多物理场耦合条件下金属与陶瓷(金属)的扩散连接界面结构特征及力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文将机械合金化和自蔓延高温合成技术相结合提出了电场激活压力辅助燃烧合成技术(Field activated pressure assisted synthesis, FAPAS)。通过FAPAS工艺分别制备了(TiC-TiB2)/Ni-TiAl-Metal复合材料和(AlMgB14-TiB2)-Metal复合材料。复合材料的界面结构是决定合成材料力学性能的关键因素,为了研究异种材料的界面扩散情况,进行了异种金属材料Ti-Ni和镁合金AZ31B-Cu的扩散连接实验。通过OM(光学显微镜),SEM(扫描电子显微镜),TEM(投射电子显微镜),XRD(X射线衍射仪),维氏硬度计和万能材料试验机重点研究了在多物理场作用下(温度场、电场和应力场)复合材料的界面微观结构和扩散动力学问题,并分析了不同物理场参数对复合材料界面微观组织结构和力学性能的影响。
     利用B4C粉、Ti粉和Ni粉原位合成了(TiC-TiB2)/Ni复合陶瓷,合成的陶瓷层结构均匀细密,TiB2与TiC细小颗粒均匀地分布在Ni基体中。通过Al、Ti粉体反应形成金属间化合物放热的同时实现了复合陶瓷(TiC-TiB2)/Ni与Ti、Ta金属基板的连接,结合界面扩散充分,组织致密。研究发现电流和压力是影响(TiC-TiB2)/Ni复合陶瓷晶粒大小的主要物理参数。电流能够提高复合陶瓷烧结过程中的形核率,机械压力能够促进陶瓷颗粒在烧结过程中的破碎和重排,因此随电流和辅助压力的增大,复合陶瓷的晶粒变得均匀致密。对(TiC-TiB2)/Ni复合陶瓷的摩擦学行为进行了系统研究,分析了陶瓷相含量、摩擦载荷、摩擦温度和摩擦速度对复合陶瓷摩擦学行为的影响,研究结果表明摩擦系数随温度,载荷和速度的增加而变小,磨损率随温度的升高而降低,随载荷和速度的提高而增大。在高温摩擦过程中摩擦表面形成了TiO2、B2O3和Fe2O3润滑薄膜,薄膜量随摩擦温度,载荷和速度的增大而增多,在高温环境中(TiC-TiB2)/Ni复合陶瓷的摩擦机制主要由界面氧化反应所决定。磨损实验表明含陶瓷相(TiC-TiB2)为80%的复合陶瓷具有较好的摩擦磨损性能。
     采用上述实验方法,通过FAPAS技术利用B、Mg、Al和TiB2粉体合成了超硬材料AlMgB14-TiB2并同步实现了与金属基板Mo和Nb的连接。研究发现B元素在材料合成和连接过程中有比较显著的扩散特点,形成了界面硬度从金属基体到AlMgB14-TiB2层呈递增的特征。AlMgB14-TiB2表层的硬度最高达到了3801HV1.0,连接界面硬度在2000HV1.0左右。
     FAPAS实验条件下连接界面金属间化合物的形成机制和力学性能的研究对提高陶瓷-金属异质材料连接和复合材料制备工艺具有理论意义。FAPAS条件下Ti-Ni的扩散界面按时间依次生成了TiNi3、Ti2Ni和TiNi。 TiNi3、Ti2Ni和TiNi金属间化合物的厚度随实验温度的升高和扩散时间的增长而增加,厚度随时间的增长符合抛物线规律,其中温度场对TiNi形成的影响较大。剪切实验表明所形成金属间化合物的抗剪切强度排序为TiNi>Ti2Ni>TiNi3,断裂形式为脆性沿晶断裂,断裂位置与中间生成物的厚度存在一定的对应关系。
     FAPAS条件下镁合金AZ31B-Cu的扩散连接表明界面扩散层主要由Cu2Mg和Mg2Cu组成。温度是影响AZ31B-Cu扩散的主要参数,元素Al在高温下具有较高的扩散能力,进而能够影响界面生成相的种类和宽度。元素Al主要通过形成MgAlCu化合物的形式影响界面的微观组织结构。总之,异种金属的扩散实验研究表明,电流可以显著降低扩散激活能,促进界面反应。
     通过异种金属电场激活扩散连接实验,提出了“微区界面扩散相图”的概念。界面扩散相图是两种材料在界面微区发生局部扩散反应时界面新相的生成规律,微区界面扩散相图的提出有助于深入了解和揭示外加物理场条件下异种材料的连接冶金学规律。
In this paper, the Field activated pressure assisted synthesis (FAPAS) was developed based on the Metal Alloy (MA) and Self-propagating-High-temperature Synthesis (SHS). The composite materials of (TiC-TiB2)/Ni-TiAl-Metal and (AlMgB14-TiB2)-Metal was fabricated by FAPAS. The interfacial structure was the key factor to determine the mechanical properties of the composite materials. In order to invertigate the diffusion process of the dissimilar materials, the Ti and Ni, Mg and Cu were also bonded together by FAPAS. The OM, SEM, TEM, XRD, hardness tester and materials testing machine was used to investigated the diffusion process and the interfacial microstructure. The effect of the testing parameters on the mechanical propertied of the composite materials was also analyzed.
     (TiC-TiB2)/Ni composite ceramic, the top layer of the composite materials, was prepared in-situ by the combustion synthesis process using Ni, Ti and B4C powders as raw materials. The intermetallic of TiAl was synthesized using Ti and Al as raw materials and at the same time, the composite ceramic of (TiC-TiB2)/Ni was bonded with metal substrate of Ti or Ta. The bonding interface was well and no defects were found at the interface. Fine grained particles are distributed homogeneously in the Ni matrix, with grain size ranging from0.2to1.0μm, which indicates that the full reaction has been completed during the experiments. It had been found that the current and pressure affected the microstructure of the composite ceramics substantially. TiB2and TiC particles comminuted to be broken up and rearranged due to the applied pressure and the current can increase the nucleation rate during the synthesis process. The friction and wear properties of the (TiC-TiB2)/Ni ceramic were evaluated by sliding against a GCr15disk at temperatures from ambient up to400℃. The experimental results showed that the friction coefficient of the (TiC-TiB2)/Ni ceramic decreased with increasing testing temperature, load, and sliding speed. However, the loss rate decreased at higher temperature and increased at higher load and higher sliding speed. The oxide films of Fe2O3, TiO2, and B2O3formed during the friction process played an important role in lubrication, which results in a smaller friction coefficient. The wear resistance of composites containing80%(TiC-TiB2) compared to70%(TiC-TiB2) shows a mild enhancement due to the high strength and high hardness of TiC and TiB2.
     Using powders of B, Mg, Al and TiB2as raw materials, the ultra hard material AlMgB14-TiB2was fabricated and bonded with Mo and Nb metal substrate at one step. It was indicated that the B diffused into the metal substrate more easily. There was a gradual increase in hardness from the metal substrate to AlMgB14-TiB2. The hardness increased from about2000HV1.0at the bonding interface to about3801HV1.0at AlMgB14-TiB2.
     Three intermetallic compounds were formed at the interface of Ti-Ni diffusion couples, i.e. Ti2Ni、 TiNi and TiNi3. The thickness of the three compounds increased as the diffusion temperature increased. Testing results showed a parabolic growth for all the three phases with the increase of the diffusion time. Compared with Ti2Ni and TiNi3, the TiNi compound was more easily affected by the diffusion temperature. The shear experiments showed that the fractures were mostly brittle, i.e. inter-crystalline. The fracture occurred at TiNi3when the Ti2Ni was thin, but it occurred at Ti2Ni when some TiNi3was consumed by Ti atom to form TiNi. The order of the mechanical properties of the three intermetallic compounds can be list as follows:TiNi>Ti2Ni>TiNi3.
     Two intermetallic compounds were formed at the interface of magnesium alloy-Cu diffusion couples, i.e. Cu2Mg and Mg2Cu. Just as the Ti-Ni experimental results, magnesium alloy-Cu interfacial testing results also show a parabolic growth for all two phases with the increase of the diffusion time. The diffusion rate of the Al was affected by the temperature substantially. Almost no MgAlCu formed at the interface at450℃, but it would formed at475℃, and the thickness of the MgAlCu compound would increase as the diffusion time increased. Eutectic layers was formed at500℃, and the distribution of the eutectic layer increased as the diffusion time increased.
     Compared with the traditional diffusion bonding, electric current can decrease the diffusion energy and promote the reaction dramatically. The diffusion energy of Ti2Ni, TiNi and TiNi3reduced by60%,48%and45%respectively. As for magnesium alloy-Cu couples, compared the diffusion energy of700A and750A respectively, the diffusion energy reduced by36.1%.
     Based on the experimental result, the interfacial diffusion phase diagram was depicted. The interfacial diffusion phase diagram is quite different form the equilibrium phase diagram. It was formulated to show the formation order of the phases of the diffusion couples. And it's of great importance to explore the mechanism of the diffusion process.
引文
[1]Zhen-Lin Yang, Jia-Hu Ouyang, Zhan-Guo Liu et al. Wear mechanisms of TiN-TiB2 ceramic in sliding against alumina from room temperature to 700 ℃ [J], Ceramics International, 2010,36:2129-2135.
    [2]Wen-Jun Li, Rong Tu, Takashi Goto. Preparation of directionally solidified TiB2-TiC eutectic composites by a floating zone method[J]. Materials Letters,2006, 60:839-843.
    [3]D. Vallauri, I.C. Atias Adrian, A. Chrysanthou. TiC-TiB2 composites:A review of phase relationships, processing and properties[J]. Journal of the European Ceramic Society,2008,28:1697-1713.
    [4]Chen Shaoping, Meng Qingsen, Liu Zefeng, et al. Graded materials of (TiB2)pNi with nickel substrate prepared by field-activated pressure-assisted synthesis process[J]. Journal Wuhan University of Technology, Materials Science Edition.2010,25(1):39-43.
    [5]Chen S.P., Meng Q.S., Zhao J.F. et al. Synthesis and Characterization of TiB2-Ni-Ni3Al-CrNi alloy graded material by field-Activated combustion[J]. Journal of Alloys and Compounds.2009,476:889-893.
    [6]朱德贵,尹显东,肖传春.原位合成TiB2-TiC-SiC陶瓷复合材料[J],西安交通大学学报,1999,34(01):71-75.
    [7]Das G, Mazdiyasni K S, Lipsitt H A. Mechanical properties of polycrystalline TiC[J]. Journal of the American Ceramic Society,1982,65(2):104-110.
    [8]Ramberg, Jeffrey R, Wolfe, Cynthia F, Williams, Wendell S. Resistance of Titanium Diboride to High-Temperature Plastic Yielding [J]. Journal of the American Ceramic Society, 1985,68(3):78-79.
    [9]M W Barsoum, et al. The Transient Plastic Phase Processing of Ceramic-Ceramic Composites [J]. JOM,1995, (11):52-55.
    [10]Telle, R., Sigl, L. and Takagi, K., Boride-based hard materials. In Handbook of Ceramic Hard Materials, ed. R. Riedel. Wiley-VCH, New York,2003,880:927-932.
    [11]C.L. Yeh, Y.L. Chen. Combustion synthesis of TiC-TiB2 composites [J], Journal of Alloys and Compounds,2008,463:373-377.
    [12]F.A. Deorsola, I.C. Atias Adrian, G.A. Ortigoza Villalba et al. Nanostructured TiC-TiB2 composites obtained by adding carbon nanotubes into the self-propagating high-temperature synthesis process[J], Materials Research Bulletin,2011,46:995-999.
    [13]KUMAR S, CHAKRABORTY M, SARMA V, et al. Tensile and wear behaviour of in situ Al-7Si/TiB2 particulate composites[J], Wear,2008,265:134-142.
    [14]KUMAR S, SARMA V, MURTY B S, High temperature wear behavior of Al-4Cu-TiB2 in situ composites[J], Wear,2010,268:1266-1274.
    [15]AKHTA F, Microstructure evolution and wear properties of in situ synthesized TiB and TiC reinforced steel matrix composites[J], J. Alloys Compd.,2008,459:491-497.
    [16]SUN G J, WU S J, SU G C, Research on impact wear resistance of in situ reaction TiCp/Fe composite[J], Wear,2010,269:285-290.
    [17]Jiang Xu, Wenjin Liu. Wear characteristic of in situ synthetic TiB2 particulate-reinforced Al matrix composite formed by laser cladding[J], Wear,2006,260:486-492.
    [18]B. A. Cook, J. L. Harringa, T. L. Lewis. A new class of ultra-hard materials based on AlMgB14[J], Scripta mater,2000,42:597-602.
    [19]B.A. Cook, J.S. Peters, J.L. Harringa. Enhanced wea resistance in AlMgB14-TiB2 composites[J], Wear,2011,271:640-646.
    [20]A.M. Russell, B.A. Cook, J.L. Harringa et al, Coefficient of thermal expansion of AlMgB14[J], Scripta Materialia46 (2002) 629-633.
    [21]Osama Gaballa, Jonathon H. Ball, Bruce Cook etal. Properties of AlMgB14 hot pressed with additions of ZrB2 and HfB2[J], Powder Technology 235 (2013) 968-974
    [22]V. Kevorkijan, S.D.Skapin, M. Jelen, K. Krnel, Cost-effective synthesis of AlMgB14-xTiB2[J], Journal of the European Ceramic Society 27 (2007) 493-497.
    [23]A. Ahmed, S. Bahadur, B.A. Cook et al. Mechanical properties and scratch test studies of new ultra-hard AlMgB14 modified by TiB2[J], Tribology International 39 (2006) 129-137.
    [24]刘雯.电场激活和压力辅助法制备AlMgB14基超硬复合材料及性能表征[D],太原理工大学,太原,2012.
    [25]T.L. Lewis, B.A. Cook, J.L. Harringa, et al. Al2MgO4, Fe3O4, and FeB impurities in AlMgB14[J], Materials Science and Engineering A,2003,351:117-122.
    [26]C. Higdon, B. Cook, J. Harringa et al, Friction and wear mechanisms in AlMgB14-TiB2 nano coatings[J], Wear 271 (2011)2111-2115.
    [27]Bruce A. Cook, Joel L. Harringa, James Anderegg et al. Analysis of wear mechanisms in low-friction AlMgB14-TiB2 coatings[J], Surface & Coatings Technology,2010,205: 2296-2301.
    [28]Zhanling Wu, Yizhen Bai, Wenchao Qu et al. Al-Mg-B thin films prepared by magnetron sputtering [J], Vacuum,2010,85:541-545.
    [29]Ce Yan, Z.F. Zhou, Y.M. Chong et al. Synthesis and characterization of hard ternary AlMgB composite fi lms prepared by sputter deposition[J]. Thin Solid Films,2010, 518:5372-5377.
    [30]谭小桩,贾光耀.自蔓延高温合成技术的发展与应用[J].南方金属,2005,146:5-9.
    [31]Munir Z.A. Synthesis of High-Temperature Materials by Self-Propagating Combustion Methods [J]. Ceramic Bulletin,1998,667(2):342-349.
    [32]Munir Z.A, Umberto ANSELMI-TAMBURINI. Self-Propagating Exothermic Rection: The Synthesis of High-Temperature Materials by Combustion [J]. Materials Science Report, 1989,3:277-365.
    [33]Holt J B. The Fabrication of SiC, Si3N4 and A1N by Combustion Synthesis [J]. Ceramic Components for engines,1983,3(2):721~728.
    [34]肖国庆,范群成,顾美转。TiC-Ti复合材料自蔓延高温合成中的组织转变[J],稀有金属材料与工程,2005,34:1592-1596.
    [35]苏娟,钱东浩,周小新.自蔓延高温合成多孔陶瓷(Al2O3-TiB2)的研究[J],粉末冶金技术,2006,24:24-28.
    [36]Binglin Zou, Ping Shen, Qichuan Jiang. Dependence of the SHS reaction behavior and product on B4C article size in Al-Ti-B4C and Al-TiO2-B4C systems[J], Materials Research Bulletin,2009,44:499-504.
    [37]Ya-feng Yang, Hui-yuan Wang, Yun-hong Liang. Fabrication of steel matrix composites locally reinforced with differentratios of TiCTiB2 particulates using SHS reactions of Ni-Ti-B4C and Ni-Ti-B4C-C systems during casting[J], Materials Science and Engineering A, 42007,45-446:398-404.
    [38]P. Kerdkool, S. Niyomwas. Preparation of Steel Pipe Lined Fe-Al Intermetallic-TiB2-Al2O3 Composite by Centrifugal-SHS Process[J], Procedia Engineering, 2012,32:642-648.
    [39]张利平,张国珍,张久兴.叠层加压SPS烧结制备梯度硬质合金[J],稀有金属材料与工程,2006,35(1):70-73.
    [40]路新,何新波,曲选辉.放电等离子烧结制备高铌TiAl合金[J],稀有金属材料与工程,2008,37:2231-2235.
    [41]Mirva Eriksson, David Salamon, Mats Nygren. Spark plasma sintering and deformation of Ti-TiB2 composites [J], Materials Science and Engineering A,2008,475:101-104.
    [42]Dongtao Jiang, Dustin M. Hulbert, Joshua D. Kuntz et al. Spark plasma sintering:A high strain rate low temperature forming tool for ceramics[J], Materials Science and Engineering A, 2007,463:89-93.
    [43]Izabel Fernanda Machado, Luca Girardini, Ivan Lonardelli et al. The study of ternary carbides formation during SPS consolidation process in the WC-Co-steel system[J], Int. Journal of Refractory Metals & Hard Materials,2009,27:883-891.
    [44]杨俊逸,李小强,郭亮等.放电等离子烧结(SPS)技术与新材料研究[J],材料导报,2006,20:94-97.
    [45]徐亚东,徐桂英,葛昌纯.叠层加压SPS烧结制备梯度硬质合金[J],稀有金属材料与工程,2006,35:70-73.
    [46]Gotman I, Travitzky N.A, Gutmanas E.Y. Dense in situ TiB2/TiN and TiB2/TiC ceramic matrix composites:reactive synthesis and properties[J]. Materials Science and Engineering A, 1998,244:127-137.
    [47]朱德贵等.原位合成TiB2-TiC-SiC陶瓷复合材料[J].西南交通大学学报,1999,34(1):71-75
    [48]Wen Liu, Yang Miao, Qingsen Meng et al. Structural Characterization of AlMgB14 Prepared by Field-activated, Pressure-assisted Synthesis[J]. Journal of Materials Science and Technology,2013,29:77-81.
    [49]Liang Lianjie, Meng Qingsen, Chen Shaoping, et al. Synthesis of TiB2-TiC-Ni/TiAl/Ti Functionally Gradient Materials by FAPAS Process[J]. Rare metals,2011,30:467-471
    [50]Wenhao Fan, Ruixue CheN, Liqi Wang et al. First-Principles and Experimental Studies of Y-Doped Mg2Si Prepared Using Field-Activated Pressure-Assisted Synthesis[J], JOURNAL. ELECTRO. MATERIALS,2011,40:1209-1214.
    [51]Roberta Licheri, Roberto Orru, Clara Musa et al. Combinati on of SHS and SPS Techniques for fabrication of fully dense ZrB2-ZrC-SiC composites[J], Materials Letters, 2008,62:432-435.
    [52]Roberta Licheri, Sarah Fadda, Roberto Orru et al. Self-propagating high-temperature synthesis of barium titanate and subsequent densification by spark plasma sintering (SPS) [J], Journal of the European Ceramic Society,2007,27:2245-2253.
    [53]张久兴,岳明,宋晓艳等.放电等离子烧结技术与新材料研究[J].功能材料,2004,35:94-105.
    [54]Dustin M. Hulbert, Andre Anders, Joakim Andersson et al. A discussion on the absence of plasma in spark plasma sintering[J], Scripta Materialia,2009,60:835-838.
    [55]Olevsky E A, Kandukuri S, Froyen L. Consolidation enhancement in spark-plasma sintering:Impact of high heating rates[J]. Journal ofApplied Physics,2007,102(11):114913
    [56]Huntington H. B., Nowick A. S, Burton J. J. Diffusion in Solids [M]. New York: Academic Press,1975:306.
    [57]Yusef Fahmy, Hans Conrad. Electro sintering of iron powder compacts [J].Metallurgical and Materials Transactions A,2001,32(13):811-819
    [5]乔亚霞.电场加压辅助燃烧合成技术及电场的作用研究[J].江苏陶瓷,2002,35(2):8-11.
    [59]李亚江.特殊及难焊材料的焊接[M].北京:化学工业出版社,2004,204-224.
    [60]杨伟群,李树杰.陶瓷-金属的连接工艺[J].航空制造工程,1998(1):17-19
    [61]钱耀川,丁华东,傅苏黎.陶瓷-金属焊接的方法与技术[J].材料导报,2005,19(11):98-104
    [62]李亚江.特种连接技术[M].北京:机械工业出版社,2007,158-159.
    [63]冯吉才,刘会杰,韩胜阳.SiC/Nb/SiC扩散连接接头的界面构造及接合强度[J].,焊接学报,1997,2:20-23.
    [64]J. Cao, X.G. Song, L.Z. Wu. Characterization of Al/Ni multilayers and their application in diffusion bonding of TiAl to TiC cermet[J]., Thin Solid Films,2012,520:3528-3531.
    [65]秦森.氧化铝陶瓷与不锈钢扩散连接研究[J].,材料热加工工艺,2007,36:25-27.
    [66]张贵锋,张建勋,王士元等.瞬间液相扩散焊与钎焊主要特点之异同[J],焊接学报,2002,23(6):93-98
    [67]崔红军,曹健,冯吉才等.瞬间液相连接中间层和连接条件的改进[J],焊接,2008,9:16-22.
    [68]O. Dezellus, J. Andrieux, F. Bosselet et al. Transient liquid phase bonding of titanium to aluminium nitride[J], Materials Science and Engineering A,2008,495:254-258.
    [69]Zheng Chen, M.S. Cao, Q.Z. Zhao et al, Interfacial microstructure and strength of partial transient liquid-phase bonding of silicon nitride with Ti/Ni multi-interlayer[J], Materials Science and Engineering A,2004,380:394-401.
    [70]王国星,宋晓国,陈海燕等,TiNi-V共晶钎料钎焊Si3N4陶瓷接头界面结构及性能[J],焊接学报,2012,33(10):41-45.
    [71]宋昌宝,林铁松,何鹏等Ti-Ni钎料钎焊连接ZrC-SiC复合陶瓷接头的界面组织[J],硅酸盐学报,2013,41(3):298-303.
    [72]蔺晓超,曹健,张丽霞等.ZrO2陶瓷与kovar合金钎焊接头的组织与性能[J],焊接学报,2011,32(9):65-69.
    [73]叶大萌,熊惟皓,瞿峻等.Ti(C,N)基金属陶瓷与45钢感应钎焊的界面结构及强度[J],硬质合金,2011,28(1):11-16.
    [74]张建军,李树杰.非氧化物陶瓷连接技术的进展[J].硅酸盐学报,2002,30(1):102
    [75]李卓然,曹健,冯吉才等.中间层成分对TiAl/TiB2金属陶瓷SHS连接的影响[J].焊接学报.2006,27(4):29-33.
    [76]李卓然,,曹健.TiB2金属陶瓷与TiAl的自蔓延高温合成连接,焊接学报[J],2003,24:7-10.
    [77]何代华,傅正义,王皓,张金咏.燃烧合成技术焊接TiB2陶瓷/金属Fe[J].焊接学报.2002,23(6):33-35.
    [78]Bulent Kurt, Nuri Orhan, Ertan Evin et al. Diffusion bonding between Ti-6Al-4V alloy and ferritic stainless steel[J], Materials Letters,2007,61:1747-1750.
    [79]Kemal Aydm, Yakup Kaya, Nizamettin Kahraman. Experimental study of diffusion welding/bonding of titanium to copper[J], Materials and Design,2012,37:356-368.
    [80]X.J. Yuan, G.M. Sheng, B. Qin et al. Impulse pressuring diffusion bonding of titanium alloy to stainless steel, Materials Characterization[J].2008,59:930-936.
    [81]A. Elrefaey, W. Tillmann. Solid state diffusion bonding of titanium to steel using a copper base alloy as interlayer[J], Journal of materials processing technology,2009,209: 2746-2752.
    [82]Jian Zhang, Qiang Shen, Guoqiang Luo et al. Microstructure and bonding strength of diffusion welding of Mo/Cu joints with Ni interlayer[J], Materials and Design,2012, 39:81-86.
    [83]Peng Li, Jinglong Li,, Jiangtao Xiong et al. Diffusion bonding titanium to stainless steel using Nb/Cu/Ni multi-interlayer[J], Materials Characterization,2012,68:82-87.
    [84]袁新建,盛光敏,秦斌等.镍作中间层脉冲加压扩散连接钛合金与不锈钢[J],焊接学报,2008,29:27-30.
    [85]李小强,李元元,张大童等.钛合金/镍/不锈钢网的扩散连接技术[J],中山大学学报(自然科学版),2003,42:92-94.
    [86]刘树英,张贵锋,刘广宝等.钛合金与GCr15扩散连接界面组织特征与性能[J],焊接学报,2010,31:69-72.
    [1]李凡,吴炳尧,机械合金化-新型的固态合金化方法[J],机械工程材料,1999,23(4):22-25.
    [2]王庆相,接显卓,梁淑华,机械合金化W-Ti粉末的烧结特性[J],材料热处理学报,2010,31(1):67-73.
    [3]Huihua Wang, Wenyuan Wu, Shucheng Sun et al, Characterization of the structure of TiB2/TiC nanocomposite powdersfabricated by high-energy ball milling[J], Ceramics International 2011,37:2689-2693.
    [4]Huihua Wang, Shuchen Sun, Deyong Wang, Ganfeng Tu, Characterization of the structure of TiB2/TiC composites prepared via mechanical alloying and subsequent pressureless sintering[J], Powder Technology 2012,217:340-346.
    [5]Lixia Cheng, Zhipeng Xie, Guanwei Liu et al, Densification and mechanical properties of TiC by SPS-effects of holding time, sintering temperature and pressure condition[J], Journal of the European Ceramic Society,2012,32:3399-3406.
    [6]Chen S.P., Meng Q.S., Zhao J.F. et al. Synthesis and Characterization of TiB2-Ni-Ni3Al-CrNi alloy graded material by field-Activated combustion[J]. Journal of Alloys and Compounds.2009,476:889-893.
    [7]Chen S.P., Meng Q.S., Zhao J.F. et al. Titanium diboride-nickel graded materials prepared by field-activated, pressure-assisted synthesis process[J]. Journal of Materials Science.2009, 44(4):1121-1126.
    [1]CHEN S P, MENG Q S, ZHAO J F, Synthesis and characterization of TiB2-Ni-Ni3Al-CrNi alloy grade d material by field-activate d combustion[J], Journal of Alloys Compound,2009,476:889-893.
    [2]CHEN S P, MENG Q S, LIU W, et al. Titanium diboride-nickel graded materials prepared by field-activated, pressure-assisted synthesis process[J], Journal of Material Science,2009, 44:1121-1126.
    [3]Jaroszewicz J., Michalski A., Preparation of a TiB2 composite with a nickel matrix by pulse plasma sintering with combustion synthesis[J], J. Eur. Ceram. Soc.,2006,26 (13): 2427-2433.
    [4]Liu Zhu, Laima Luo, Juan Luo etal, Effect of electroless plating Ni-Cu-P layer on brazability of cemented carbide to steel[J], Surface & Coatings Technology,2012,206: 2521-2524.
    [5]Z. Shi, A. Bloyce, Y. Sun, T. Bell:Influence of surface melting on dry rolling-sliding wear of aluminium bronze against steel[J],. Wear,1996,198:300-306.
    [6]KUMAR S, SARMA V, MURTY B S, High temperature wear behavior of Al-4Cu-TiB2 in situ composites[J], Wear,2010,268:1266-1274.
    [7]Guo, C., Zhou, J., Zhao, J., Wang, L., Youjun, Y., Chen, J., Zhou, H. Microstructure and tribological properties of a HfB2-containingNi-based composite coating produced on a pure Ti substrate by laser cladding[J]. Tribol. Lett.2011,44,187-200.
    [8]景志红,吴世华.室温研磨固相反应法制备纳米粉及气敏性能研究[J].无机材料学报[J],,2003,22(3):483-487.
    [9]孟哲,贾振斌,魏雨.非晶态-FeOOH液相合成纳米级粉体a-Fe2O3的历程研究[J].化学学报,2004.62(5):484-488.
    [10]林河成.优良的耐磨剂-稀土抛光粉[J].世界有色金属,1995(9):36-37.
    [11]金卫东,硬脆材料氮化硅陶瓷的ELID超精密磨削技术研究[D].天津:天津大学,2005.
    [12]赵宏伟,赵宏健,姚金玖,黄虎等.一种钠钙硅酸盐玻璃的纳米压痕测试分析[J].纳米 技术与精密工程,2009,7(3):205-210.
    [13]SENDA T, YAMAMOTO Y, OCHI Y, Friction and wear of titanium boride ceramics at elevated temperatures[J], J. Ceram. Soc. Jpn.,1993,101:451-455.
    [14]余菊美,晁明举,卢洵等.TiO2的含量对铁基合金激光熔覆层组织和性能的影响[J],.激光杂志,2006,27(6):70-71.
    [15]郑传林.TiAl双层辉光等离子表面合金化及其高温氧化行为研究[D].北京:北京科技大学,2001.
    [16]Z. L. Yang, J. H. Ouyang, Z. G. Liu, X. S. Liang:Wear mechanisms of TiN-TiB2 ceramic in sliding against alumina from room temperature to 700℃[J],, Ceram. Int.2010,36: 2129-2135 ()
    [17]Deng Jianxin, Zhang Hui, WuZe, Lian Yunsong, Xing Youqiang, Li Shipeng: Unlubricated friction and wear behaviors of A12O3/TiC ceramic cutting tool materials from high temperature tribological tests[J],, Int. J. Refract. Met. Hard Mater.2012,35:17-26.
    [18]S. Jerome, B. Ravisankar, Pranab Kumar Mahato, S. Natarajan:Synthesis and evaluation of mechanical and high temperature tribological properties of in-situ Al-TiC composites [J], Tribol. Int.2010,43:2029-2036.
    [19]SHI Z, BLOYCE A, SUN Y, et al. Influence of surface melting on dry rolling-sliding wear of aluminium bronze against steel[J], Wear,1996,198:300-306.
    [1]李重河,朱明,王宁.钛合金在飞机上的应用[J],稀有金属,2009,33:84-91.
    [2]黄晓艳,刘波,李雪.钛合金在军事上的应用[J],轻金属,2005,9;51-52.
    [3]孟祥军.钛合金在舰船上的应用,舰船科学技术[J],2001,2:23-27.
    [4]皇甫强,牛金龙.钦合金在医学领域的应用[J],稀有金属快报,2005,24:33-34.
    [5]黎永钧.化学镀镍合金在电子工业中的应用[J],电子工艺技术,1998,19(5):185-189.
    [6]邱小明,李明高,孙大千.形状记忆合金与不锈钢钎焊接头的微观组织与性能[J],机械工程学报,2005,41(2):132-136.
    [7]商泽进,王忠民,尹冠生.超弹性TiNi形状记忆合金棒材力学行为[J],稀有金属材料与工程,2009,38(3):460-464.
    [8]贺志荣,王芳,周敬恩.TiNi合金的形状记忆效应及其工程应用研究进展[J],材料热处理学报,2005,26(5):22-25.
    [9]Y. Zhou, Q. Wang, D.L. Sun, X.L. Han, Co-effect of heat and direct current on growth of intermetallic layers at the interface of Ti-Ni diffusion couples[J], Journal of Alloys and Compounds, (2011),509:1201-1205.
    [10]J.E. Garay, U. Anselmi-Tamburini, Z.A. Munir, Enhanced growth of intermetallic phases in the Ni-Ti system by current effects[J], Acta Materialia,2003,51:4487-4495.
    [11]陈少平,梯度金属陶瓷与金属电场辅助扩散连接的机理及界面性能研究[D].太原:太原理工大学,2010.
    [1]Jing Zhang, Z.X. Guo, Fusheng Pan et al. Effect of composition on the microstructure and mechanical properties of Mg-Zn-Al alloys[J], Materials Science and Engineering A,2007, 456:43-51.
    [2]Jie Song, Shou-Mei Xiong. The correlation between as-cast and aged microstructures of high-vacuum die-cast Mg-9Al-1Zn magnesium alloy[J], Journal of Alloys and Compounds, 2011,509:1866-1869.
    [3]权高峰,刘绍东.超塑性模锻镁合金汽车轮毂应用研究[J],兵器材料科学与工程,2012,35:22-26.
    [4]訾炳涛,王辉.镁合金及其在工业中的应用[J],稀有金属,2004,28:229-232.
    [5]张智强,郭泽亮,雷竹芳.铜合金在舰船上的应用[J],2006,21:43-46.
    [6]张建臣.基于爆炸焊接的铜铝复合散热片的优化设计[J],焊接技术,36,35-37.
    [7]孟庆森,刘奋军,陈少平等.AZ31B-Al电场激活扩散界面结构及力学性能分析[J],稀有金属材料与工程。2009,38:191-195.
    [8]孟庆森,陈少平,辛立军等.电场激活燃烧合成(TiB2)PNi/Ni3Al/Ni功能梯度材料[J].复合材料学报,2009,26(1):80-85.
    [9]Yajie Guo, Guiwu Liu, Haiyun Jin et al. Intermetallic phase formation in diffusion-bonded Cu/Al laminates[J], Journal of Material Science,2011,46:2467-2473.
    [10]罗国强,尹凯,王仪宇.铜薄膜作中间层的镁铝扩散焊接[J],武汉工程大学学报,2012,34:62-66.
    [11]G. Mahendran, V. Balasubramanian, T. Senthilvelan, Influences of diffusion bonding process parameters on bond characteristics of Mg-Cu dissimilar joints[J], Trans. Nonferrous Met. Soc. China 20 (2010) 997-1005.
    [1]A. Laik, K. Bhanumurthy, G.B. Kale. Intermetallics in the Zr-Al diffusion zone [J], Intermetallics,2004,12:69-74.
    [2]郭亚杰,刘桂武,金海云等.扩散结合Cu/Al叠层复合材料的界面结构与相生成机制[J],稀有金属材料与工程,2011,40;215-220.
    [3]Wang Juan, Li Yajiang, Liu Peng et al. Microstructure and XRD analysis in the interface zone of Mg/Al diffusion bonding[J], Journal of materials processing technology,2008,205: 146-150.
    [4]Rudy, E., Windisch, S. and Chang, Y.A., Tech. Rep. No. AFML-TR-65-2, part I, Vol. I, 1965.
    [5]徐恒均,材料科学基础[M],北京工业大学出版社,北京,2001,137-138.
    [6]L. Minier, S. Le Gallet, Yu. Grin. Influence of the current flow on the SPS sintering of a Ni powder[J], Journal of Alloys and Compounds,2010,508:412-418.
    [7]Manyuan Zhou, Don Rodrigo, Yi-Bing Cheng. Effects of the electric current on conductive Si3N4/TiN composites in spark plasma sintering[J], Journal of Alloys and Compounds,2013,547:51-58.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.