好氧降解—厌氧过滤新工艺处理城市生活污水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然我国拥有丰富的水资源,但由于人口众多,水资源的人均占有量仅为世界人均占有量的四分之一。随着经济的发展、人口的增加,当前水污染问题已越来越严重,全国工业和城镇生活污水排放总量每年呈上升趋势,全国工业污水排放的达标率仍然不太高,而生活污水因其量大、排放分散,集中处理尤为困难。水污染和水资源短缺所引发的政治、经济问题已成为我国某些地区最为棘手的难题,加强水污染控制的政策力度、增加水污染治理的各项投入对我国政府而言显得格外重要和紧迫。
     但由于我国是发展中国家,排污治理的经费比较紧张,再加上各地经济发展的不平衡,加重了污水治理的难度,开发处理高效、适用面广、构筑简单、处理成本低廉的污水治理工艺就越来越显得十分必要。
     本文就是立足于开发出污水处理新工艺,并做了有益的尝试,在广泛吸取城市生活污水处理技术的基础上,先探求通过短时曝气,寻求去除污水负荷量高的工艺构筑形式;然后在此基础上进一步完善脱氮除磷的效果,延长处理材料的使用时间,并形成完整的处理工艺体系;再确定工艺参数,分析得出最佳工艺,并进行应用推广。
     试验结果表明:
     ①组合工艺试验中:CODcr的去除效果较好,在进水CODcr浓度为500.00mg/L以内,去除率可达到75.00%,若进水CODcr浓度控制为350.00mg/L以内,去除率可升高为80.00%;另外,浊度的去除效果较好,其去除率为80.00%以上;但TN、TP的去除效果并不理想,TN的去除率为65.00%,TP的去除率却仅为40.00%,TN、TP的出水浓度不能满足污水排放要求;另外,由于污水的进水有机负荷较高,蛭石很快就出现饱合。
     ②改进工艺:通过此阶段试验结果发现,出水水质指标中CODcr、TN、TP、浊度以及pH都达到污水排放要求,对污染物负荷去除的效果好;采用在好氧降解-厌氧过滤池中加入KMT生物膜载体,进一步改善好氧(曝气)反应区间的处理条件;蛭石填料经过较长时间的运行,未出现饱合,分析得知,在蛭石层中较好实现有机污质的物质能量代谢平衡,从而延长蛭石处理的时间,解决了蛭石再生问题。
     ③最佳工艺:基于理论与实践的很好结合,探索出一种新的污水处理工艺流程。城市生活污水首先经过初次沉淀,除掉泥沙,避免了蛭石填料被堵塞;出水再经过好氧降解-厌氧过滤反应装置,控制HRT为3h;最后出水再流入沉淀-结晶反应池进行后续除磷,控制HRT为0.5h;整个主体工艺处理时间控制在HRT为3.5h。通过以上处理工艺流程,污水处理出水中,CODcr去除率达到83.00%,TN去除率达到75.00%,TP去除率达到93.00%,浊度去除率达到86.00%;处理效果稳定,泥龄时间(SRT)较长、排泥量少,蛭石填料处理时间长且不需要再生;运行成本为0.31元/吨,不失为一种经济可行的处理方法。
     ④好氧降解-厌氧过滤池能较好的去除有机负荷,处理效果好,既可单独作为污水处理工艺,又可同其它工艺结合使用,因此,该工艺可以满足不同工艺要求,适用范围广;另外,试验中测定分析关于蛭石的一些数据,可为蛭石在污水处理工艺中的进一步利用提供参考。
Althought the water resources in China are rich, the proportion of water per hand is only 1/4 of the word's average because of the large population. With the devolepment of economic and addition of population, the problem of water pollution is getting more and more serious. Up to now in china, National industry and town domestic sewage emission mass annually ascent tendency. National industrial offbent emission satisfaction of standard rate is still lower. Whereas domestic sewage emission mass is immensity and variance, thus concentrating treatment is difficult espically. In some area, political and economical promlems caused by pollution and lacks of water have been the most difficult issue to handle. It is very important and urgent for authorities to reinfore the regulation of water pollution control (WPC) and increase the investment of water pollution treatment.
    Whereas China is a developing country, sewage water processing expenditures are exiguous and the economic development is off-balance, which aggravate the difficulty for treatment of sewage. It is very necessary to research techinics of high efficiency, inclusive appliance, simple construction and low cost.
    The foothold paper is to research new techinic of sewage treatment, and do some intendional attempts. On the basis of extensive learning from techinics of the municipal sewage treatment, attempts are made first to explore the technical structure form with high loading capacity for disposing sewage by the short-time effictiveness aeration, and further perfect nitrogen and phosphorus reduction effictiveness. According to the experiment outcome, prolong the duration of the processing materials, thus form a complete disposal technological system. Afterwards difine processing parameters and optimum techinics. Testing result manifestation:
    Composite process examination: CODcr removal efficiency is good. If sewage inflow concentration is below 500.00mg/L, removal efficiency is 75.00%. If sewage inflow concentration is below 350.00mg/L, removal efficiency is 80.00%. In addition, turbidity removal efficiency is also good, which is above 80.00%. However, TN and TP removal efficiency are poor. Removal efficiency for TN is 65.00%, while removal efficiency for TP is only 40.00%, Thus TN and TP discharge concentration aren't able to meet at the emission standard of sewage. Moreover, because the sewage inflow concentration is high, vermiculite will get impregnated in a short time.
    Improvement techinics. As indicated in this experiment, sewage outlet concentration of CODcr, TN, TP and turbidity value are able to meet at the emission standard of sewage with a good effect. KMT is used in the aerobic degeradation-anaerbic filtration apparatus to improve the process condition in the aerobic aeration reaction zone. Vermiculite stuffiness do not get impregnated after a long time. It can be known from the analysis that it is advantageous to form a stabilization multiplicate ecological system in the vericulite bed, which can prolong the processing duration of the vermiculit and solve the question of vermiculite regenation.
    Optimun techinic. On the basis of the combination of theory and practice, new techinic of urban domestic sewage treatment has been worked out, mud and sand are removed first through preliminary sedimentation, lest vermiculite stuffiness is clogged. HRT can be kept at 3h after the sewage is processed through degeradation-anaerbic filtration apparatus, then sewage inflow in the precipitation-crystallization reactor where subsequent phosphorus is removed and HRT will stay 0.5h. All the pocessing time is below 3.5 h. As for processing outcome, the removal of CODcr is 83.00%, TN 75.00%, TP 93.00% and turbidity 86.00%. Treament effictiveness is prefect, SRT is longer, sludge mass is lower, vermiculite stuffiness do well in a long time, thus vermiculite need not be regenerated. With a running cost of 0.31 Yuan/t, this new technic is fit for the treatment of urban domestic sewage.
    It is quite good for organic loading removed not only in the aerobic degerad
引文
[1]宋瑞祥.对我国环境、资源与可持续发展战略问题的是思考[J].环境保护,1998,(7):9-11
    [2]中国可持续发展水资源战略研究综合报告[J].中国水利报,2000.11(3):14-16
    [3]何强、井文永.环境学导论[M].清华大学出版社,1994:163-166
    [4]杨士弘等编著.城市生态环境学[M].科学出版社,1997:146-149
    [5]王建华等.中国水环境态势与方略[J].农业环境与发展,1999,59(1):8-12
    [6]国家环保总局技术政策与标准处.城市污水处理技术[J].产业周刊,2001,3:15-17
    [7]时红等.水质分析方法与技术[M].地震出版社,2001:8-12
    [8]刘玲花.水污染防治主要手段分析[J].中国水利报.2002,13(3):12-13
    [9]林英.关于我国水污染防治的思考[N].光明日报.2001-10-14(4)
    [10]国家环保总局.2001年中国环境状况公报[J].环境保护,2002,6:3-10
    [11]王玉庆.中国主要环境污染问题和对策[J].世界环境,1994,3:3-6
    [12]陈兴昊.中国水环境污染现状及防治对策[J].世界环境,1995,4;40-43
    [13]国家环保总局.1997年中国环境状况公报[J].环境保护,1998,7:3-8
    [14]废水微波处理技术.“21世纪国际城市污水处理资源化战略研讨会与展览会”会议论文,2002,3(16)
    [15]许保玖、龙腾锐,当代给水与废水处理原理[M].高等教育出版社,2000:262-290
    [16]张希衡等.水污染控制工程[M].冶金工业出版社,1993,2:14-18
    [17]高廷耀等.水污染控制工程[M].高等教育出版社,1989,10:35-40
    [18]陈英旭等.环境学[M].中国环境科学出版社,2001:218-238
    [19]郑铭等.环保设备—原理、设计、应用[M].化学工业出版社,2001,4:172-174
    [20]李长春.水污染治理工程存在的问题与对策[J].山东环境,1995,65(2):24-25
    [21]吴瞬泽等.中国流域水污染分析[J].环境科学与技术,2000,89(2):1-6
    [22]杨鲁豫等.适宜中小城镇的水污染控制技术[J].中国给水排水,2001,17(1):23-25
    [23]张志杰.环境工程手册[M].北京:高等教育出版社,1996,10:23-29
    [24]林宣狮.小区废水处理工程手册[M].中国环境科学出版社,1989,3:103-108
    [15]邵林广.南方城市污水处理工艺的选择[J].给水排水,2000,26(6):32-34
    [26]顾夏声.水处理工程[M].清华大学出版社,1985:69~71
    [27]于衍真.小型城镇水污染控制[J].山东建材学院学报,1994,8(2):43-46
    [28]郭笃发、姜爱霞,污水土地处理系统的应用与分析[J].环境科学进展,1995,3(6):64-70
    [29]白晓慧等.寒冷地区污水处理厂的设计与运行管理[J].给水排水,1999,25(7):18-22
    [30]刘铁.城市污水处理厂出水回用技术与实践[J].净水技术.2001,20(1):28-30
    [31]龙小庆等.生物活性滤池的特性研究[J].给水排水.2001,27(5):6-7
    [32]杨健等.厌氧好氧生物滤池处理城镇生活污水的研究[J].环境导报,2000,4:16-18
    [33]杨宗政等,校园生活污水处理新技术[J].城市环境与城市生态.2000,15(5):14-16
    [34]张永吉.厌氧预处理对曝气耗氧量削减作用和机理[J].给水排水,1999,25(4):16-19
    [35]李亚新、华玉妹.生物曝气滤池处理生活污水工艺特性的研究[J].给水排水,27(9):31-32
    [26]唐受印等.废水处理工程[M].化学工业出版社,1998:284-286、250-351、221-223
    [37]余德辉等.城市污水处理及污染防治技术指南[M].中国环境科学出版社,2001:258-260
    [38]Design Manual: Phosphorus Removal[P]. EPA Techology Transfer, EPA/625/1-87/001,1987-06-25
    [39]顾夏声.废水生物处理数学模式[M].北京:清华大学出版社,1993:102-105
    [40]丁文明、黄霞.废水吸附法除磷研究进展[J].环境污染治理技术与设备,2002,10:23-27
    [41]K.Urano, et al. Process development for removal and recovery of phosphorus from wastwater by a new absobent.1.prepation method and adsorption capacity of a new adsorbent[J], Ind. Eng. Chem. Res, 1991,30:1893-1896
    [42]K.Urano, et al. Process development for removal and recovery of phosphorus from wastwater by a new absobent.2.adsorption rates and breakthough curves[J]. Ind. Eng Chem. Res, 1991,30:1897-1899
    [43]K.Urano, et al. Process development for removal and recovery of phosphorus from wastwater by a new absobent.3.desorption of phosphate and regeneration of adsorbent[J]. Ind. Eng. Chem. Res, 1992,31:1510-1513
    
    
    [44] K.Urano, et al. Process development for removal and recovery of phosphorus from wastwater by a new absobent.4.recovery of phosphate and aluminum from desorbing solution[J]. Ind. Eng. Chem. Res, 1992,31:1513-1515
    [45] O.Bastin. Phosphorus removal by a sythetic iron oxidegypsum compound[J]. Ecological Engineering, 1999, 12:339-351
    [46] A.Ookubo. Phase transition of Cl intercakated hydroatalcite-like compound during ion exchange with Phosphates[J] .Langmuir, 1994,10(2):407-411
    [47] R.A.Mann,et al. Phosphorus removal in constructed wetlands using gravel and industrial waste substrata[J]. Wat. Sci. Tech., 1993,27(1):107-113
    [48] H.Yamada,et al. A foundamental research on phosphate removal by using slag[J]. Wat. Res., 1986,20(5):547-557
    [49] L.Johansson. Phosphate removal using blast furnace slags and opoka-mechanisms[J]. Wat. Res., 2000,34(1):259-265
    [50] L.Johansson. The use of lecafor the removal of phosphorus from wastewater[J]. Wat. Sci. Tech., 1997,35(5):87-93
    [51] B. R. James. Phosphorus sorption by peat and sand amended with iron oxides or steel wool[J]. Wat. Env. Res., 1992, 64(5):699-705
    [52] 许保玖、龙腾锐.当代给水与废水处理原理[M].高等教育出版社,2000,2:535-537
    [53] 朱还兰等.SBR生物除磷工艺的研究[J].上海环境科学,1993,12(8):24-26
    [54] 徐乐中.pH值碱度对脱氮除磷效果的影响及其控制方法[J].给水排水,1996,22(3):14-17
    [55] Grady C P L Jr, Daigger G T and Lim H.C.Biological Wasterwater Treatment[M]. 1999:167-169
    [56] Comeall Y J et al. Phosphate Release and Uptake in Enchanced Biological Biological Phosphorus Removal from Wastewater[J]. J Water Pollut. Control, 1987, 2:32-34
    [57] Goreua T J et al. Production of NO_2 and N_2O by Nitrifying Bacteria at Reduced Concentration of Oxggen[J]. Applied and Environmental Microbiology, 1980, 15(3): 19-20
    [58] 郑兴灿.污水生物除磷机理评述[J].环境科学,1990,11(1):14-17
    [59] 刘培桐、薛纪渝.环境学概论[M].高等教育出版社,1995:71~76
    [60] 朱雁伯.中国城市污水处理事业发展现状与趋势[J].中国水工业.2002,3:17-20
    [61] 胡家骏、周群英.环境工程微生物学[M].高等教育出版社,1987:89~90
    [62] 朱亮等.EM在污水生物降解中的实验研究[J].环境工程,2000,12(9):15-19
    [63] 吕锡武等.氨氮废水处理过程中的好氧反硝化研究[J].给水排水,2000.26(4):21-24
    [64] 张林生等.石灰沉淀结晶法处理高浓度含磷废水[J].给水排水,2002,28(5):13-15
    [65] 严煦世.水和废水技术研究[M].中国建筑工业出版社,1992:450-590
    [66] 钱易.现代废水处理新技术[M].中国科学技术出版社,1993:19-31
    [67] 宗功宫.污水除磷脱氮技术[M].中国环境科学出版社,1987:178-182
    [68] 马文漪、杨柳燕.环境微生物工程[M].南京大学出版社,1996:145-146、192-193
    [69] 孟范平等.系统评价EM菌液在生活污水处理中的应用效果[J].城市环境与城市生态,1999,(5):4-7
    [70] 岑运华等.絮凝沉降处理含磷废水的研究.污染防治技术研究与开发[M].环境科学出版社,1998:143-150
    [71] 曾薇等.供氧方式对法硝化过程控制的影响[J].环境化学,2002,21(6):571-575
    [72] 周少奇等.氧化沟同时硝化反硝化的生物脱氮机理[J].环境科学与技术,2002,25(6):3-4
    [73] 耿金菊等.混合脱氮微生物菌群的高密度培养[J].环境科学研究,2002,15(5):22-25
    [74] 王树乾等.蚯蚓微生物滤池处理城镇生活污水的研究[J].环境导报,2002,5:14-15
    [75] 曾科等.污水处理厂设计与运行[M].化学工业出版社,2001:23-43
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.