白蚁内切-β-1,4-葡聚糖酶基因的克隆、表达及分子改造
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素(Cellulose)是地球上最丰富的有机物质,它是光合作用最主要的产物,同时也是最丰富的可再生资源,地球上每年光合作用可产生大于100亿吨的植物干物质,其中一半以上是纤维素和半纤维素。但纤维素的利用目前尚未完全开发,随着地球石化能源短缺和枯竭的日趋严峻,人类把眼光转向了对纤维素的利用,利用纤维素酶将纤维素降解为可发酵的单糖,进而发酵生产乙醇。然而目前发现的纤维素酶都存在活力低和反应速度慢的缺点,因此寻找新的或者通过改造现有的纤维素酶基因获得活力更高纤维素酶是解决纤维素开发利用的关键问题。
     本研究提取了台湾家白蚁总RNA通过RT-PCR扩增出白蚁内切-β-1,4-葡聚糖酶基因,并分别构建了表达内切-β-1,4-葡聚糖酶的大肠杆菌和酿酒酵母表达载体。利用金属镍亲和层析对大肠杆菌表达的内切-β-1,4-葡聚糖酶进行纯化,CMC酶活检测显示纯化酶的最适温度和最适pH值分别为42℃、6.5;内切-β-1,4-葡聚糖酶的Vmax为0.071mg/ml~*min,Km值为80.2712mg/ml,比活力为13.544U/mg。利用定点突变对白蚁内切-β-1,4-葡聚糖酶基因进行改造,首先是借助计算机根据白蚁内切-β-1,4-葡聚糖酶的同源建模三维结构信息,利用ProSA2003软件根据能量(knowledge-based potentials)最低化原则,计算机辅助设计确定白蚁内切-β-1,4-葡聚糖酶氨基酸饱和突变位点,通过同源建模分析表明53D、56D和411E三个位点都是活性中心位点。利用兼并引物对53,56,411位点的氨基酸分别进行饱和突变,筛选到三个有活力的突变子C53、E53和C56。对突变酶进行酶学性质的研究表明,C53的最适温度、最适pH、米氏常数、Vmax和比活力分别为42℃、6.5、37.683 mg/mL、0.0334umol/mL~*min、9.912 U/mg;突变酶E53的最适温度、最适pH、米氏常数、Vmax和比活力分别为37℃、6.5、93.819mg/mL、0.124umol/mL~*min、16.421U/mg;突变酶C56的最适温度、最适pH、米氏常数、Vmax和比活力分别为42℃、8.0、26.809mg/mL、0.0324umol/mL~*min、16.470U/mg。
Cellulose(Cellulose)is the most organic material and renewable resources,which is the main product of photosynthesis.There are more than 10 billion tons of biomass plants on Earth,Over half of which is cellulose and hemicellulose.However,the cellulose has not been used fully.As the shortage of petrochemical energy on the Earth,people start to use cellulose to fermente ethanol.But now the activity of cellulose are low and fermentation are very slow,so searching for new cellulases,or mutating the existing cellulase gene to get higher cellulase become a hot research.
     In this research,we extracted Coptotermesformosanus' total RNA,and obtained the cDNA by reverse transcription.The gene encoding endo-β-1,4-glucanase was isolated by PCR,and then it was ligated to an Ecoli vector and a yeast vector to construct the cellulases-producing gene engineering strains.The endo-β-1,4-glucanase of recombinant Ecoli strains was purified by nickel affinity chromatography.The results showed that the optimal tempreture and pH of purified endoglucanase were 42℃/6.5 respectively;The Vmax and Km for endo-β-1,4-glucanase were shown to be 0.071 umol/mL~*min /80.271mg/mL/13.544U/mg.In this research,we determined three endo-β-1,4-glucanase amino acid mutation sites(C53,E53 and C56)by three-dimensional model of endo-β-1,4-glucanase and ProSA2003 software(knowledge-based potentials).The optimum temperature,optimum pH,Km,Vmax and activity of mut-C53 were shown to be 42℃/6.5/37.683mg/mL/0.0334umol/mL~*min/9.912 U/mg respectively; The optimum temperature,optimum pH,Km,Vmax and activity of mut-E53 were shown to be 37℃/6.5/93.819mg/mL/0.124umol/mL~*min/16.421U/mg respectively;The optimum temperature,optimum pH,Km,Vmax and activity of mut-C56 were shown to be 42℃/8.0/26.809mg/mL/ 0.0324umol/mL~*min/16.470U/mg respectively.
引文
1.Muniswaran P K A,Charyulu N C L N,Solid substrate fermentation of coconut ccir pith for celluase production.Enzyme Microb Technol,1994,16(5):436-440
    2.Holtzapple MT,Caram H,Humphrey AE.Determining the inhibition constants in the HCH-1 model of cellulose hydrolysis.BiotechnolBioeng,1984,26:735-757.
    3.Jarvis M.Cellulose stacks up.Science,2003,426:611-612.
    4.Zhang Y-HP,Lynd LR.Toward an aggregated understanding of enzymatic hydrolysis of cellulose:noncomplexed cellulose systems.Biotechnol Bioeng,2004,88:797-824.
    5.Leschine,S.B.Cellulose degradation in anaerobic environments.Annu Rev Microbiol,1995,49:399-426
    6.孙永明,袁振宏,孙振钧.中国生物质能源与生物质利用现状与展望.可再生能源,2006,126(2):78-82
    7.Lonnie O lngram,Tyrrell Conway,Flavio Alterthum.Ethanol production by E.coil.Strains co-expressing Zymonas PDC and ADH genes[P].USP 5000000,1991-05-19.
    8.高洁等.纤维素科学.北京:科学出版社,1996.6
    9.Percival EGV.Structural Carbohydrate Chem.London:J Garnet Miller Ltd,1962,1-637
    10.王建平.纤维素酶的研究进展及趋向.舟山师专学报,1995(3):42-46
    11.Durette P L.et al.Advances in Carbohydrate Chem,1971(26):4908
    12.Marchessault RH et al.Advances in Carbohydrate Chem,1967(22):421
    13.孟雷,陈冠军,王怡等.纤维累酶的多型性[J].纤维累科学与技术,2002,10(2):47-55
    14.谢占玲,吴润.纤维素酶的研究进展.草业科学,2004,4(21):72-76
    15.Tsao,G.T.,Bungay,H.R.and Belfort,G.et al.。Advanced Biochemical Engineering,PP1987,79-85
    16.王巧兰,郭刚,林范学.纤维素酶研究综述.湖北农业科学,2004,3:13-18
    17.穆小民,吴显荣.纤维素酶分子生物学研究进展及趋向[J].生物工程进展,1994,4
    18.宋贤良,温其标,朱江.纤维素酶法水解的研究进展[J].郑州工程学院学报,2001,24(4):67-72
    19.Heorissat B,et al.Mode of action of Trichoderma reesei CBH1on crystalline cellulose[M].Biol Tecl,1985(3):722-726
    20.夏黎明.可再生纤维素资源酶法降解的研究进展[J].林产化工通讯,1999,33(1):23-28
    21.Ladisch MR,Lin KW,Voloch M,Tsao GT.Process considerations in the enzymatic hydrolysis of biomass.Enzyme and Microbial Technology,1983,5:82-102
    22.Wood T M.The cellulase of fusarium solani purificationand specificity of the (1,4)-glucosidase components[J].Biochem,1971,121:353
    23.Shawn D,Ansfieldl M,Roger M.Cellulose hydrolysis the role of monocomponent cellulases incrystalline cellulo se degradat ion[J].Cellulose,2003,10:1592169.
    24.Beguin P,et al.The biological degradation of cellulose.TEMS Microbiol Rev,1994,13:25
    25.Tilbeurgh H,Tomme P,Claeywwens M,et al.Limited proteolysis of the cellobiohydrolase I from T.reesei.FEBS Lett,1986,204:223-227
    26.孔凡德,刘建新.纤维素酶在畜牧业中的应用[J].黑龙江畜牧兽医,2001,4:13
    27.杨永彬,黄谚谚,林跃鑫.纤维素酶的结构及分子多样性.生命的化学,2004,24(3):211-213
    28.Henrissat B,Bairoch A.New families in the classification of glycosyl hydrolases based on amino acidsequence similarities.Biochem J,1991,280(2):309-316
    29.Davies G J.Structure studies on cellulase.Biochem Soc Transact,Struct London,1995,3(9):853-859
    30.Henrissat B,Davies G J.Structural and sequence-based classification of glyciside hydrolases.Curr Op Struct Biol,1997,7(5):637-644
    31.McCarter J P,Withers S G.Mechanisms of enzymatic glycoside hydrolysis.Curr Po Struct Biol,1997,4:885-892
    32.Alzari P M,Souchon H,Dominguer R.The crystal structure of endoglucanase CelA,a family 8 glycosyl hydrolase from Clostridium-thermocellum,Struct,1996,4:265-275
    33.Davies G J,Tolley S P,Henrissat B.Structures of oligosaccharide-bound forms of the endoglucanase V from Humicola insolens at 1.9 A resolution.Biochem,1995,34(49):16210-16220
    34.赵荣乐.纤维素酶研究进展.喀什师范学院学.2005,6(26):51-54
    35.Wood T M,Mccrae S I.Sinergism between enzymes involvement in the solubilization of native cellulose.Adv Chem Ser,1979,181:181-209
    36.Rodionoba N A,Martinovich L I,Smirova N I.Proc.2nd Int.Symp Bioconv Biochem Eng,IIT Delhi,March,1980
    37.Berghem L E R,Petersson L G,Axio-Fredrikwwon U B.The mechanism of enzymatic cellulose degradation.Purification and some properties of two different 1,4-β-D-glucan glucanohydrolase from Trichoderma virid.Eur J Biochem,1976,61(2):621-630
    38.Wood T M.Properties and mode of action of cellulases.Wilke C R(Ed).Biotechnology andbioengineering symposium,No.5..Cellulose as a chemical and energy resource.conference proceedings,Berkeley,CA,U.S.A.,Jun.25-27,1974,ILLUS.John Wiley And Sons:New York,N.Y.,U.S.A.,London,England,1975,361:111-137
    39.Selby K,Maitland C C.Biochem J,1965,104(3):716-724
    40.Bayer E A,Chanzy H,Lamed R.Cellulose,Cellulases and Celluosemes[J].Curr Opin Stract Boil,1998,8(5):548-557
    41.闫训友,刘志敏,史振霞,张惟广.纤维素酶在食品工业中的应用进展.食品工业科技,2004,10:141-142
    42.吴大付,任秀娟,李东方,张喜焕,宋玉忠.纤维素酶的应用现状与前景.广西 轻工业,2007,12:1-2
    43.关铜,张世华.纤维素酶在饲料工业中的研究与应用[J].贵州畜牧兽医,2003,27(5):7-9.
    44.胡利勇,钟卫鸿.纤维素酶基因克隆及其功能性氛基酸研究进展[J].生物技术,2003,4:43-44
    45.李越中,胡玮,吴斌辉.纤维堆囊菌的代谢产物及其生物学活性分析[J].微生物学报,2001,41(6):716-722.
    46.圈华.纤维素醉在养殖业中的应用前景。畜禽业,2005,3:21-22
    47.李大婧,刘春泉,王振宇.纤维素酶及其在天然产物开发中的应用[J].江苏农业科学,2005,6:140-141.
    48.曾傲,叶君.纤维素酶水解及其在能源与环境保护中的应用.广东化工,2005,10(162):25-28
    49.李明华,张大伟,楚杰等.饲料纤维素酶的研究与应用进展.新进展,2006,7:29-32
    50.冯群策.浅谈酶法脱墨技术.西南造纸,2002,6:37.
    51.Watanabe H,TokudaG.AnimalceHulases.Cell MofLlye Scf.2001,58(9):1167-1178
    52.李燕红,赵辅昆.纤维素酶的研究进展.生命科学,2005,5(17):395-397
    53.Scrivener,A.M.and M.Slaytor.Properties of the endogenous cellulase from Panesthia cribrata Saussure and purification of major endo-β-1,4-glucanase components.Insect Biochem.Molec.Biol.1994,24(3):223-231.
    54.Smant G,Stokkemans J P,Yan Y T,et al.Endogenous cellulases in animals:isolation of beta.1.4.endoglucanase genes from two species of plant-parasitic cyst nematodes.Proc NatlAcad Scf U,1998,95(9):4906-4911
    55.Watanabe H,Noda H,Tokuda G,et al.A cellulase gene of termite origin.Nature,1998,394(6691):330-331
    56.胡寅,莫建初.国内外纤维素酶研究概况.城市害虫防治,2003,2:4-12
    57.杨艳,任楗等.纤维素酶酿酒酵母工程菌的研究进展.微生物学杂志,1997,4(17):45-49
    58. Tokuda, G., Lo, N., Watanabe, H., Slaytor, M., Matsumoto, T., Noda,H. Metazoan cellulase genes from termites: intron/exon structures and sites of expression. Biochim. Biophys. Acta, 1999,1447: 146-159
    59. Nakashima, K., Azuma, J. Distribution and properties of endo-β-1,4-glucanase from a lower termite,Coptotermes formosanus(Shiraki). Biosci. Biotechnol. Biochem, 2000, 64: 1500-1506.
    60. Nakashima, K., Watanabe, H., Saitoh, H., Tokuda, G., Azuma, J. Dual cellulose digesting system of the wood-feeding termite,Coptotermes formosanus (Shiraki).Insect Biochemistry and MolecularBiology, 2002, 32: 777-784.
    61. Gaku Tokuda a, Hitoshi Saito b, Hirofumi Watanabe b .A digestive -glucosidase from the salivary glands of the termite,Neotermes koshunensis (Shiraki):distribution, characterization andisolation of its precursor cDNA by 5'-and 3'-RACE amplifications with degenerate primers .Insect Biochemistry and Molecular Biology, 2002, 32 : 1681-1689
    62. Tokuda, G.,et al. Major alteration of the expression sit of endogenous cellulose in members of an apical termite lineage ,Molecular Ecology, 2004,10: 3219-3228
    63. Scrivener A M, Rose H A, Rose H A . Symbiont independent digestion of cellulose and starch in Panesthia cribrata saussure,an Australian wood-eating cockroach. Journal of Insect Physiology, 1989, 35: 935-941
    64. Y. An, J. Ji, W. Wu, et al, A rapid and efficient method for multiple-site mutagenesis with a modified overlap extension PCR, Appl Microbiol Biotechnol, 2005, pp: 774-778.
    65. X.H. Qi, R.B. Huang, Improve and application of DNA shuffling on microbiology enzyme, Biotechnology, 2005, 14: 72-74.
    66. Attila Nemeth, Szilard Kamondi, Andras Szilagyi. Increasing the thermal stability of cellulase C using rules learnedfrom thermophilic proteins: a pilot study. Biophysical Chemistry, 2002,132: 229-241
    67. Yun-Can Ai , Sheng Zhang , David B. Wilson Positional expression effects of cysteine mutations in the Thermobifida fusca cellulase Cel6A and Cel6B catalytic domains. Enzyme and Microbial Technology, 2003, 32: 331-336
    68.JinFeng NI,Motomi T.Heterologous Overexpression of a Mutant Termite Cellulase Gene in Escherichia coli by DNA Shuffling of Four Orthologous Parental cDNAs.Biosci.Biotechnol.Biochem,2005,29(9):1711-1720
    69.Sanni P.V,Harry B,Markus B.L.Heterologous expression of Melanocarpus albomyces cellobiohydrolaseCel7B,and random mutagenesis to improve its thermostability.Enzyme and Microbial Technology,2007,41:234-243
    70.Veivers,P.C,Brien,R.W,Slaytor,M.Selective defaunation of Mastotermes darwiniensis and its effect on cellulose and starch metabolism.Insect.Biochem,1983,13(1):95-101
    71.I.Kubo,K.Fujita and S.H.Lee.Antifungal mechanism of polygodial.J.Agric.Food Chem.2001,49(12):1607-1611
    72.Holland,P.W.H.& Hogan,B.L.M.Spatially restricted patterns of expression of the homeobox-containing gene Hox-2.1 during mouse embryogenesis.Development,1988,102:159-174
    73.Retief,L.W.and Hewitt,P.H.Digestive β-glycosidases of the harvester termite,Hodotermes mossambicus:properties and distribution.J.Insect Physiol.1973,19:1837-1847
    74.张大羽,褚永.黄胸散白蚁和台湾家白蚁不同品级虫体内纤维素酶的活性.浙江大学学报,2007,27(1):1-4
    75.Potts,R.C.and Hewitt,P.H.The partial purification and some properties of the cellulase from the termite Trinervitermes trinervoides(Nasutitermitinae).Comp.Biochem.Physiol.1974,47B:317-326.
    76.Rouland C,Civas A,Renoux J,et al.Purification and properties of cellulases from the termite Macrotermes mulleri(Termitidae,Macrotermitinae)and its symbiotic fungus Termitomyces sp..Comp Biochers Physiol,1988,91B:449-458
    77.Afonso Ferreira,Stéphane Pérennes,HervéRivano.Fractional Coloring of Bounded Degree Trees
    78.刘纯强,王祖农.纤维素酶基因克隆及应用前景[J].生物工程进展,1991,11(3):8-15
    79.Tokuda,G.,et al,.Major alteration of the expression sit of endogenous cellulose in members of an apical termite lineage,Molecular Ecology,2004,10:3219-3228
    80.J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯.分子克隆实验指南(第二版)[M].北京,中国科学出版社,2002
    81.F.奥斯伯,R.布伦特,R.E.金斯顿等.精编分子生物学实验指南[M].北京,中国科学出版社,1998
    82.J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯.分子科隆实验指南(第二版)[M].北京,中国科学出版社,2002
    83.pYES2 Catalog no.V825-20,Version J 8 April,2004:28-0053.
    84.X.H.Qi,Y.T.Wei,R.B.Huang.Gene cloning and expression of glycerol dehydratase from Citrobacter freundii in Escherichia coli,Industrial Microbiology,2005,pp:10-13.
    85.F.M.Ausubel,Short Protocols in Molecular Biology,4th ed.,John Wiley & Sons,2005.
    86.E.F.F.J.Sambrook,T.Maniatis.(Ed.)Molecular Cloning(2nd ed),Cold Spring Harbor Laboratory Press,1989.
    87.MM B:A rapid and sensitive method for the quantitation of microgrom quantities of protein utilizing the principle of protein-dye binding.Anal Biochem 1976;72:248-254
    88.刘德海,杨玉华,安明理,陈小鸽.纤维素酶酶活的测定方法中国饲料,2002,17:88-91
    89.王大成.蛋白质工程.化学工业出版社,2002
    90.Shahram Ki,Linda A.G,Hirofumi W.Structure of an endoglucanase from termite,Nasutitermes takasagoensis.Acta Cryst,2002,58:653-659
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.