:903-918.
    21 Cerbah M, Souza-Chies T, Jubier M F, et al. Molecular phylogeny of the Genus Hypochaeris using internal transcribed spacers of nuclear rDNA:inference for chromosomal evolution [J]. Mol Biol Evol,1998,15(3):345-354.
    22 Charters Y M, Wilkinson M J. The use of self-pollinated progenies as'in-groups' for the genetic characterization of coco germplasm[J]. Theor Appl Genet,2000,100(1):160-166.
    23 Chase M W, Soltis D E, Olmstead R G, et al. Phylogenetics of seedplants:An analysis of nucleotide sequences from the plastid gene rbcL[J]. Ann Missouri Bot Gard,1993,80:528-580.
    24 Chen B Y. Comparative and genetic studies of isozymes in resynthesized and cultivated Brassica. Napes, B. Campestris, B. Alboglabra Baily [J]. Theor Appl Genet,1989,77:673-679.
    25 Chen FQ, Foolad M R, Hymanl, J et al. Mapping of QTLs for Iycopene and other fruit traits in a Lycopersicon esculentum×L. Pimpinellifolium cross and comparison of QTLs across tomato species [J]. Molecular Breeding,1999,5:283-299.
    26 Chen S T, Guan K Y, Zhou Z K, et al. Molecular phylogeny of incarvillea (bignoniaceae) based on its and trnl-F sequences. American Journal of Botany,2005,92(4):625-633.
    27 Chen Z Z, Snyden S, Fan Z G. Efficient production of doubled haploid through plants chromosome doubling of isolated microspores in Brassica napus. [J]. Plant Breeding,1994,113:217-221.
    28 Clegg M T, Gaut B S, Learn G H, et al. Rates and patterns of chloroplast DNA evolution. Proc Natl Acad Sci [J].1994,91:6795-6801.
    29 Coulthant M. Isozyme studies in Brassica:Electrophoretic techniques for leaf enzymes and comparison of B. Napus, B. Campestris and B. oleracea using phosphoglucomutase[J]. Can J Plant Sci,1982,62:621-630.
    30 Cummins H, Wyatt R. Genetic variability in natural population of the moss Artichum angustatum [J]. Bryologist,1981,84:30-38.
    31 Dendauw J, Riek J D, Loose M D, et al., Identification of 33 Chinese rhododendron species using matK sequences and AFLP data.2002, ISHS Acta Horticulturae 572:X X International Eucarpia Symposium Section Ornamental-Strategies for New Ornamentals II.
    32 Ding X Y, Wang Z T, Xu H, et al. Database establishment of the whole rDNA ITS region of Dendrobium species of "Fengdou" and authentication by analysis of their sequences [J]. Acta Pharm sin,2000,37(7):567-573.
    33 Dubouzet J G, Shinoda K. Phylogenetic analysis of the internal transcribed spacer region of Japanese Lilium species[J]. Theor Appl Genet,1999,98:954-960.
    34 Elder J R, Turner B J. Concerted evolution of repetitive DNA sequence in eukaryotes[J].Quart Rev Biol,1995,70:297-319.
    35 Elizabeth C. M, Jonathan R B, Mark A C, et al. Phylogenetic relationships among strobilanthes s.1. (acanthaceae):evidence from its nrdna, trnl-f cpdna, and morphology. American Journal of Botany, 2004,91(5):724-735.
    36 Erdtman G. Handbook of palynology-an introduction to the study of pollen grains and spores [M], Copenhagen:Munksgaard.1969.
    37 Fang D Q, Roose M L. Identification of closely related citrus cultivars with inter-simple sequence repeat markers [J]. Theor Appl Genet,1997,95:408-417.
    38 Ferriol, M, Pico B, Cordova P F, et al. Molecular Diversity of a Germplasm Collection of Squash (Cucurbita moschata) Determined by SRAP and AFLP Markers[J]. Crop Science.2004,44(2): 653-664.
    39 Ferriol, M, Pico B, Nuez F. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers [J]. Theor. Appl. Genet.2003,107:271-282.
    40 Fiz O, Vargas P, Alarcon M L. Phylogenetic Relationships and Evolution in Erodium (Geraniaceae) based on trnL-trnF Sequences[J]. Systematic Botany,2006,31(4):739-763.
    41 Flis B, Henning J., Strzelezyk-yta D, et al. The Ry-fsto gene from Solanum stoloniferum L. for extreme in PVP resistant cultivars [J]. Mol. Breeding,2005,15(1):95-101.
    42 Gao J M, Zhang S G, Qi LW, et al. ISSR and AFLP identification and genetic relationships of Chinese elite accessions from the genus Populus [J]. Ann. For. Sci,2006, (63) 499-506.
    43 Green P.S. A Monographic Revision Of Osmanthus in East Asia and North America[J] Notes from the Royal Botanic Garden Edinburgh,1958,22(5):435-542.
    44 Guo D L, Luo Zh R. Genetic relationships of some PCNA persimmons (Diospyros kaki Thunb.) from China and Japan revealed by SRAP analysis [J]. Genetic Resources and Crop Evolution,2006,53: 1597-1603.
    45 Gustafsson M H, Bittrich Volker, Stevens P F. Phylogeny of clusiaceae based on rbcL sequences [J]. 2003, Int. J. Plant Sci.,63 (6):1045-1054.
    46 Haruki, K, Hosoki T, Nako Y. Tracing the parentages of some Oriental hybrid lily cultivars by PCR-RFLP analysis[J]. J. Japan. Soc. Hort. Sci.1998,67:352-359.
    47 Honjo, M, Ueno S, Tsumura Y, et al. Phylogeographic study based on intraspecific sequence variation of chloroplast DNA for the conservation of genetic diversity in the Japanese endangered species Primula sieboldii [J].2004, Biological Conservation 120:211-220.
    48 Hsiao C, Chatterton N J, Assay K H. Phylogenetic relationships of 10 grass species:an assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots [J].Genome,1994,37:112-120.
    49 Huenneke L F. Ecological implications of genetic variation in plant populations In Falk D A and K E Holsinger (eds) Genetics and Conservation of Rare Plants. New York Oxford University Press,1991, 31-44.
    50 Hu J Q Vick B A. Target region amplification polymorphism:a novel marker technique for plant genotyping [J]. Plant Molecular biology Reporter,2003,21:289-294.
    51 Hu J, Seller G J, Jan C C, et al. Assessing genetic variability among sixteen perennial Helianthus species using PCR-based TRAP markers [J]. Proeceding 25 Sunflower Research Workshop,2003: 16-17.
    52 Ji S G, Huo K K, Wang J, et al. A molecular phylogenetic study of Huperziaceae based on chloroplast rbcL and psbA-trnH sequences. Journal of Systematics and Evolution.2008,46 (2): 213-219.
    53 Jung Y H, Kim S C, Kim M, et al. Chloroplast Inheritance Patterns in Actinidia Hybrids Determined by Single Stranded Conformation Polymorphism Analysis[J]. Mol. Cells,2003,15(2):277-282.
    54 Junga, Y H. et al. Investigation of the phylogenetic relationships within the genus Citrus (Rutaceae) and related species in Korea using plastid trnL-trnF sequences [J]. Scientia Horticulturae,2005, 104:179-188.
    55 Karvonen P. Genetic variation and structure of ribosomal DNA (rDNA) in Scots pine and Norway spruce[M].Acta University Ovluensis Series A Scientiae Rerum Naturalium,1995,10:1-68.
    56 Kim K J, Jansent R K. ndhF sequence evolution and the major clades in the sunflower family[J]. Proc Natl Acad Sci,1995,92:10379-10383.
    57 Kim Y D, Kim S H, Kim C H. Phylogeny of Berberidaceae based on sequences of the chloroplast gene ndhF [J]. Biochemical Systematics and Ecology,2004,32:291-301.
    58 Kobayashi, N. Handa T, Eto J, et al. Evidence for introgressive hybridization based on chloroplast DNA polymorphisms and morphological variation in wild evergreen azalea populations of the Kirishima mountains[J]. Japan. Edinb J Bot,2000,57:209-219.
    59 Kollipara K P, Singh R J, Hymowitz T. Phylogenetic and genomic relationships in the genus Glycine Willd. Based on sequences from the ITS region of nuclear rDNA [J].Genome,1997, (40):57-68.
    60 Lee C, Wena J. Phylogeny of Panax using chloroplast trnC-trnD intergenic region and the utility of trnC-trnD in interspecific studies of plants[J]. Molecular Phylogenetics and Evolution,2004,31(3): 894-903.
    61 Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica[J]. Theor Appl Genet, 2001,103:455-461.
    62 Li J, Alexander J H, Zhang D. Paraphyletic Syringa (Oleaceae):evidence from sequence of nuclear ribosomal DNA ITS and ETS regions [J]. Syst,2002,27(2):592-597.
    63 Lin Z X, Zhang X L, Nie Y C. Evaluation of application of a new molecular marker SRAP on analysis of F2 segregation population and genetic diversity in cotton [J]. Acta Gentica Sinica,2004, 31(6):622-626.
    64 Liu L C, Xiang Q B, Liu Y L. The Application of RAPD Markers in Diversity Detection and Cultivars Identification of Osmanthus fragrans[J], Journal of Nanjing Forestry University,2004,28 (Supplement):76-81.
    65 Lu J M, Li D Z, Gao L M, et al. Paraphyly of Cyrtomium (Dryopteridaceae):evidence from rbcL and trnL-F sequence data [J], Journal of Plant Research,2005,118(2):129-135.
    66 Ma X J, Wang X Q, Xiao P G, et al. Comparison of sequences between wild ginseng DNA and garden ginseng DNA [J]. China Mater Mad,2000,25(4):206-209.
    67 Magurran A E. Ecological diversity and its measurement [M]. New Jersy:Princeton University Press, 1988.
    68 Makino, T. An illustrated flora of Nippon, with the cultivated and naturalized plants [M].北隆馆,1940.
    79 Matsumoto S, Fukui H. Identification of rose cultivars and clonal plants by random amplified polymorphic DNA. Scientia Horticulturae,1996, (67):49-54.
    70 Matsumoto, S. Kouchi M, Yabuki J. Phylogenetic analyses of the genus Rosa using the matK sequence:molecular evidence for the narrow genetic background of modern roses. Scientia Horticulturae,1998,77:73-82.
    71 McGrath J M, Quiros C F. Genetic diversity at isozyme and RFLP loci in Brassica campestris as related to crop type and geographical origin [J]. Theor Appl Genet.1992,83:783-790.
    72 Meerow A W, Charles G L, Li Q B, et al. Phylogeny of the American Amaryllidaceae based on nrDNA ITS sequence [J]. Amer J Bot,1999,86:1352-1345.
    73 Millar C 1 and Libby W J. Strategies for conserving clinal ccotypic and disjunct population diversity in widespread species In Falk D A and K E Holsinger (eds) Genetics and Conservation of Rare Plants[M]. New York Oxford University Press,149-170,1991.
    74 Morenno S, Martin J P, Qrtiz J M. Inter-simple sequence repeats PCR for characterization of closely related grapevine germplasm [J]. Euphytica,1998,101(1):117-125.
    75 Moritz C, Hillis D M. Molecular systematic:context and controversies. In Hillis D M and Moritz C (eds). Sunderland:Sinauer,1990,1-11.
    76 Nakai T. Trees and shrubs indigenous Japan proper [M]. Bot. Mag. Tokyo.1924.
    77 Olmstead R G, Palmer J D. Chloroplast DNA systematics:a review of methods and data analysis [J]. American Journal of Botany,1994,81:120-122.
    78 Palmer J D. Herbon L A. Plant mitochondrial DNA evolves rapidly in structure but slowly in sequence [J]. J Mol Evol,1988,28:87-97.
    79 Paran I, Michelmore R W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce [J]. Theor Appl Genet,1993,85:985-993.
    80 Quijada A, Liston A, Delgado P, et al. Variation in the nuclear ribosomal DNA internal transcribed spacer (ITS) region of Pinus rzedowskii revealed by PCR-RFLP[J]. Theor Appl Genet,1998,96: 539-544.
    81 Quiros C F. Analysis of the Brassica oleracea genome by the generation of B. campestris-oleracea Chromosome addition lines:characterzation by isozymes and rDNA genes [J]. Theor Appl Genet, 1987,74:758-766.
    82 Ran Y D, Keith R W, Hammeett, et al. Phylogenetic Analysis and Karyotype Evolution in the Genus Clivia (Amaryllidaceae) [J]. Annals of Botany,2001,87:823-830.
    83 Ritland K, Clegg M T. Optimal DNA sequences divergence for testing phylogenetic hypothese, in Clegg M T, O'Brien S J[eds.], Molecular evolution, UCLA symposia on molecular and cellular biology [M]. Alan R. Liss, New York, NY, new series, vol.1990,122:289-299.
    84 Rogers S, Bendich A J. Ribosomal RNA genes in Plants:variability in copy number and in the intergenetic spacer [J]. Plant Mol Bail,1987,9:509-520.
    85 Saiki R K, Scharf S, Faloona F A, et al. Enzymatic amplification of P-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia [J]. Science,1985,230:1350-1354.
    86 Sandra M. Reed L, Timothy A. Rinehart Simple-sequence Repeat Marker Analysis of Genetic Relationships within Hydrangea paniculata. HortScience,2009,44:6-223.
    87 Sanderson M J, Doyle J J. Reconstruction of organismal and gene phylogenies from data on multigene familes:concerted evolution, homoplasy, and confidence [J]. Syst Biol,1991,41:4-17.
    88 Sang T, Crawford D J, Stuessy T F. Documentation of reticulae evolution in peonies(Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA:implications for biogeography and concerted evolution[J].Proc Natl Acad Sci, USA,1995, (92):6813-6817.
    89 Schonenberger J, Anderberg A A, Sytsma K J. Molecular phylogenetics and patterns of floral evolution in the Ericales[J]. International Journal of Plant Sciences,2005,166 (2):265-288.
    90 Sisido K S, Kurozumi K, Isida T. Fragrans flower constituents of Osmanthus fragrans. Perf Essnt Oil Rec,1967,58:212-215.
    91 Soltis D E, Haufler C H, Gastony G J. Detecting enzyme variation in the fern genus Bommeria:an analysis of methodology [J]. Syst Bot,1980,5:30-38.
    92 Soltis P S and Soltis D E. Genetic variation in endemic and widespread plant species examples from Saxifragaceae and Polystichum. Aliso,1991, (13):215-223.
    93 Steane D A, Scotland R W, Mabberley D J, et al., Molecular systematics of Clerodendrum (Lamiaceae):ITS sequence and total evidence [J]. Amer J Bot,1999,86(1):98-107.
    94 Sun Z D, Wang Z N, Tu J X, et al., An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers[J]. Theor Appl Genet,2007,114:1305-1317.
    95 Taberlet P, Gielly L, pautou G, et al. Universal primers for amplification of three non-coding regions of chloroplast DNA [J]. Plant Mol Bio.1991,17:1105-1109.
    96 Takeuchi, S. Nomura K, Uchiyama H, et al., Phylogenetic relationship in the genus Rosa based on the restriction endonuclease analysis of the chloroplast DNA [J]. J. Japan. Soc. Hort. Sci.,2000,69: 598-604.
    97 Thalisa Y A, Taweerat V, Morakot T. Molecular phylogeny of Dipterocarpaceae in Thailand using trnL-trnF and atpB-rbcL intergenic spacer region in chloroplast DNA[J]. Pakistan Journal of Biological Sciences,2006,9(4):649-653.
    98 Truco M J. Comparative study on the isozymes of Braassica campestris, B. oleracea and B. napus. Cruciferae-Newsletter[J],1987,12:18-19.
    99 Trusty J L, Olmstead R G, Bogler D J, et al. Using Molecular Data to Test a Biogeographic Connection of the Macaronesian Genus Bystropogon (Lamiaceae) to the New World:A Case of Conflicting Phylogenies Sys. Bot,2004,29(3):702-715.
    100 Tsai C C, Huang S C. GenBank accession#: AF 135190[J]. Plant Molecular Biology,1999,40:751.
    101 Verbylaite R, Ford-Lloyd B, Newbury J. The phylogeny of woody Maloideae (Rosaceae) using chloroplast trnL-trnF sequence data[J]. Biologia.2006, (1):60-63.
    102 Vos P, Hogers R, Bleeder M, et al. AFLP:A new technique for DNA fingerprinting [M], Nucleic Acids Research,1995 (23):4407-4414.
    103 Wallander E, Albert V A. Phylogeny and classification of Oleaceae based on rps16 and trnL-F sequence data[J]. Am J Bot,2000,87(12):1827-1841.
    104 Weiss E A. Essential Oil Crops. Australia,1997.
    105 Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers [J]. Nucleic Acids Res,1990,18(24):7213-7218.
    106 White TJ, Bruns T,Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In:Innis M, Gelfand D, Sninsky JJ, White TJ (eds), PCR protocols:a guide to methods and applications. Academic Press, San Diego, Calif,1990:315-322.
    107 Williams J G, Kubelik A R, Livak K J, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers [J]. Nucleic Acids Research,1990,18(22):6531-6535.
    108 Wilson E O. The Biological diversity crisis [J]. BioScience,1985,35(11):700-706.
    109 Wolfe K H, Li W H, Sharp P M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast and nulear DNAs [J]. Proc Natl Acad Sci, USA,1987,84:9054-9058.
    110 Yeh F C, Yang R C, Boyle T B J,et al.1997, POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton, Alberta, Canada.
    111 Yi Y J, Huang Y. Shang F D. Identifying Osmanthus fragrans cultivars in Guilin City and evaluating their genetic relationships by markers[J], Journal of Nanjing Forestry University,28 (Supplement):65-70.
    112 Zhao H E, Wang X Q, Chen J Y, et al., The Origin of Garden Chrysanthemums and Molecular Phylogeny of Dendranthema in China based on Nucleotide Sequences of nrDNA ITS, trnT-trnL and trnL-trnF Intergenic Spacer Regions in cpDNA Molecular Plant Breeding,2003,1(5/6):597-604.
    113 Zabeau M, Vos P. Selection restriction fragment amplication:A general method for DNA fingerprinting [P]. European Patent Application 92402629.7 (Publication No.0534858A1). Paris: European Office,1993.
    114 Zietkiewic Z E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification [J]. Genomics,1994,20:176-183.
    115保曙琳,丁小余,常俊,等.长江中下游地区菱属植物的DNA分子鉴别[J].中草药,2004,35(8):926-930.
    116蔡金娜.中国不同地区蛇床的rDNA ITS序列分析[J].药学学报,2000,35(1):56-59.
    117蔡秀珍,刘克明,朱晓文,等.凤仙花属部分植物的花粉形态[J].园艺学报,2008,35(3):389-394.
    118曹光树.桂花品种资源的研究及桂园规划设计[D].南京南京林业大学.1995.
    119陈溟子(清).花镜[M].北京:中国农业出版社,1962.
    120陈洪国,汪华.我国桂花种资资源的研究和利用及咸宁桂花发展现状[J].咸宁学院学报,2004,24(3):116-118.
    121陈建业,宁玉霞.河南桂花品种对氧化物同工酶研究[J].园艺学报,1995,22(2):176-180.
    122陈俊愉,刘师汉.园林花卉[M].上海:上海科技出版社,1983.
    123陈俊愉,程绪珂.中国花经[M].上海.上海文化出版社,1990.
    124陈俊愉.中国花卉品种分类学[M].北京,中国林业出版社,2001,198-205.
    125陈良华,胡庭兴,张帆,等.用AFLP技术分析四川核桃资源的遗传多样性[J].植物生态学报,2008,32(6):1362-1372.
    126陈林姣,田惠桥,武剑.中国水仙与欧洲水仙品种RAPD指纹的研究[J].热带亚热带植物学报,2003,11(2):177-180.
    127陈灵芝.中国的生物多样性现状及其保护对策[M].北京:科学出版社,1993,13-35.
    128陈向明,郑国生,孟丽.不同花色牡丹品种亲缘关系的RAPD-PCR分析[J].中国农业科学,2002,35(5):546-551.
    129陈雯,张思平,高本年.南京地区桂花品种资源调查研究[J].江苏林业科技,1996,23(3):13-16.
    130陈昳琦,尹廷相.桂花[M].南京:江苏科学技术出版社,1989.
    131陈仲芳.湖北桂花品种资源调查及开发利用[D].南京林业大学,2003.
    132成所占,杨文衡.利用同工酶研究栽培植物分类及起源的若干问题[J].河北农业大学学报,1986,9(2):101-105.
    133楚爱香,汤庚国.我国观赏植物的品种分类方法[J].林业科技开发,2008,22(4):1-5.
    134丁玲,陈发棣,房伟民.菊属8个种27份材料遗传多样性的同工酶分析[J].西北植物学报,2007,27(2):0249-0256.
    135丁小余,徐珞珊,王峥涛,等.束花石斛及其相似种的DNA分子鉴别.中国中药杂志,2002,27(6):407-411.
    136董建文,范小明.福建长汀石峰寨景区桂花次生林群落物种数量特征[J].植物资源与环境学报,2002,11(4):40-44.
    137杜娟,马小军,李学东.半夏不同种质资源AFLP指纹系谱分析及其应用[J].中国中药杂志,2006,31(1):30-33.
    138杜玮南,方福德.单核苷酸多态性的研究进展[J].中国医学科学院学报,2000,22(4):392-394.
    139杜晓华,王得元,巩振辉.目标区域扩增多态性(TRAP):一种新的植物基因型标记技术[J].分子植物育种,2004,2(5):747-694.
    140高本年、张思平、曹光树.对桂花品种六级分类的讨论[J].江苏林业科技,1997,24(3):22-24.
    141高蓝,李浩明.利用RAPD标记分析番茄杂种遗传纯度[J].分子植物育种,2006,4(3):385-391.
    142高丽,杨波.湖北野生春兰资源遗传多样性的ISSR分析[J].生物多样性,2006,14(3):250-257.
    143高志红,韩振海,章镇.梅单瓣复瓣花的相关分子标记初探[J].园艺学报,2003,30(5):612-614.
    144葛颂,Schaal B A,洪德元.用核糖体DNA的ITS序列探讨裂叶沙参的系统位置——兼论ITS片段在沙参属系统学研究中的价值[J].植物分类学报,1997,35(5):385-395.
    145耿建峰.利用DH群体构建不结球白菜遗传连锁图谱及重要农艺性状QTL定位[D].南京农业大学,2006.
    146关传友.中国园林桂花造景历史及其文化意义[J].北京林业大学学报(社会科学版),2005,4(1):25-29.
    147郭海林,刘建秀,高鹤,等.结缕草属优良品系SSR指纹图谱的构建[J].草业学报,2007,16(2):53-59.
    148韩荣兰,郝刚,张奠湘.基于叶绿体DNAtrnL内含子序列数据的檀香目科间系统发育关系的研究[J].热带亚热带植物学报,2004,12(5):393-398.
    149韩远记,董美芳,袁王俊,等.部分桂花栽培品种的AFLP分析[J].园艺学报,2008,35(1):137-142.
    150郝日明,臧德奎,向其柏.湖南省浏阳市周洛村桂花峡野生桂花资源调查[J].园艺学报,2005,32(5):926-929
    151郝日明.桂花及木犀属研究的新进展[J].南京林业大学学报,2008,32(增刊):1-3.
    152胡绍庆.杭州市桂花品种调查[D].南京南京林业大学,2003.
    153胡绍庆,邱英雄,吴光洪,等.桂花品种的ISSR-PCR分析[J].南京林业大学学报(自然科学版),2004,28(21):71-75.
    154胡雪华,何亚丽,安渊.上海结缕草JD-1和结缕草属几个主要坪用草种的ISSR指纹分析[J].上海交通大学学报(农业科学版),2005,23(2):163-166.
    155黄岳渊.花经[M].上海:上海书店,1958:409-412.
    156贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,29(4):1-10.
    157江苏省植物研究所.江苏植物志(下册)[M].南京:江苏科学技术出版社,1982.
    158康素红,包满珠,陈龙清,等.梅花品种分类的花粉形态学研究[J].园艺学报,1997,24(2):170-174.
    159雷天刚,何永睿,吴鑫.利用SSR标记鉴定柚和杂柑品种[J].分子植物育种,2007,5(5):720-724.
    160李春香,陆树刚,杨群,等.滇南桫椤的系统位置:来自叶绿体trnL内含子和DNA trnL-F间隔区序列的证据[J].云南植物研究,2004,26(5):519-523
    161李广清,孙立,刘燕.山茶属连蕊茶组6种植物花粉形态特征研究[J].热带亚热带植物学报,2005,13(1):40-44.
    162李莉,彭建营,白瑞霞,等.SRAP与TRAP标记及其在园艺植物研究中的应用[J].西北植物学报,2006,26(8):1749-1752.
    163李萍,蔡朝晖,邵俊波.5S-rRNA基因间区序列变异用于金银花药材道地性研究初探[J].中草药,2001,32(9):834-837.
    164李时珍(明).本草纲目[M].上海:商务印书馆,1955.
    165李严,张春庆.新型分子标记-SRAP技术体系优化及应用前景分析[J].农业生物技术科学,2005,21(5):108-112.
    166李宇伟,王文静,连瑞丽.RAPD法构建鸢尾种质资源的DNA指纹图谱[J].河南农业科学,2008,8:112-115.
    167梁海永,刘彩霞,刘兴菊,等.杨树品种的SSR分析及鉴定[J].河北农业大学学报,2005,28(4):27-31.
    168林萍,张含国,谢运海.正交设计优化落叶松ISSR-PCR反应体系[J].生物技术,2005,15(5):34-37.
    169柳李旺,龚义勤,黄浩,等.新型分子标记SRAP与TRAP及其应用[J].遗传,2004,26(5):777-781.
    170刘富中,万翔一,陈钰辉,等.茄子单性结实基因的遗传分析及AFLP分子标记[J].园艺学报,
    2008,35(9):1305-1309.
    171刘虹,何正洪,沈美英.超临界二氧化碳萃取桂花净油化学成分的研究[J].广西林业科学,1996,25(3):127-131.
    172刘龙昌,向其柏,刘玉莲.RAPD标记在桂花遗传多样性检测和品种鉴定中的应用[J].南京林业大学学报,2004,28(增刊):76-81.
    173刘龙昌,向其柏.木犀属植物的研究进展[J].南京林业大学学报(自然科学版),2003,27(3):84-88.
    174刘龙昌,向其柏.桂花品种数量分类研究[J].福建林学院学报,2004,24(3):233-236.
    175刘瑞香,杨劫,高丽.中国沙棘和俄罗斯沙棘的ISSR分析[J].西北植物学报,2007,27(4):0671-0677.
    176刘威生,冯晨静,杨建民,等.杏ISSR反应体系的优化和指纹图谱的构建[J].果树学报,2005,22(6):626-629.
    177刘卫国,易干军,刘岩,等.菠萝种质鉴定及亲缘关系的AFLP分析[J].果树学报,2008,25(4):516-520.
    178刘玉莲.南京地区桂花栽培品种调查研究[J].南京林学院学报,1985,9(1):30-37.
    179刘玉莲,向其柏.桂花品种分类——中国花卉科技二十年[M].北京:科学出版社,2000.
    180刘玉莲.桂花品种分类及木犀属种质资源的利用[J].植物资源与环境,1993,2(2):44-48.
    181刘玉莲,曹光树.1995.桂花品种过氧化物同工酶分析[J].中国桂花,1995,2-6.
    182刘月光,滕永勇,潘辰,等.应用SRAP标记对莲藕资源的聚类分析[J].氨基酸和生物资源,2006,28(1):29-32.
    183鲁涤非.武汉桂花栽培品种调查报告[J].中国桂花,1985,第一期
    184鲁涤非,王其超.桂花品种分类标准的探讨[J].华中农业大学学报,1986,5(2):179-181.
    185鲁涤非.桂花研究的回顾与展望——中国花卉科技二十年[M].北京:科学出版社,2000.
    186鲁涤非,王彩云,王其超.武汉桂花栽培品种调查报告[J].中国桂花,1995,7-17.
    187罗瑜萍,龚维,邱英雄,等.羊蹄甲属3种园艺树种分子鉴定及亲缘关系的ISSR分析[J].园艺学报,2006,33(6):433-43.
    188马小军,汪小全,徐昭玺,等.人参不同栽培群体遗传关系的RAPD分析[J].植物学报,2000,42(6):587-590.
    189缪恒彬,陈发棣,赵宏波,等.应用ISSR对25个小菊品种进行遗传多样性分析及指纹图谱构建[J].中国农业科学,2008,41(11):3735-3740.
    190彭飒,郭美丽,陈跃华,等.红花SRAP扩增体系的建立和优化[J].第二军医大学学报,2006,27(5):544-547.
    191秦民坚,黄芸,杨光,等.射干及类似药用植物叶绿体rbcL基因序列分析[J].药学学报, 2003,38(2):147-152.
    192权俊萍,袁菊红,穆红梅,等.中国百里香属植物ISSR-PCR及SRAP-PCR体系的确立及优化[J].植物资源与环境学报,2008,17(2):1-8.
    293屈良鹄,陈月琴.生物分子分类检索表—原理于方法[J].中山大学学报(自然科学版),1999,38(1):1-6.
    194全志武,汪静,潘磊,等.10个藕莲品种SSR指纹图谱的构建与品种鉴别[J].中国蔬菜,2008,(3):15-17.
    195邱英雄,傅承新,孔航辉.乐昌含笑不同类型鉴定的ISSR-PCR分析[J].林业科学,2002,38(6):49-52.
    196邱英雄,胡绍庆,陈跃磊,等.ISSR-PCR技术在桂花品种分类研究中的应用[J].园艺学报,2004,31(4):529-532.
    197任冰如,贺善安,於虹,等.用RAPD技术评估苍术居群间的亲缘关系[J].中草药,2000,31(6):458-461.
    198任羽,王得元,张银东,等.相关序列扩增多态性(SRAP)一种新的分子标记技术[J].中国农学通报,2004,209(6):11-13,22.
    199尚富德,陈仲芳,刘玉莲,等.桂花品种资源调查方法研究[J].河南大学学报(自然科学版),2003,33(1):9-13.
    200尚富德,伊艳杰,向其柏.中国的桂文化[J].河南大学学报(社会科学版),2003,2(43):136-139.
    201尚富德,伊艳杰,张彤.河南17个桂花品种的RAPD分析[J].园艺学报,2004,31(5):685-687.
    202沈立新.杭州桂花及栽培品种的主要特征[J].浙江林业科技,2000,20(5):56-59.
    203石开明,彭昌操,彭振坤,等.DNA序列在植物系统进化研究中的应用.湖北民族学院学报(自然科学版),2002,20(4):5-10.
    204孙德岭,赵前程,宋文芹,等.白菜类蔬菜亲缘关系的AFLP分析[J].园艺学报,2001,28(4):331-335.
    205唐东芹.宁杭地区桂花品种分类及其园林应用研究[D].南京林业大学,1997.
    206唐东芹.桂花品种数量分类研究[J].南京林业大学学报,1998,22(1):37-42.
    207唐开学,邱显钦,张颢.云南蔷薇属部分种质资源的SSR遗传多样性研究[J].园艺学报,2008,35(8):1227-1232.
    208唐绍清,施苏华,钟杨,等.基于ITS序列探讨山茶属金花茶组的系统发育关系[J].广西植物,2004,24(6):488-492.
    209田敏,李纪元,倪穗,等.基于ITS序列的红山茶组植物系统发育关系的研究[J].园艺学报,2008,35(11):1685-1688.
    210田欣,李德铢.DNA序列在植物系统学研究中的应用[J].云南植物研究,2002,24(2):170-184.
    211万海清,梁明山,许介眉,等.分子生物学手段在植物系统与进化研究中的应用[J].植物学通报,1998:15(4):8-17.
    212万云先.桂花花芽分化的研究[J].华中农业大学学报,1988,7(4):364-366.
    213汪小全,洪德元.植物分子系统学近五年的研究进展概况[J].植物分类学报,1997,35(5):465-480.
    214王白坡,林余益,宋文君.梨某些品种花粉形态的观察及初步分析[J].浙江林学院学报,1988(3):52-61.
    215王建波,张文驹,陈家宽.核rDNA的ITS序列在被子植物系统与进化研究中的应用[J].植物分类学报,1999,37(4):407-416.
    216王建设,姚建春,刘玲,等.利用中国香瓜与哈密瓜的F2群体构建SRAP连锁遗传图谱[J].园艺学报,2007,34(1):135-140.
    217王开发,王宪曾.孢粉学概论[M].1983,北京:北京大学出版社:21-34.
    218王庆贵.DNA指纹图谱在农作物品种鉴定中的应用[J].中国标准化,2001,1(7):45-47.
    219王任翔,陆树刚,邓晰朝.中国蕨类植物细胞分类学研究概况植物[J].分类学报,2007,45(1):98-111.
    220王贤荣,袁发银,陈听等.湖南浏阳桂花峡桂花次生林的物种数量特征[J].南京林业大学学报(自然科学版),2004,28(增刊):41-44.
    221王贤荣,徐文斌,路飞,等.福建浦城桂花新品种[J].南京林业大学学报(自然科学版),2008,32(增刊):11-15.
    222王宪曾.金缕梅科系统发育的古孢粉学证据[J].植物分类学报,1992,30(2):137-145.
    223王象晋(明).群芳谱[M].1621.
    224王亚玲,张寿洲,崔铁成,等.trnL内含子及trnL-trnF间隔区序列在木兰科系统发育研究中的系统发育分析[J]热带亚热带植物学报,2003,11:137-142
    225王亚铃,李勇,张寿洲,等.用matK序列分析探讨木兰属植物的系统发育关系[J].植物分类学报,2006,44(2):135-147.
    226王燕,龚义勤,赵统敏,等.番茄SRAP-PCR体系优化与品种分子鉴定[J].南京农业大学学报,2007,30(1):23-29.
    227王忠华.DNA指纹图谱技术及其在作物品种资源中的应用[J].分子植物育种,2006,14(3):425-430.
    228吴光洪,胡绍庆,宣子灿,等.桂花品种分类标准与应用[J].浙江林学院学报,2004,21(3):281-284.
    229文雁成,王汉中,沈金雄,等.用SRAP标记分析中国甘蓝型油菜品种的遗传多样性和遗传基础[J].中国农业科学,2006,39(2):246-256.
    230武莹,刘春生,刘玉法.5种习用柴胡的ITS序列鉴别[J].中国中药杂志,2005,30(10):732-734.
    231向其柏,臧德奎,刘玉莲.中国桂花品种的初步整理——申报桂花品种国际登录权论文集(Ⅱ)[M].吉林科学技术出版社,2002,10,13-32.
    232向其柏,臧德奎,刘玉莲.桂花品种记载标准和描述术语规范[J].南京林业大学学报(自然科学版),2004(增刊):1-5.
    234向其柏,刘玉莲.中国桂花品种图志[M].杭州:浙江科学技术出版社.2008.
    235徐宏发,王静波.分子系统学研究进展[J].生态学杂志,2001,20(3):41-46.
    236宣继萍,章镇,房经贵,等.苹果品种ISSR指纹图谱构建[J].果树学报,2002,19(6):421-423.
    237伊艳杰,黄莹,尚富德.利用RAPD标记研究桂林桂花品种间的亲缘关系[J].广西植物,2005,25(2):129-133.
    238袁菊红,权俊萍,胡绵好,等.石蒜SRAP-PCR扩增体系的建立与优化[J].植物资源与环境学报,2007,16(4):1-6.
    239杨朝东,王健,张俊卫,等.梅花不同样本间亲缘关系的AFLP初步分析[J].中国农业科学,2005,38(10):2084-2089.
    240杨俊波,李洪涛,杨世雄,等.四个DNA片段在山茶属分子系统学研究中的应用[J].云南植物研究,2006,28(2):108-114.
    241杨康民,张静.华东地区若干桂花品种的调查研究(2001年8月-2003年10月),中国园林[J],2004,2:69-72.
    242杨康民,朱文江.桂花[M].上海:上海科技出版社,2000.
    243杨康民.中国桂花集成[M].上海:上海科技出版社,2005.
    244姚崇怀.桂花品种分类研究及湖北省栽培桂花品种整理[D].武汉华中农业大学,1989.
    245姚崇怀.武汉市桂花品种资源及利用[J].资源开发与市场,1995,11(6):264-265.
    246姚明哲,黄海涛,余继忠,等.ISSR在茶树品种分子鉴别和亲缘关系研究中的适用性分析[J].茶叶科学,2005,25(2):153-157.
    247伊艳杰,黄莹,尚富德.利用RAPD研究桂林桂花品种间的亲缘关系[J].广西植物,2005,25(2):129-133.
    248殷玉亭刘军.桂花RAPD分析的引物筛选2005,23(2):199-201.
    249臧德奎.桂花品种分类研究[D].南京林业大学,2004.
    250臧德奎,刘龙昌,向其柏,等.野生桂花的考证与调查——申报桂花品种国际登录权论文集
    (Ⅱ)[M].长春:吉林科学技术出版社,2002,45-50.
    251臧德奎,向其柏,刘玉莲,等.中国桂花的研究历史、现状与桂花品种国际登录[J].植物资源与环境学报,2003,12(4):49-53.
    252臧德奎,向其柏,刘玉莲.中国桂花品种的起源与演化——申报桂花品种国际登录权论文集(Ⅱ)[M].长春:吉林科学技术出版社,2002,1-12.
    253臧德奎,刘龙昌,向其柏.野生桂花的考证与调查——申报桂花品种国际登录权论文集(Ⅱ)[M].长春:吉林科学技术出版社,2002,45-48.
    254臧德奎,向其柏.中国桂花品种分类研究[J].中国园林,2004,11:40-49.
    255臧德奎,向其柏,刘玉莲.木犀属品种分类研究[J].林业科学,2006,42(5):17-21.
    256张建华,张金渝,杨晓洪,等.用SSR标记建立玉米黄早四DNA标准指纹图谱的方法研究[J].西南农业学报,2006,19(3):345-350.
    257张俊卫,柴玉荣,包满珠.利用RAPD标记鉴定和区分梅花42个宫粉型品种[J].园艺学报,2004,31(4):487-490.
    258张美珍,陆瑞林.中国植物志(第61卷)[M].北京:科学出版社,1992.
    259张敏,黄苏珍.鸢尾属植物资源的ISSR分析[J].南京农业大学学报,2008,31(4):43-48.
    260张西西,徐进,王涛,等.万寿菊杂交一代遗传多态性的SRAP标记分析[J].园艺学报2008,35(8):1221-1226.
    261张映南,李润唐,蒋开军.几种柑橘属植物花粉外壁超微结构比较研究.果树学报,2003,20(3):165-168.
    262章群,施苏华,黄椰林,等.金缕梅亚科ITS序列分析及其系统发育初探[J].中山大学学报(自然科学版),1999,38(1):107-110.
    263章群,施苏华,黄椰林,等.金缕梅族ITS序列分析及其系统学意义[J].中山大学学报(自然科学版),2000,39(1):72-76.
    264赵小兰,姚崇怀.桂花部分品种的RAPD分析.华中农业大学学报[J].1999,18(5):484-487.
    265赵小兰,姚崇怀.桂花花粉形态种内变异的研究[J].湖北民族学院学报自然科学版,1999,17(1):16-20.
    266赵小兰,姚崇怀,王彩云.桂花品种的同工酶研究.华中农业大学学报[J].2000,19(6):595-599.
    267赵卫国,张志芳,潘一乐,等.桑树trnL-trnF基因间隔区序列的特点及分析[J].蚕业科学,2002,28(2):83-86.
    268《浙江植物志》编委会,浙江植物志第5卷[M].杭州:浙江科技出版社,1989.
    269郑景生,陈良兵,符文英,等.野生稻不同基因组的SSR多样性分析[J].分子植物育种,2004,2(1):25-33.
    270周春玲,陈芳,苗积广,等.青岛市19个樱花品种的酯酶同工酶鉴定[J].西北林学院学报,2008,23(3):40-43.
    271周延清.DNA分子标记技术在植物研究中的应用[M].北京:化学工业出版社,2005:113-120.
    272周延清,景建洲,李振勇等.用ISSR标记技术分析山药品种遗传多样性[J].实验生物学报,2005,38(4):324-331.
    273朱长山,李瑞付,袁建都,等.河南桂花品种的分类研究[J].河南农业大学学报,1992,26(2):194-201.
    274朱诚,刘非燕.RAPD技术与桂花品种分类和鉴定[J].广西植物,1999,19(2):190-192.
    275宗绪晓,Vaughan D, Kaga A,等.AFLP分析小豆(Vigna angularis)种内遗传多样性[J].作物学报,2003,29(4):562-568.
    276邹喻苹,葛颂,王晓东.系统与进化植物学中的分子标记[M].北京:科学出版社,2001,36-90.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.