铰接转向车辆侧倾失稳机理及主动防倾翻控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铰接转向车辆行驶路面复杂,工作环境恶劣,并且转向时前、后车架相对转动,整车重心横向偏移,导致车辆侧向稳定性下降,翻车事故发生几率较高。本文结合国家自然科学基金项目“非公路车辆防翻车主动安全技术研究”(NO.51175216)和高等学校博士学科点专项科研基金项目“工程车辆主动防倾翻系统设计理论与控制技术”(NO.20100061110014),对铰接转向车辆的侧倾失稳机理及主动防倾翻控制方法进行了研究,建立了包括铰接转向运动、摆动桥运动和地面环境参数的铰接转向车辆七自由度非线性动力学模型,得到了铰接转向车辆的失稳机理和适用于铰接转向车辆的动态稳定性指标,提出了基于主动制动、主动转向和摆动桥调整联合作用的车辆稳定性控制方法。具体工作如下:
     根据铰接转向车辆的结构特点,将其划分为前车体、后车体和后桥三部分,详细分析了三者之间的连接和运动关系;得到了能够完整描述整车运动所需的自由度,包括整车沿纵向、横向和垂向的平动自由度,整车的俯仰和横摆、后车体的侧倾和后桥的侧倾等转动自由度;在此基础上,建立了铰接转向车辆七自由度非线性动力学模型。为了验证所建立模型的可靠性,设计并制造了铰接转向车辆物理样机模型,分别在水平路面转弯、直行越障和转弯越障三种工况下对动力学模型进行了实验验证,仿真结果与实验结果吻合度较高,表明所建立的动力学模型是合理的,可以作为研究铰接转向车辆侧倾稳定性的工具。
     基于已建立的非线性动力学模型,选择某型号装载机为研究对象,分析了铰接转向车辆在转弯、越障以及斜坡路面上的失稳机理。结果表明,铰接转向车辆的稳定性可以通过侧倾角速度的大小来表征,当侧倾角速度超过临界倾翻阈值时车辆将发生失稳;而侧倾角速度临界倾翻阈值除了与车辆自身结构有关外,主要受侧向加速度和坡度角的影响。在此研究基础上,得到了适用于铰接转向车辆的动态稳定性指标,该指标中包含了车辆的侧倾角速度和侧向加速度等运动信息以及路面坡度角信息。
     在得到铰接转向车辆侧倾失稳机理的基础上,分别研究了主动制动、主动转向和摆动桥调整对车辆侧倾稳定性的影响。结果表明,主动制动有利于提高车辆转弯时的侧倾稳定性;在保证不发生二次事故的前提下主动转向能够提高车辆转弯和越障时的侧倾稳定性;摆动桥调整通过改变车辆的重心位置可以提高多种失稳工况下车辆的侧倾稳定性。综合考虑主动制动、主动转向和摆动桥调整等各种防倾翻方法的特点,提出了集“主动制动-主动转向-摆动桥调整”于一体的主动防倾翻联合控制方法,并且利用物理样机模型验证了该控制方法的有效性。
     为了能够实现摆动桥主动调整,对现有的被动摆动桥结构进行了改进,在现有结构的基础上增加了电液比例控制系统,该控制系统可以实现以下功能:车辆在正常行驶过程中,摆动桥随地形能够进行自由摆动,保证摆动桥的全部原始设计功能;当车辆发生失稳时,控制摆动桥向侧倾相反方向运动,通过调整前后车体的姿态来调整整车重心,实现车辆的主动防倾翻控制。最后,为了验证所设计控制系统的合理性,基于多体动力学软件RecurDyn和控制软件Matlab/Simulink,建立了包含主动摆动桥模块的某型号装载机虚拟样机联合仿真模型,分析结果表明,主动摆动桥在保证其基本功能的基础上能够实现铰接转向车辆的主动防倾翻控制。
     综上所述,本文建立了铰接转向车辆的非线性动力学模型,设计了铰接转向车辆的物理样机模型,通过动力学仿真和实验验证相结合的方法,研究了铰接转向车辆的侧倾失稳机理及主动防倾翻控制方法。论文的研究工作为铰接转向车辆的安全性设计及主动防倾翻安全技术的开发提供了依据,对于保障铰接转向车辆司机生命安全具有重要意义。
Traveling on complex road as well as working in poor conditions, the gravity center ofarticulated steer vehicles (ASV) will severely offset laterally when steering, leading a highprobability of rollover accident. The rollover instability mechanism and active anti-rollovercontrol method of the ASV was studied under the support of National Natural ScienceFoundation of China (NO.51175216) and Ministry of Education Fund for the Doctoral(NO.20100061110014). Firstly, a7-DOFs nonlinear dynamics model was built, it includedarticulated steering movement, swinging bridge movement and ground environmentalparameters. Then the instability mechanism and dynamic rollover stability index for the ASVwere obtained. On the basis above, we proposed active anti-rollover control method combinedwith active braking, active steering and swing bridge adjustment. The specific work is asfollows:
     According to the structural features of the ASV, it was divided into three parts: a frontbody, a rear body and a rear axle. By analyzing the connections and relationships among thethree parts, we obtained the vehicle DOFs which contains the translational movements(longitudinal, lateral and vertical) and the rotational movements (pitch and yaw of the wholevehicle, roll of the front body and the rear body). On this basis, a7DOFs nonlinear dynamicsmodel of the ASV was built. A physical prototype model of the ASV was designed andmanufactured to validate the dynamic model under three conditions (turning on level ground,passing over obstacles and turning on uneven road). The test results agreed well with thesimulation ones. Thus, the proposed dynamic model was convinced to be reasonable and couldbe served as a tool for analyzing the stability of the ASV.
     Based on the established dynamics model, detailed analysis of a wheel loader’s dynamicrollover stability was carried out in the conditions of turning/passing over obstacles andtraveling on slopes. The analysis results showed that the stability of the ASV largely dependedon the roll angular velocity. Rollover will occur when the roll angular velocity exceeds acritical threshold which affected by vehicle structure, lateral acceleration and slope angle. Onthis basis, a dynamic stability index (DSI) applicable to ASV was defined. The DSI containsthe information of roll rate, lateral acceleration and slope angle.
     After obtaining the rollover mechanism of ASV, the effect of active braking, activesteering and swing bridge adjustment on rollover stability was studied. The results showedthat (1) Active braking will be propitious to improve vehicle stability when cornering;(2)Active Steering will help to improve the roll stability of the vehicle when cornering andpassing over obstacles under the premise of no secondary accident occurring;(3) Swing bridge adjustment will improve vehicle stability in any instability conditions by changing the positionof the vehicle's center of gravity. Considering the characteristics of the anti-rollover controlmethod of the active braking, active steering and swing bridge adjustment, respectively, weproposed an active anti-rollover control method combined with active braking, active steeringand swing bridge adjustment, which is verified by using the physical prototype.
     In order to achieve the active anti-rollover control method mentioned above, the existingpassive swing bridge had been improved by adding an electro-hydraulic proportional controlsystem. This control system could achieve the following functions:(1) The swing bridge canbe free to swing with the terrain when the vehicle is traveling normally, it is the basic functionof the swing bridge;(2) Control the swing bridge to roll in the opposite direction to achieveactive anti-rollover control by adjusting the position of the vehicle's center of gravity when therollover occurring. Finally, based on multi-body dynamics software RecurDyn and controlsoftware Matlab/Simulink, a virtual prototype model of one wheel loader which contains theimproved swing bridge was built to verify the reasonableness of the control system. The resultsshowed that the improved swing bridge could achieve active anti-rollover control of ASV aswell as guarantee its basic function.
     In summary, this paper established a rollover dynamics model and designed physicalprototype model of the ASV. The rollover instability mechanism and the active anti-rollovercontrol method for the ASV were analyzed by both dynamic simulation and experimentalvalidation. The research provides a basis for the safety design and the development of activesafety technology of the ASV, and it is of significance for protecting the life of the driver ofthe ASV.
引文
[1]王国彪,李海涛.铰接式工程车辆转向能力的计算[J].矿山机械,1999,08:26-27.
    [2]杨占敏,张春秋.轮式装载机[M].北京:化学工业出版社,2006.
    [3]高梦熊.地下装载机[M].北京:冶金工业出版社,2011.
    [4]于英,田晋跃,吴润才,等.非公路车辆翻车安全保护技术的研究[J].中国安全科学学报,2004,14(6):60-63.
    [5]司俊德.基于人体损伤的工程车辆翻车保护系统性能研究[D].长春:吉林大学,2011.
    [6] ISO3471:2008. Earth-moving machinery—Roll-over protective structures Laboratorytests and performance requirements[S].
    [7]王继新.工程车辆翻车保护结构设计方法与试验研究[D].长春:吉林大学,2006.
    [8]魏秀玲.工程车辆翻车事故中司机保护系统性能研究[D].吉林大学,2009.
    [9] M. McCann. Heavy equipment and truck-related deaths on excavation work sites[J].Journal of Safety Research,2006,37(5):511-517.
    [10] D. Lesley, G. Rechnitzer, J. Lough. An Australian experience with tractor rolloverprotective structure rebate programs: process, impact and outcome evaluation[J].Accident Analysis and Prevention,2004,36(5):861-867.
    [11] C. Franklin, K. Stark, L. Fragar. Intervention strategies for the retro-fitment of RolloverProtective Structures (ROPS) and feet characteristic[J]. Safety Science,2006,44(9):771-783.
    [12]田广范,田利芳.土方机械国际标准年会的启示[J].建筑机械,2005(6):16-21.
    [13]王国强,林建荣.国际工程机械技术法规和标准发展报告[J].中国工程机械,2005(12):60-66.
    [14] T. J. Preston, J. H. Woodrooffe. A feasibility study of a rollover warning device for heavytrucks, No.TP10610E[R].Marine: Transport Canada Publication,1990.
    [15] D. Baker, R. Bushman, C. Berthelot. Effectiveness of truck rollover warning systems[J].Transportation Research Record: Journal of the Transportation Research Board,2001,1779:134-140.
    [16]金智林,翁建生,胡海岩.汽车侧翻预警及防侧翻控制[J].动力学与控制学报,2007,5(4):365-369.
    [17] H. Yu. Heavy duty vehicle rollover detection and active roll control[J]. Vehicle SystemDynamics,2008,46(6):451-470.
    [18] C. C. Yao, J. Y. Hsu. Implementation of Real-time Vehicle Rollover PreventionSystem[J]. Pervasive Computing,2014:10-21.
    [19]朱天军.基于改进TTR重型汽车倾翻预警及多目标稳定性控制算法研究[D].吉林大学,2010.
    [20]张先奎.基于姿态监测的汽车倾翻预警及控制研究[D].南京航空航天大学,2007.
    [21]黄杰燕.基于TTR预警的重型汽车防倾翻控制系统的研究[D].吉林大学,2008.
    [22]金智林,翁建生,胡海岩.汽车倾翻预警及防侧翻控制[J].动力学与控制学报,2007,5(4):365-369.
    [23] B. Chen, H. Peng. A Real-time Rollover Threat Index for Sports Utility Vehicles[C].American Control Conference, June,1999.
    [24] B. C. Chen, H. Peng. Rollover warning of articulated vehicles based on a time-to-rollover metric[J]. Ann Arbor,1999,1001:48109-2125.
    [25] A. G. Nalecz, Z. Lu. d’Entremont, K. L. An investigation into Dynamic Measure ofVehicle Rollover Propensity[C]. SAE Paper, No.930831,1993.
    [26] D. Hyun, R. Langari. Modeling to Predict Rollover Threat of Tractor-Semitrailers[J].Vehicle System Dynamics,2003,39(6):401-414.
    [27] R. Strickland, H. McGee. Evaluation of prototype automatic truck rollover warningsystems[R].1998.
    [28] M. Freedman, P. L. Olson, and P. L. Zador. Speed Actuated Rollover Advisory Signs forTrucks on Highway Exit Ramps. Insurance Institute for Highway Safety and Universityof Michigan Transportation Research Institute,1992.
    [29] H. H. Huang, R. K. Yedavalli, D. A. Guenther. Active roll control for rollover preventionof heavy articulated vehicles with multiple-rollover-index minimisation[J]. VehicleSystem Dynamic,2012,50(3):471-493.
    [30] H. Du, N. Zhang. Robust controller design for improving vehicle roll control[J].International Journal of Automotive Technology,2007,8(04):445-453.
    [31] A. M. C. Odhams, R. L. Roebuck, D. Cebon, et al. Dynamic safety of active trailersteering systems[J]. Proceedings of the Institution of Mechanical Engineers, Part K:Journal of Multi-body Dynamics,2008,222(04):367-380.
    [32] D. H. Wu. A theoretical study of the yaw/roll motions of a multiple steering articulatedvehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal ofAutomobile Engineering,2001,215(12):1257-1265.
    [33] K. Hussain, W. Stein, A. J. Day. Modelling commercial vehicle handling and rollingstability[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal ofMulti-body Dynamics,2005,219(04):357-369.
    [34] K. Rangavajhula, H. S. J. Tsao. Command steering of trailers and command-steering-based optimal control of an articulated system for tractor-track following[J].Proceedings of the Institution of Mechanical Engineers, Part D: Journal of AutomobileEngineering,2008,222(06):935-954.
    [35] C. Chen, M. Tomizuka. Modeling and control of articulated vehicles, UCB-ITS-PRR-97-42[R]. Institute of Transportation Studies,1997.
    [36] S. H. T. Oreh, R. Kazemi, S. Azadi. A new desired articulation angle for directionalcontrol of articulated vehicles[J]. Proceedings of the Institution of Mechanical Engineers,Part K: Journal of Multi-body Dynamics,2012,226(04):298-314.
    [37] L. K. Chen, Y. A. Shieh. Jackknife prevention for articulated vehicles using modelreference adaptive control[J]. Proceedings of the Institution of Mechanical Engineers,Part D: Journal of Automobile Engineering,2011,225(01):28-42.
    [38] A. Goodarzi, M. Behniadi, E. Esmailzadeh. An optimised braking force distributionstrategy for articulated vehicles[J]. Vehicle System Dynamic,2008,46(S1):849-856.
    [39]赵丁选,王登峰,程悦荪,等.铰接转向拖拉机静态二级倾翻稳定性分析[J].农业机械学报,1994,25(01):21-26.
    [40]赵丁选,刘昕辉,朱诗顺,等.铰接车辆稳定性的监测与控制方法[J].中国公路学报,1996,9(02):115-121.
    [41]郭凌汾.装载机横向一级稳定性计算[J].建筑机械,1986,05:6-10.
    [42]蔡婷婷,董满朝,崔守娟,等.基于稳定度的装载机稳定性评价[J].煤矿机械,2012,33(09):78-80.
    [43] Y. Yavin. Modeling the motion of an underground mining vehicle[J]. Mathematical andComputer Modeling.2005,42:1123-1130.
    [44] P. I. Corke and P. Ridley. Steering kinematics for a center-articulated mobile robot[C].IEEE Transactions on Robotics and Automation,2001,17(2):215–218.
    [45] B. Dragt, F. Camisani-Calzolari, and I. Craig, Modelling the dynamics of a load-haul-dump vehicle[C]. Proceedings of the16th IFAC World Congress, Prague, CzechRepublic, July2005.
    [46] M. Iida, M. Fukuta, H. Tomiyama. Measurement and analysis of side-slip angle for anarticulated vehicle[J]. Electrical Journal of Engineering in Agriculture Environment andFood,2009,3(01):1-6.
    [47] M. Iida, H. Nakashima, H. Tomiyama. Small-radius turning performance of anarticulated vehicle by direct yaw moment control[J]. Computers and Electronics inAgriculture,2011,76:277-283.
    [48]周国建.铰接式铲运机转向及横向稳定动态数学模型[J].矿山机械,1992,11:9-12.
    [49]周国建.铰接式装载机转向及横向稳定动态数学模型[J].建筑机械,1993,02:26-29.
    [50]李晓豁,吴占岭.地下铲运机转弯侧翻的影响因素分析[J].黑龙江科技学院学报,2009,02:117-120.
    [51]李振通,杜艳霞,王长胜.铰接式装载机转向稳定性分析[J].工程机械,2008,03:26-29.
    [52]杜艳霞,李振通,杜彦亭.铰接式装载机非线性阻尼液压转向系统转向稳定性分析[J].工程机械,2009,05:58-61.
    [53] N. L. Azad. Dynamic modeling and stability controller development for articulated steervehicles[D]. Waterloo Ontario: University of Waterloo,2006.
    [54] N. L. Azad, A. Khajepour, J. Mcphee. Robust state feedback stabilization of articulatedsteer vehicles[J], Vehicle System Dynamics.2007,45:249-275.
    [55] N. L. Azad, J. Mcphee, A. Khajepour. Robust variable structure control for stabilisationof articulated steer vehicles by torque vectoring[J]. International Journal of HeavyVehicle System,2007,14(4):331-354.
    [56] N. L. Azad, A. Khajepour, J. McPhee. Analysis of jack-knifing in articulated steervehicles[C]. IEEE Conference on Vehicle Power and Propulsion.2005.
    [57] N. L. Azad, A. Khajepour, J. McPhee. Stability Control of Articulated Steer Vehicles byPassive and Active Steering Systems[C]. SAE Paper, No.2005-01-3573,2005.
    [58]刘刚,张子达.铰接式车辆行驶稳定性的理论分析与数值计算[J].吉林大学学报(工学版),2004,34(03):367-372.
    [59]刘刚,张子达,邹广德,等.铰接车辆行驶稳定性的动力学建模[J].工程机械,1996,08:5-8.
    [60]葛强胜.铰接式车辆高速直线行驶动态仿真[J].农业机械学报,2003,04:39-42.
    [61]葛强胜,郭刚,华瑞平,等.铰接式车辆转向及横向动态数学模型[J].矿山机械,2000,06:29-31.
    [62]赵丁选.铰接车辆稳定性及其仿真与控制[M].北京:中国铁道出版社,1997.
    [63]姚宗伟.铰接转向工程车辆侧倾稳定性研究[D].吉林大学,2013.
    [64]赵丁选,王登峰,程悦荪,等.铰接转向拖拉机静态二级倾翻稳定性分析[J].农业机械学报,1994,25(01):21-26.
    [65]蔡婷婷,董满朝,崔守娟,等.基于稳定度的装载机稳定性评价[J].煤矿机械,2012,33(09):78-80.
    [66] S. Rakheja, A. Piche. Development of directional stability criteria for an early warningsafety device[C]. SAE Paper, No.902265,1990.
    [67] R. D. Ervin. Two active systems for enhancing dynamic stability in heavy truckoperations, PATH Record Number14833[R]. University of Michigan,1998.
    [68] J. Preston-Thomas, J. H. Woodrooffe. A Feasibility Study of a Rollover Warning Devicefor Heavy Trucks[R]. TP10610E, Transport Canada,1990.
    [69] D. Odenthal. Nonlinear Steering and Braking Control for Vehicle Rollover avoidance[C].Proceedings of European Control Conference, Kalsruhe, Germany,1999.
    [70] A. J. P. Miege, D. Cebon. Active roll control of an experimental articulated vehicle[J].Proceedings of the Institution of Mechanical Engineers, Part D: Journal of AutomobileEngineering,2005,219(6):791-806.
    [71] S. Solmaz, M. Corless, R. Shorten. A methodology for the design of robust rolloverprevention controllers for automotive vehicles with active steering[J]. InternationalJournal of Control,2007,80(11):1763-1779.
    [72] C. F. Chen, S. K. Chen, N. K. Moshchuk. Roll stability indicator for vehicle rollovercontrol[P]. U. S. Patent7,788,007.2010-8-31.
    [73] J. Liu. Development of stability index for tractors and its application in protectivestructure deployment[D]. Colorado: Colorado State University,1998.
    [74] J. Liu, P. D. Ayers. Off-road vehicle rollover and feld testing of stability index[J].Journal of Agricultural Safety and Health,1999,5(1):59–71.
    [75] J. Liu, P. D. Ayers. Application of a tractor stability index for protective structuredeployment[J]. Journal of Agricultural Safety and Health Special,1998(1):171-181.
    [76] C. Cheng, D. Cebon. Improving roll stability of articulated heavy vehicle using activesemi-trailer steering[J]. Vehicle System Dynamics,2008,46(S):373-388.
    [77] H. Imine, L. M. Fridman, T. Madani. Steering control for rollover avoidance of heavyvehicles[C]. IEEE Transactions on Vehicular Technology,2012,61(8):3499-3509.
    [78]徐延海.基于主动转向技术的汽车防倾翻控制的研究[J].汽车工程,2009(27):518-521.
    [79] T. J. Wielenga. A Method for Reducing On-Road Rollovers-Anti-Rollover Braking[C].SAE Paper, No.1999-01-0123,1999.
    [80] B. C. Chen, H. Peng. Differential-braking-based rollover prevention for sport utilityvehicles with human-in-the-loop evaluations[J]. Vehicle System Dynamics,2001,36(4-5):359-389.
    [81] L. Chen, S. Hsu. Investigation of driver-controller interaction in vehicle rolloverprevention[C]. IEEE International Conference on Systems, Man and Cybernetics,2007,2:998-1003.
    [82]于志新,宗长富,何磊,等.基于TTR预警的重型汽车防侧翻控制算法[J].吉林大学学报(工学版),2009,09:251-254.
    [83] J. Wang, D. Wilson, W. Xu&D. Crolla. Integrated vehicle ride and steady-state handlingcontrol via active suspensions[J]. International Journal of Vehicle Design,2006,42:306–327.
    [84] D. J. M. Sampson and D. Cebon. Active roll control of single unit heavy road vehicles[J].Vehicle System Dynamics,2003,40(4):229-270.
    [85] J. P. Miege. Active Roll Control of an Experimental Articulated Vehicle[D]. PhD Thesis,2003.
    [86]余强,马建.主动悬架系统对汽车侧翻稳定性改善分析[J].中国公路学报,2005,03:114-117.
    [87]宋毅.主动悬架系统对汽车侧翻稳定性的改善分析[J].公路与汽运,2006,01:1-4.
    [88]董小闵,余淼,廖昌荣,等.磁流变半主动悬架对车辆侧倾稳定性改进分析[J].上海交通大学学报,2009,10:1541-1544.
    [89]黄金凤.基于油气悬架的车身姿态控制[D].中国优秀硕士学位论文全文数据库,2007.
    [90] D. J. M. Sampson, B. P. Jeppesen, D. Cebon. The development of an active roll controlsystem for heavy vehicles[J]. Vehicle System Dynamics,2000,33:704-715.
    [91] A. Y. Lee. Coordinated control of steering and anti-roll bars to alter vehicle rollovertendencies[J]. Journal of dynamic systems, measurement, and control,2002,124(1):127-132.
    [92] A. Sorniotti, A. Morgando. Velardocchia.M.Active roll control System design andhardware-in-the-loop test bench[J]. Vehicle System Dynamics,2006,44:489-505.
    [93] J. F.Miege, D.Cebon. Design and implementation of an active roll control system forheavy vehicles[C]. In Proceedings of6th International Symposium on Advanced VehicleControl, Hiroshima, Japan,2002.
    [94] P. Gaspar, I. Szaszi and J.Bokor. Reconfgurable control structure to prevent the rolloverof heavy vehicles[J]. Control Engineering Practice,2005,13(6):699–711.
    [95] P. Gaspar and J. Bokor. Fault-tolerant rollover prevention system based on an LPVmethod[J]. International Journal of Vehicle Design,2006,42(3):392–412.
    [96] D. Li, S. Du and F. Yu. Integrated vehicle chassis control based on direct yaw moment,active steering and active stabilizer[J].Vehicle System Dynamics,2008,46(S):341351.
    [97] S. Yim, Design of a robust controller for rollover prevention with active suspension anddifferential braking[J]. Journal of Mechanical Science and Technology,2012,26(1):213-222
    [98] C. Ahn, B. Kim, and M. Lee. Modeling and control of an anti-lock brake and steeringsystem for cooperative control on split-mu surfaces[J]. International Journal ofAutomotive Technology,2012,13(4):571581.
    [99] J. Song. Integrated control of brake pressure and rear-wheel steering to improve lateralstability with fuzzy logic[J]. International Journal of Automotive Technology,2012,13(4):563570.
    [100] J. Song, and W. S. Che. Comparison between braking and steering yaw momentcontrollers considering ABS control aspects[J]. Mechatronics,2009,19(7):11261133.
    [101]吴静,汪洪波.基于制动与主动悬架的车辆横向稳定性联合控制[J].农业装备与车辆工程,2013,09:5-9.
    [102] X. F. Li, G. Q. Wang, Z. W. Yao. Dynamic model and validation of an articulated steeringwheel loader on slopes and over obstacles[J]. Vehicle System Dynamics,2013,51(9):1305-1323.
    [103] X. F. Li, G. Q. Wang, Z. W. Yao. Research on lateral stability and rollover mechanismof articulated wheel loader[J]. Mathematical and Computer Modelling of DynamicalSystems,2014,20(3):248-263.
    [104] H. B. Pacejka. Tire and vehicle dynamics. Society of Automotive Engineers. Inc,Warrendale, USA,2002.
    [105]王同建.装载机线控转向技术研究[D].吉林大学,2006.
    [106]罗士军.轮式铰接转向装载机线控转向控制系统研究[D].吉林大学,2008.
    [107] G. Magnus and L. Olof. A9-DOF Tractor-semitrailer Dynamic Handling Model forAdvanced Chassis Control Studies[J]. Vehicle System Dynamics,2004,41(1):51-82.
    [108] N. L. Azad. An Active Control Device Based on Differential Braking for ArticulatedSteer Vehicles[C]. SAE Paper, No.2006-01-3568,2006.
    [109] J. Lu, D. Messih. An Enhancement to an Electronic Stability Control System to Includea Rollover Control Function[C]. SAE Paper, No.2007-01-0809,2007.
    [110] J. Ackermann and D. Odenthal. Robust Steering Control for Active Rollover Avoidanceof Vehicles with elevated center of Gravity[C]. Proceeding International Conference onAdvances in Vehicle Control and Safety,1998.
    [111] A. Goodarzi. Integrated Yaw and Roll Moments Control for Articulated Vehicles[C].SAE paper, No.2009-01-2874,2009.
    [112] B. L. Boada, M. J. L. Boada, V. Diaz. Fuzzy-logic applied to yaw moment control forvehicle stability[J]. Vehicle System Dynamics,2005,43(10):753–770.
    [113] R. C. Christopher. Optimal Rollover Prevention with Steer by Wire and DifferentialBraking[C]. ASME International Mechanical Engineering Congress,2003.
    [114] M. Canale, L. Fagiano, M. Milanese, P. Borodani. Robust vehicle yaw control using anactive differential and IMC techniques[J]. Control Engineering Practice,2007,923–941.
    [115] D. odenthal. Nonlinear Steering and Braking Control for Vehicle Rollover Avoidance[C].European Control Conference,1999.
    [116]诸静.模糊控制原理与应用[M].北京:机械工业出版社,2005.
    [117]李国勇.神经模糊控制理论及应用[M].北京:电子工业出版社,2009.
    [118]李国勇.智能预测控制及其Matlab实现[M].北京:电子工业出版社,2009.
    [119]张化光,何希勤.模糊自适应控制理论及其应用[M].北京:北京航空航天大学出版社,2002.
    [120]伍世虔.动态模糊神经网络—设计与应用[M].北京:清华大学出版社,2008.
    [121] D. Neuyhaus. Vehicle Dynamics-Continuous Improvements in Vehcile Safety form ABSto Electronic Stability Control[C]. SAE Paper, No.2005-26-065,2005.
    [122]邓国辉.转弯制动时ABS控制算法研究及对汽车侧向稳定性的改进[D].吉林大学,2009.
    [123] G. F. Maue. A fuzzy logic controller for an ABS braking system[C]. IEEE Transactionson Fuzzy Systems.1995.
    [124] T. Pilutti, G. Ulsoy, D. Hrovat. Vehicle Steering Intervention through DifferentialBraking[J]. Journal of dynamic systems, measurement, and control,1998,120(3):314-321.
    [125] F. M. Georg. A Fuzzy Logic Controller for an ABS Braking System[C], IEEETransaction on Fuzzy System.1995,3(4):381-388.
    [126]张小龙,张为公,周木子.汽车ABS侧向稳定性能道路试验评价系统研究[J].中国机械工程,2006,10:1091-1095.
    [127] B. Chan. Electronic Stability Control as Standard on Heavy Duty Emergency Vehicles:A Simulation Analysis[C]. SAE Paper, No.2011-01-2151,2011.
    [128]石智卫.基于ABS和ESP的汽车制动集成控制策略仿真研究[D].重庆理工大学,2012.
    [129] J. Lu, D. Messih and A. Salib. An Enhancement to an Electronic Stability ControlSystem to Include a Rollover Control Function[C]. SAE Paper, No.2007-01-0809,2007.
    [130] Y. J. Cho and B. H. Kwak. A Control and Analysis of Vehicle Rollover Based onElectronic Stability Control[C]. SAE Paper, No.2007-01-3566,2007.
    [131] S. Yoon, J. Jung, B. Koo and D. Kim. Development of rollover prevention system usingunified chassis control of ESP and CDC systems[C]. SAE Paper, No.2006-01-1276,2006.
    [132]刘冠廷.轻型汽车侧偏与横摆联合控制ESP算法研究[D].吉林大学,2008.
    [133]连晋毅,张启胤,吴新,王飞龙.用于装载机的液压阻尼平衡式摆动车桥[P].中国:CN102555724A,2012-07-11.
    [134]连晋毅,张启胤,吴新,王飞龙.用于装载机的液压阻尼平衡式摆动桥装置[P].中国:CN102529636A,2012-07-04.
    [135]马俊,胡帮友,沈满清,等.轮式装载机用的后摆动架液压阻尼平衡装置[P].中国: CN202156259U,2012-03-07.
    [136]路甬祥,胡大纮.电液比例控制技术[M].北京:机械工业出版社.1988.
    [137]吴根茂,邱敏秀.新编实用电液比例技术[M].杭州:浙江大学出版社.2006.
    [138]黎启柏.电液比例控制系统与数字控制系统[M].北京:机械工业出版社.1997.
    [139]许益民.电液比例控制系统分析与设计[M].北京:机械工业出版社,2005.
    [140]刘顺安.液压传动与气压传动[M].长春:吉林科学技术出版社,1999.
    [141] Bosch Rexroth Corporation. DBETX系列直动式比例溢流阀技术报告.http://file.yizimg.com/368184/2012111610202518.pdf.
    [142]焦晓娟,张湝渭,彭斌彬. RecurDyn多体系统优化仿真技术[M].北京:清华大学出版社,2010.
    [143]宋志安,曹连民,黄靖. MATLAB/Simulink与液压控制系统仿真[M].北京:国防工业出版社,2012.
    [144]李剑峰.机电系统联合仿真与集成优化案例解析[M].北京:电子工业出版社,2010.
    [145]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2011.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.