引进粒计算与形式概念分析技术的认知诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
认知诊断因其能够提供被试的详细信息,继而进行有针对性的、有效的补救而受到广泛的关注。作为新一代测量理论的核心,认知诊断已有比较丰富的研究成果。诊断测验要想准确地获得被试的详细信息,认知模型和测验Q阵(简称Qt)的认定就是其中最基础也是最关键的部分,但是关于怎样修正测验Q阵和认知模型的研究仍然很少。好的测验Q阵应该准确表示认知模型。认知模型的确定,或等价的测验Q阵的确定,当然需要专家的宝贵知识,但这还不够,还需要能够通过观测到的项目反应数据进行推测和修正。因此本文引进粒计算和形式概念分析方法,通过对属性的细化和泛化来修正专家给出的认知模型和测验Q阵。
     为了判断一个认知模型和测验Q阵是否需要修补,本文对现有的属性层级评价理论进行了补充,对评价指标层级相合性指数(HCI)进行了补充定义和拓展,开发了新的个人拟合指数NHCI,并进行了模拟实验以比较这两个指标在不同情况下的表现。为了更有效地发掘频繁模式(数据库中频繁出现的项集),本文使用NHCI对进位计数制诊断性测验的异常被试进行了删除。使用概念格将被试、项目和属性间的关系形象的表现出来,并在此基础上对该诊断测验的属性进行细化和泛化,推导它们之间的关联规则,据此修正进位计数制诊断性测验Q阵和认知模型。
     经过系列研究,本文主要得到以下结论:
     (1)认知诊断中进行个人拟合指数的研究,首先应该对Qt矩阵进行考察,看其安排是否合理,即看其是否包含了理论可达矩阵(R阵)(即考察的这个测验蓝图是否是理论上预期的认知诊断蓝图),只有能推导出理论上预期的R阵的Qt阵才是安排合理的试卷。如果离开了对Qt矩阵的考察,那么整个测验可能是无效的,即使被试的个人拟合指数再高也不能实质上保证被试的反应与整个属性之间的层级关系是相符的,因为Qt没有充分提供诱发所有被试应用真实知识状态的机制。通过模拟实验一表明,测验Q阵的理论构想效度越高,被试的失拟程度越低,所以在对模型进行评价之前,先考察这个测验的理论构想效度是很有必要的,即对Qt阵的考察是认知诊断个人拟合研究中最基础最根本的工作。而Cui和Leighton(2009)的HCI指标的研究中并未对这一点加以关注。
     Cui和Leighton(2009)的HCI指标在定义上有些不完善的地方,比如对某些被试无法计算HCI值,我们对其进行了完善,使其在数学定义上完整。
     HCI指标是失拟数占比较总数的函数,而比较次数事实上可以有两种计算方法,Cui和Leighton(2009)只采用了一种计算方法。我们认为另一种比较也是需要清点的,因此对HCI指标进行了拓广,提出了考虑更全面的NHCI指标。对于离散型结构,NHCI减去HCI的差值(d)随着理论构想效度的下降而上升,新旧指标存在结合使用的价值。
     (2)为了比较HCI和NHCI对失拟被试的侦测能力。我们按照Cui和Leighton(2009)的方法进行了模拟实验2。结果显示HCI和NHCI各有优势。对于创造型错误,NHCI比HCI表现更好;对于随机反应型失拟的侦测,HCI更有优势。对于模型错误型的失拟,在高区分度情况下HCI侦测准确率较好,在低区分度的情况下NHCI表现更好一点。
     (3)HCI可以提供被试关于层级结构的失拟程度,但是被试失拟的原因是不清楚的,缺乏具体指向。这很大程度上是由于该指标并没有提供个体属于某个具体属性模式的可能性。考虑到这点,HCI、NHCI和模式分类结合,计算各类模式下HCI和NHCI的值,对其进行分析。本研究发现对于创造性错误,NHCI的侦测能力要优于HCI,而对于随机错误两种皆可。
     (4)使用概念格清楚地表示进位计数制诊断性测验中被试、项目和属性之间的关系。
     (5)为了更好地发现频繁模式,使用NHCI,对进位计数制诊断性测验的异常被试进行了删除,将152名被试删减了40人。
     (6)对进位计数制诊断性测验进行了评价,理论构想效度是0.894,无论是HCI还是NHCI,被试的均值都未超过0.3,DINA模型的s和g参数也较高。可见进位计数制测验的认知结构和数据的拟合不好,有可能它的结构不合理。而回归分析结果显示回归不显著。属性中只有A7显著(因为所有项目都含有A1-A3,所以回归时被自动删除)。调整后的确定系数是0.252。因此,有必要对进位计数制测验Q阵和属性层级结构进行修正。
     (7)对进位计数制诊断性测验的数据进行分析,在设定支持度的前提下,对项目之间提取关联规则,以此确定属性之间细化和泛化方案,改变属性的粒度。提出更改的属性层级,并对其进行评价。结果显示更新模型的HCI和NHCI均提升不少,整个模型的g参数均值下降到0.21,比原来的0.3有所降低。难度与属性回归显著,调整的确定系数由0.252大幅提升到0.894,各个变量回归系数均显著(A5属性在0.1水平上显著,其它属性在0.05水平显著)。可见更新的模型无论从哪个指标来说都较原来的模型好很多。
     (8)发现进位计数制诊断性测验项目16的属性标定有误,并对其重新标定。结果显示HCI和NHCI均值都有所提升
     以上(1)-(3)是理论研究,(4)-(8)是实证研究。
Cognitive diagnosis is of widespread concern by the researchers because it can reveal each student’s specific cognitive strengths and weaknesses and further help design effective interventions for individual students. As the core of a new generation of test theory, cognitive diagnosis already has rich research results. To obtain more information on the examinees, cognitive model and test identification of Q matrix is one of the most basic and most critical parts, but the results on how to amend Q matrix and cognitive model are still very limited. Q matrix should represent cognitive model accurately. To define the cognitive model or the equivalent to determine Q matrix, of course, need for expert knowledge, but it is not enough, also need to make inferred and refinement through the observed response data. Therefore, the granular computing and formal concept analysis is introduced in this study, through the refinement and generalization of the attribute to modify the expert cognitive model and Q matrix.
     To determine a cognitive model and test Q matrix(briefly, Qt) whether be amended, this article complements the existing theory of attribute structure evaluation, supplements the definition of HCI and expands a new person-fit index NHCI, and carries out simulation experiments to compare these two indices of performance in different situations. In order to discover frequent patterns more effectively, this thesis uses NHCI to delete abnormal examinees of different numeration representation system converting diagnostic test. It also employs the concept lattice to represent the relationship among the examinee, item and attribute. On this basis, in order to fix the Q matrix and cognitive models of different numeration representation system converting diagnostic test, the attributes of the diagnostic test are refined and generalized, and association rules between attributes are derived in this thesis.
     In summary, the results of this thesis indicate:
     (1)With the research of person-fit index in diagnostic test, the first step should be investigate Qt matrix, to check whether the arrangement is reasonable, whether it contains reachability matrix (R matrix). Only that the R matrix to be derived from Qt is a sufficient. If Qt is not inspected first, the entire test may be invalid. Even if the person-fit index of the test substantially high, it can not ensure that the response of examinee is consistent with attribute structure, because Qt does not provide the platform for all examinees to show their true states of knowledge. The study of the HCI index conducted by Cui and Leighton (2009) did not pay attention to this point. Therefore, the investigation of the Q matrix is the first and most basic fundamental step to use person-fit work in cognitive diagnosis. And simulation experiment 1 shows that the higher theoretic construct validity of Q matrix, the lower of the examinees misfit level. So, before the model evaluation, inspection of the theoretic construct validity of this test is necessary. And for discrete structures, the difference between NHCI minus HCI (briefly d) rises with theoretic construct validity declines, which imply that the combination of the old and the new indicators is valuable.
     This paper makes mathematical definition well for some imperfections on the definition of HCI, to avoid to certain examinees can not be calculated on the value of HCI.
     HCI count one kind of misfit and neglect another kind of misfit degree, so the extension HCI index is proposed to consider a more comprehensive index, named as NHCI.
     (2) To compare the detection capabilities of HCI and NHCI, we follow Cui and Leighton (2009) conducte a simulation method 2. The results show that HCI and NHCI have their own advantages. For the creative misfit, NHCI is better than the HCI; for the random misfit, HCI holds an advantage; for the model misfit, in the case of high discrimination, HCI is better, in the case of high discrimination, NHCI performance better.
     (3)HCI can provide the examinees misfit degree with hierarchical structure. However, the reasons of misfit is unclear, it lacks of specific point. This is largely due to the indicator having not provided the possibility an examinee belongs to a specific attributes mode. With this in mind, with combination of HCI, NHCI and pattern classification, the values of HCI and NHCI are calculated and analyzed for each mode. For the creative misfit, NHCI detective ability is superior to HCI, and both can be for random misfit.
     (4) The concept lattice is used to represent the relationship among the examinee, item and attribute.
     (5) In order to discover frequent patterns more effectively, NHCI is used to delete abnormal examinees of different numeration representation system converting diagnostic test. 40 examinees are deleted from 152 examinees.
     (6) Diagnostic test of different numeration representation system converting is evaluated, the results show that theoretic construct validity is 0.894, both HCI and NHCI, mean of examinees are not exceed 0.3, and DINA model parameters s and g are higher. It can be seen the cognitive structure and data is not fit good, it is possible that the structure is irrational. The regression analysis shows the regression coefficient is not significant, all the attributes are not significant except A7, adjusted R2 statistic is 0.252. Therefore, it is necessary to carry notation Qt and cognitive structure be amended.
     (7) The data of different numeration representation system converting diagnostic test is analyzed. Given the support parameter be set, association rules between items are extracted in order to determine attribute refinement and generalization plan and to change the granularity of the original attributes. The changed cognitive model is proposed and evaluated. The results show that the mean of examinees’HCI and NHCI upgraded a lot, the mean of DINA g parameters decreased to 0.21, lower than the original 0.3. Significantly regress with attribute and item difficulty parameters, adjusted R2 statistic increase from 0.252 to 0.894, all attributes are significant regression coefficients. Updated model is much better than the original model.
     (8) The attributes of the diagnostic test item 16 are found wrong and then recalibrated. The results show that both mean of examinees’HCI and NHCI increase. Key words: Cognitive diagnosis;Granular Computing;Formal Concept Analysis;Cognitive model;Qt matrix.
引文
蔡艳,丁树良,涂冬波. (2011).英语阅读问题解决的认知诊断.心理科学, 34(2), 272-277.
    蔡志煌. (2000).利用类神经网络与题目反应理论参数估计之研究.硕士学位论文.台南师范学院.
    曹亦薇. (2001).异常反应模式的识别和分类.心理学报, 33(06), 558-563.
    陈德枝,戴海琦,赵顶位. (2009).规则空间方法与属性层次方法的诊断准确性比较.心理科学, 32(02), 414-416.
    陈瑾,徐建平,赵微. (2009).认知诊断理论及其在教育中的应用.教育测量与评价(理论版). (02), 20-22.
    陈秋梅,张敏强. (2010).认知诊断模型发展及其应用方法述评.心理科学进展, 18(03), 522-529.
    仇国芳,陈劲. (2005).概念知识系统与概念信息粒格.工程数学学报, 26(06), 963-969.
    戴海琦,周骏,刘声涛. (2006).认知诊断两大基础研究及其发展述评.见中国教育学会教育统计量分会,中国心理学会心理测量专业委员会(编).全国教育与心理统计测量学术年会论文摘要(p. 5).南京.
    丁树良,罗芬. (2005).求偏序关系Hasse图的算法.江西师范大学学报(自然科学版), 29(02), 150-152.
    丁树良,汪文义,杨淑群. (2009).认知诊断测验编制的原则.中国科技论文在线. 2011-4-3取自http://www.paper.edu.cn.
    丁树良,杨淑群,汪文义. (2010).可达矩阵在认知诊断测验编制中的重要作用.江西师范大学学报(自然科学版), 34(05), 490-494.
    丁树良,汪文义,杨淑群. (2011).认知诊断测验蓝图的设计.心理科学,34(2),258-265.
    丁树良,祝玉芳,林海菁,蔡艳. (2009). Tatsuoka Q矩阵理论的修正.心理学报, 41(02), 175-181.
    范士青. (2008).小学生加减法计算错误的分类与认知分析.硕士学位论文.华中师范大学.
    甘媛源,余嘉元. (2010).认知诊断模型研究新进展.湖北大学学报(哲学社会科学版), 37(01), 121-124.
    关丹丹. (2009).认知诊断理论与考试评价.中国考试(研究版), (04), 8-12.
    何淑贤,刘桂枝,李树文. (2007).形式概念分析及其应用进展.太原科技, (05), 77-79.
    胡可云,陆玉昌,石纯一. (2000).概念格及其应用进展.清华大学学报(自然科学版), 40(09), 77-81.
    黄坤泉. (2000).题目反应理论参数自动化估计与等化技术之研究.硕士学位论文.台南师范学院.
    邝铮. (2010).支持向量机在认知诊断的应用研究.硕士学位论文.江西师范大学.
    赖燕玲. (2007).学生学科认知结构的测量与诊断研究―以高二生物学科为例.硕士学位论文.江西师范大学.
    李道国,苗夺谦,张东星,张红云. (2005).粒度计算研究综述.计算机科学, 39(09), 1-12.
    李道国,苗夺谦,张红云. (2004).粒度计算的理论、模型与方法.复旦学报(自然科学版), 43(05), 837-841.
    林海菁,丁树良. (2007).具有认知诊断功能的计算机化自适应测验的研究与实现.心理学报, 39(04), 747-753.
    刘秉正. (1988, 12月).伽罗瓦格:知识结构的一种可能表示法.全国第三届高考科研论文讨论会,陕西.
    刘仁金,黄贤武. (2005).图像分割的商空间粒度原理.计算机学报, 28(10), 1680-1685.
    刘声涛,戴海琦,周骏. (2006).新一代测验理论—认知诊断理论的源起与特征.心理学探新, 26(04), 73-77.
    刘声涛,戴海琦. (2007).诊断认知策略的几何类比推理测验题的特征及其编制研究.心理学探新, 27(02), 69-72.
    刘湘川,林原宏. (1995).从试题特征曲线进行认知诊断之理论与应用.测验统计年刊, 3, 1-13.
    刘岩,李友一,陈占军,葛文奇. (2006).基于商空间理论的模糊控制在航空相机中的应用.南京航空航天大学学报, 37(S1), 88-90.
    陆云娜. (2008).规则空间模型在进位计数制诊断性测验中的应用.硕士学位论文.江西师范大学.
    罗欢,丁树良,汪文义,喻晓锋,曹慧媛. (2010).属性不等权重的多级评分属性层级方法.心理学报, 42(04), 528-538.
    罗敏. (2007).粒计算及其研究现状.计算机与现代化, (01), 1-5.
    毛萌萌. (2008). AHM模型下新的分类方法研究.硕士学位论文.江西师范大学.
    穆桂生. (1999).导致教育测量误差的心理因素分析.教学与管理, (03).
    漆书青,戴海琦,丁树良. (2002).现代教育与心理测量学原理.江西:江西教育出版社.
    钱锦昕,余嘉元. (2010).认知诊断中基于神经网络的PSP方法.心理科学, 33(04), 915-917.
    阮达,黄崇福. (2000).模糊集与模糊信息粒理论.北京:北京师范大学出版社.
    涂冬波,蔡艳,戴海琦,丁树良. (2010).一种多级评分的认知诊断模型:P-DINA模型的开发.心理学报, 42(10), 1011-1020.
    涂冬波,漆书青,戴海琦,蔡艳,丁树良. (2008).教育考试中的认知诊断评估.考试研究, 4(4), 4-15.
    汪文义,丁树良. (2010, 10月).计算机化自适应诊断测验中原始题的属性标定.第九届海峡两岸心理与教育测验,台湾.
    汪文义. (2009).计算机化自适应选题策略研究.硕士学位论文.江西师范大学.
    王国胤,张清华,胡军. (2007).粒计算研究综述.智能系统学报, 2(06), 8-26.
    王国胤. (2001). Rough集理论与知识获取.西安:西安交通大学出版社.
    王珏,姚一豫,王飞跃. (2005).基于Reduct的“规则+例外”学习.计算机学报, 28(11), 1780-1789.
    徐峰,张铃,王伦文. (2004).基于商空间理论的模糊粒度计算方法.模式识别与人工智能, 17(04), 424-429.
    徐峰,张铃. (2005).基于商空间的非均匀粒度聚类分析.计算机工程, 31(03), 26-28.
    许涛,沈夏炯. (2008).形式概念分析国内外研究现状综述.软件导刊, 7(02), 21-23.
    杨淑群,蔡声镇,丁树良,丁秋林. (2008).基于FCA具有认知诊断功能CAT的设计与实现.南京航空航天大学学报, 40(05), 696-701.
    杨淑群,蔡声镇,丁树良,林海菁,丁秋林. (2008).求解简化Q矩阵的扩张算法.兰州大学学报(自然科学版), (03), 87-91.
    游晓锋,丁树良,刘红云. (2010).计算机化自适应测验中原始题项目参数的估计.心理学报, 42(07), 813-820.
    余嘉元. (1995).运用规则空间模型识别解题中的认知错误.心理学报, 27(02), 196-203.
    余嘉元. (2006).关于新课程改革中的诊断性测验研究.教育探索, (05), 24-25.
    余娜,辛涛. (2007).规则空间模型的简介与述评.中国考试(研究版), (09), 14-19.
    余娜,辛涛. (2009).认知诊断理论的新进展.考试研究, 5(3), 22-34.
    喻晓锋,丁树良,秦春影,陆云娜. (2011).贝叶斯网在认知诊断属性层级结构确定中的应用.心理学报, 43(03), 338-346.
    钟珞,吴珺. (2009).粒度计算在数据仓库挖掘中的应用.华东师范大学学报(自然科学版), 43(3), 392-395.
    曾玲艳. (2010).认知诊断中分类准确率的研究.硕士学位论文,江西师范大学.
    张持健,李旸,张铃. (2004).商空间理论(粒度计算方法)实现高精度模糊控制. 计算机工程与应用, (11), 37-39.
    张铃,张钹. (1990).问题求解理论及应用.北京:清华大学出版社.
    张铃,张钹. (2003).模糊商空间理论. (模糊粒度计算方法).软件学报, 14(04), 770-776.
    张敏强,简小珠,陈秋梅. (2011).规则空间模型在瑞文测验中的认知诊断分析.心理科学, 34(2), 266-271.
    张文修,仇国芳. (2005).基于粗糙集的不确定决策.北京:清华大学出版社.
    张文修,梁怡,徐萍. (2007).基于包含度的不确定推理.北京:清华大学出版社.
    张文修,魏玲,祁建军. (2005).概念格的属性约简理论.中国科学(E辑), 35(6), 628-639.
    郑征. (2006).相容粒度空间模型及其应用研究.博士学位论文.中国科学院研究生院(计算技术研究所).
    祝玉芳,丁树良. (2009).基于等级反应模型的属性层级方法.心理学报, 41(03), 267-275.
    Burusco, A., & Fuentes-Gonza′les, R. (1994). The study of the L-fuzzy concept lattice. Mathware & Soft computing, 1(3), 209-218.
    Burusco, A., & Fuentes-Gonz′ales, R. (1998). Construction of the L-fuzzy concept lattice. Fuzzy Sets and Systems, 97, 109-114.
    Burusco, A., & Fuentes-Gonza′les, R. (2000). Concept lattices defined from implication operators. Fuzzy Sets and Systems, 114, 431-436.
    Chen, D. G., Zhang, W. X., Yeung, D., & Tsang, E. C. (2006). Rough approximations on a completely distributive lattice with applications to generalized rough sets. Information Sciences, 176(13), 1829-1848.
    Chen, P., Xin, T., Ding, S. L., & Chang, H. H. (2011, April). Item Replenishing in Cognitive Diagnostic Computerized Adaptive Testing. Paper presented at NCME, New Orleans, US.
    Cheng, Y., & Chang, H. H. (2007). The Modified Maximum Global Discrimination Index Method for Cognitive Diagnostic Computerized Adaptive Testing. In D.
    Weiss (Eds.), Proceedings of the 2007 GMAC Computerized Adaptive Testing Conference. Retrieved April 3, 2011 from http://www.psych.umn.edu/psylabs/ catcentral/.
    Cheng, Y., Chang, H., Douglas, J., & Guo, F. (2009). Constraint-Weighteda-Stratification for Computerized Adaptive Testing with Nonstatistical Constraints: Balancing Measurement Efficiency and Exposure Control. Educational and Psychological Measurement, 69(1), 35-49.
    Cheng, Y. (2009). When Cognitive Diagnosis Meets Computerized Adaptive Testing. Psychometrika, 74(4), 619–632.
    Cheng, Y. (2010). Improving Cognitive Diagnostic Computerized Adaptive Testing by Balancing Attribute Coverage: The Modified Maximum Global Discrimination Index Method. Educational and Psychological Measurement, 70(6), 902-913.
    Corter, J. E. (1995). Using clustering methods to explore the structure of diagnostic tests. In P. Nichols, S. Chipman, & R. Brennan (Eds.), Cognitively diagnostic assessment (pp. 305-326). Hillsdale, NJ: Lawrence Erlbaum Associates.
    Cui, Y., Leighton, J. P., & Zheng, Y. G. (2006, March). Simulation studies for evaluating the performance of the two classification methods in the AHM. Paper presented at NCME, CA, US.
    Cui, Y., & Leighton, J. P. (2009). The Hierarchy Consistency Index: Evaluating Person Fit for Cognitive Diagnostic Assessment. Journal of Educational Measurement, 46(4), 429-449.
    de la Torre, J. (2008). An Empirically Based Method of Q-Matrix Validation for the DINA Model: Development and Applications. Journal of Educational Measurement, 45(4), 343-362.
    DeCarlo, L. T. (2011). On the Analysis of Fraction Subtraction Data: The DINA model, Classification, Latent Class, and the Q-matrix. Applied Psychological Measurement, 35(1), 8-24.
    DiBello, L., & Stout, W. (2007). Guest editors’introduction and overview: IRT-based cognitive diagnostic models and related methods. Journal of educational measurement, 44(4), 285-291.
    Ding, S. L., Luo, F., Cai, Y., Lin, H. J., & Wang, X. B. (2008). Complement to Tatsuoka’s Q matrix theory. In K. Shigemasu, A. Okada, T. Imaizumi, & T.
    Hoshino (Eds.), New Trends in Psychometrics (pp. 417-423). Tokyo: Universal Academy.
    Fan, S. Q., Zhang, W. X., & Xu, W. (2006) .Fuzzy inference based on fuzzy concept lattice. Fuzzy Sets and Systems, 157, 3177-3187.
    Fischer, G. H. (1973). The linear logistic test model as an instrument ineducational research. Acta Psychologica, 37(6), 359-374.
    Formann, A. K. (1994). The Consultant’s Forum Measurement Errors in Caries Diagnosis: Some Further Latent Class Models. Biometrics, 50, 865-871.
    Frederiksen, N., Mislevy, R. J., & Bejar, I. I. (1993). Test theory for a new generation of tests. Hillsdale, NJ: Lawrence Erlbaum Associates.
    Fu, J., & Li, Y. (2007, April). Cognitively diagnostic psychometric models: An integrative review. Paper presented at NCME, Chicago, US.
    Gierl, M. J., & Leighton, J. P. (2007). Directions for Future Research in Cognitive Diagnostic Assessment. In J. P. Leighton, & M. J.Gierl (Eds.), Cognitively Diagnostic Assessment for Education: Theory and Applications (pp. 341-351). New York: Cambridge University press.
    Gierl, M. J., Leighton, J. P., & Hunka, S. (2007). Using the attribute hierarchy method to make diagnostic inferences about examinees’cognitive skills. In J. P.
    Leighton, & M. J.Gierl (Eds.), Cognitively Diagnostic Assessment for Education: Theory and Applications (pp. 242-274). New York: Cambridge University press.
    Godin,H., R., Missaoui, R., & Alaoui,H. (1995). Incremental concept formation algorithms based on Galois (concept) lattices. Computational Intelligence, 11(2), 246-262.
    Gorin, J. S. (2007). Test Construction and Diagnostic Testing. In J. P. Leighton, & M. J. Gierl (Eds.), Cognitively Diagnostic Assessment for Education: Theory and Applications (pp. 173- 207). New York: Cambridge University press.
    Helmut, T. (1998). On semantic models for investigating computing with words A. In L. C. Jain (Eds.), Proceedings of the Second International Conference on Knowledge Based Intelligent Electronic Systems. USA: Institution of Electrical and Electronic Engineers.
    Henson, R., & Douglas, J. (2005). Test construction for cognitive diagnosis. Applied Psychological Measurement, 29(4), 262–277.
    Hobbs, J. R. (1985, August). Granularity. Paper presented at the Ninth International Joint Conference on Artificial Intelligence, CA, US.
    Hu, J., Wang, G. Y., Zhang, Q. H., & Liu, X. Q. (2006, November). Attribute reduction based on granular computing. Paper presented at the Fifth International Conference on Rough Sets and Current Trends in Computing, Kobe, Japan.
    Jang, E. E. (2005). A validity narrative: Effects of reading skills diagnosis on teaching and learning in the context of NG TOEFL. Unpublished doctoral dissertation, University of Illinois, Champaign.
    Jang, E. E. (2006, April). Pedagogical implications of cognitive skills diagnostic assessment for teaching and learning. Paper presented at the annual meeting ofthe American Educational Research Association, San Francisco, US.
    Leighton, J. P., Gierl, M. J., & Hunka, S. M. (2004). The attribute hierarchy method for cognitive assessment: a variation on Tatsuoka’s rule space approach. Journal of Educational Measurement, 41(3), 205–237.
    Lin, T. Y. (1998). Granular computing on binary relations I:data mining and neighborhood systems, II: rough set representations and belief functions, rough sets in knowledge discovery. Physica-Verlag, 107-140.
    Liu, Q., Feng, J., & Deng, D. Y. (2003, May). Design and implement for diagnosis systems of hemorheology on blood viscosity syndrome based on GrC. Paper presented at RSFDGrC’2003, Chongqing, China.
    Ma, J. M., Zhang, W. X., & Cai, S. (2006). Variable threshold concept lattice and dependence space. Lecture Notes in Computer Science, 4223, 109-118.
    Mao,M. M., & Ding, S. L. (2009, December). Exploring the logic and developing new classification methods in attribute hierarchy model. Paper presented at 2009 International Conference on Computational Intelligence and Software Engineering, Wuhan, China.
    Mislevy, R. (1993). Foundations of a new test theory. In N. Frederksen, R. J. Mislevy, & I. I. Bejar (Eds.). Test theory for a new generation of tests (pp. 19-39). Hilldale, NJ: LEA.
    Pawlak, Z. (1982). Rough sets. International Journal of Computer and Information Sciences, (11), 341-356.
    Pawlak, Z. (1991). Rough sets: Theoretical Aspects of Reasoning about Data. Dordrecht: Kluwer Academic.
    Roussos, L. A., DiBello, L.V., Henson, R. A., Jang, E. E., & Templin, J. L. The Fusion Model Skills Diagnosis System. In J. P. Leighton, & M. J. Gierl (Eds.), Cognitively Diagnostic Assessment for Education: Theory and Applications (pp. 242- 274). New York: Cambridge University press.
    Rupp, A. A., & Mislevy, R. J. (2007). Cognitive Foundations of Structured Item Response. Models. In J. P. Leighton, & M. J. Gierl (Eds.), Cognitively Diagnostic Assessment for Education: Theory and Applications (pp. 205- 241). New York: Cambridge University press.
    Rupp, A. A., & Templin, J. L. (2008). The Effects of Q-Matrix Misspecification on Parameter Estimates and Classification Accuracy in the DINA Model. Educational and Psychological Measurement, 68(1), 78-96.
    Sinharay, S., & Almond, R. G. (2007). Assessing fit of cognitive diagnostic modelsA case study. Educational and Psychological Measurement, 67(2), 239-257.
    Snow, R. E, Lohman, D. F. (1998). Implication of cognitive psychology for educational measurement. In R. L. Linn (Eds.), Educational measurement (pp. 263-332). New York: Macmillan.
    Tatsuoka, K. K. (1991). Boolean algebra applied to determination of universal set of knowledge states (Tech.Rep.No.RR-91-44-ONR). NJ: Educational Testing.
    Tatsuoka, K. K. (1993). Item construction and psychometric models appropriate for constructed responses. In R. E. Bennett, & W. C. Ward (Eds.), Construction versus choice in cognitive measuremen (pp. 107–134). Hillsdale, NJ: Lawrence Erlbaum Associates.
    Tatsuoka, K. K. (1995). Architecture of knowledge structure and cognitive diagnosis: a statistical pattern recognition and classification approach. In P. D.
    Nichols, S. F. Chipman, & R. L. Brennan (Eds.), Cognitively Diagnostic Assessment (pp. 327–361). Hillsdale, NJ: Erlbaum.
    Tatsuoka, K. K. (2009). Cognitive Assessment - An Introduction to the Rule Space Method. NY:Routledge.
    Tatsuoka, K. K., Linn, R. L., Tatsuoka, M. M., & Yamamoto, K. (1988). Differential item functioning resulting from the use of different solution strategies. Journal of Educational Measurement, 25(4), 301-319.
    Tatsuoka, K. K., Tatsuoka, M. M. (1997). Computerized Cognitive Diagnostic Adaptive Testing: Effect on Remedial Instruction as Empirical Validation. Journal of Educational Measurement, 34(1). 3-20.
    Wang, C. J., & Gierl, M. J. (2007, April). Investigating the Cognitive Attributes Underlying Student Performance on the SAT Critical Reading Subtest: An Application of the Attribute Hierarchy Method. Paper presented at NCME, Chicago, US.
    Wang, H., & Zhang, W. X. (2006). Relationships between concept lattice and rough set. Lecture Notes in Artificial Intelligence, 4029, 538-547.
    WILLE, R. (1982). Restructuring lattice theory: An approach based on hierarchies of concepts Ordered Sets. Dordrecht: Reidel.
    Yang, S.Q., Ding, S.L., & Yao, Z.Q. (2008). An algorithm of constructing concept lattices for CAT with cognitive diagnosis. Knowledge-Based Systems, 21(8), 852-855.
    Yao, Y. Y. (1999). Granular computing using neighborhood systems. In R. Roy, T. Furuhashi, & R. k. Chawdry (Eds.), Advances in soft computing: Engineeringdesign and facturing (pp. 111-116). London: Springer-Verlag Company.
    YAO, Y. Y. (2004). A partition model of granular computing. LNCS Transactions on Rough Sets, (1), 232-253.
    YAO, Y. Y. (2006, April). Granular computing for data mining. Paper presented at the Conference on Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security, Kissimmee, USA.
    Zadeh, L. A. (1979). Fuzzy sets and information granularity. In M. Gupta, R. Ragade, & R. Yager (Eds.), Advances in Fuzzy Set Theory and Applications (pp. 3-18). Amsterdam: North-Holland Publishing.
    Zadeh, L. A. (1996). Fuzzy logic=computing with words. Fuzzy Systems, (4), 103-111.
    Zadeh, L.A. (1996, September). The Key Roles of Information Granulation and Fuzzy Logic in Human Reasoning, Concept Formulation and Computing with Words. Paper presented at Fifth IEEE International Conference on Fuzzy Systems, New Orleans, USA.
    Zadeh, L. A. (1997). Towards a theory of fuzzy information granulation and Its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems, 19, 111-127.
    Zadeh, L. A. (2002). Some Reflections on Information Granulation and its Centrility in Granular Computing, Computing with words, the Computational Theory of perceptions and Precisiated Natural Language. In T. Y. Lin, Y. Y. Yao, & L. A.
    Zadeh (Eds.), Data Mining, Rough Sets and Granular Computing (pp. 110-153). Germany: Physica-Verlag.
    Zhang, L., & Zhang, B. (2005). A quotient space approximation model of multi-resolution signal analysis. ComputerSci & Technolgy, 20(1), 90-94.
    Zhang, W. X., Wei, L., & Qi, J. J. (2005). Attribute reduction theory and approach to concept lattice. Science in China Series F-Information Sciences, 48(b), 713-726.
    Zhang, W.M. (2006). Detecting differential item functioning using the DINA model. PhD dissertation. The University of North Carolina.
    Zhang, Y. Q. (2005). Constructive granular systems with universal approximation and fast knowledge discovery. Fuzzy Systems, 13(1), 48-57.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.