Ag-Cu-Ti基复合钎料钎焊氮化硅陶瓷的连接工艺和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮化硅陶瓷是一种常用的结构陶瓷,研究该类陶瓷的连接意义重大。当采用传统的合金钎料连接氮化硅时,由于母材与钎料合金之间较大的热膨胀系数差异,容易在连接后的接头内产生高的残余应力。本文在Ag-Cu-Ti合金钎料内添加一定体积分数的SiCp或Mo颗粒,以降低钎料热膨胀系数,缓解接头内的应力。在此基础上,研究了Si_3N_4陶瓷与钎料之间的界面反应过程和接头内反应相的形成机制;并采用数字图像相关法研究了接头在添加颗粒后性能得到提升的根本原因。
     研究发现,采用Ag-Cu-Ti+SiCp复合钎料连接Si_3N_4陶瓷时,当连接温度较低或保温时间较短时,界面反应不能充分进行。而当钎焊温度过高或保温时间过长时,钎料内SiCp反应完全。在本研究范围内,当钎料内含4wt.%Ti时,随着接头内SiCp含量的增加,接头弯曲强度先增加后降低;当钎料内含5vol.%SiCp时,随着接头内Ti含量的提升,接头弯曲强度也是先增加后降低。当钎料成分为(Ag_(72)Cu_(28))_(92)Ti_8+5vol.%SiCp,在900℃保温10min下,接头最高的三点弯曲强度达到了506MPa。
     采用Ag-Cu-Ti+Mo复合钎料连接Si_3N_4陶瓷时,接头的力学性能随着钎焊温度的升高先增加后降低(840-950℃),而随着保温时间的延长逐渐降低(10-40min);当复合钎料内Mo含量从0vol.%增加到20vol.%时(Ti含量为4wt.%),接头弯曲强度先增加后降低,高Mo含量接头内出现大量的Ti-Cu金属间化合物;当钎料合金中Ti含量从2wt.%增加到6wt.%时(Mo为5vol.%),接头弯曲强度也是先增加后降低。当钎料成分为Ag_(72)Cu_(28))_(92)Ti_4+5vol.%Mo,在900℃保温10min下,接头的平均三点弯曲强度达到了429MPa。
     使用Ag-Cu-Ti+SiCp复合钎料连接Si_3N_4陶瓷的连接机理为:当钎料熔化后,活性元素Ti与Si_3N_4陶瓷发生反应,在陶瓷/钎料界面处生成了晶粒尺寸约30-50nm的TiN;反应释放的Si原子往液态钎料内扩散,在TiN/钎料界面处生成晶粒尺寸约200nm的Ti_5Si_3。HRTEM表明TiN沿着Si_3N_4陶瓷母材的某些晶面外延生成。钎缝内Ti与SiCp的反应逐步进行,首先生成Ti_3SiC_2和Ti_5Si_3;当SiCp完全分解后,Ti_3SiC_2继续与Ti反应生成TiC和Ti_5Si_3。Si从Ti_3SiC_2中的脱嵌引起了Ti_3SiC_2的分解。
     使用Ag-Cu-Ti+Mo复合钎料连接Si_3N_4陶瓷的连接机理为:母材/钎料界面层结构和形成机制与含SiCp的复合钎料一致;Ag基和Cu基固溶体组织构成钎缝的主体组织,在两类固溶体上弥散分布着Mo颗粒及Ti-Cu金属间化合物。钎料层内出现了多种类型的Ti-Cu化合物,Ti-Cu化合物的吉布斯生成自由能计算以及钎料层内的透射分析结果均证实了这一点。纳米压痕测试表明Ti-Cu化合物具有高于Ag或Cu的杨式模量和硬度。
     本文研究发现:当在接头内复合一定含量的添加相(SiCp或Mo)时(5vol.%),均可获得优质的钎焊接头。以SiCp为例,采用DIC揭示了该条件下的增强机制为:添加颗粒后引起接头内宏观残余应力水平的降低;钎料层内发生早期的塑性变形以及大的变形程度导致了接头内微观残余应力水平的下降;颗粒的增强效应。此外,研究发现当采用SiCp作为添加相时,在合适的工艺和钎料成分下,得到接头最高的弯曲强度(506MPa)高于含Mo复合钎料所获得的最高弯曲强度(429MPa)。分析认为含SiCp的复合钎料中可通过灵活调整接头内颗粒含量及Ti含量,使得在钎焊完成后的接头中得到一个缓解应力效应的最佳结构;而含Mo的复合钎料接头内生成的Ti-Cu脆性金属间化合物在性能上比TiC和Ti_5Si_3等陶瓷颗粒相差很远,不能起到复合材料中增强体的作用,成为钎缝中缺陷的来源。
     在前述分析的基础上,本研究采用了Ag-Cu-Ti+Mo复合钎料连接Si_3N_4陶瓷和42CrMo钢,发现当钎料内Mo含量为10vol.%,Ti含量为4wt.%时,得到的接头最高的连接强度达到了587MPa。
Silicon nitride ceramics are very common structural ceramic materials. It iscritically important to investigate the Si_3N_4ceramic bonding. When the traditionalmetal brazing alloy was used to join Si_3N_4ceramic, the high residual stresses wereusually induced due to a large coefficient of thermal expansion (CTE) between theceramic substrates and brazing alloy. In this research, in order to decrease the CTEof the brazing alloy, Ag-Cu-Ti brazing alloy incorporated with SiCp or Mo particleswas introduced into joining the Si_3N_4ceramic. On that basis, the formationmechanism in the joint was analyzed. Furthermore, by incorporating a definiteamount of SiCp or Mo in the joint, a high joint strength could be obtained and thestrengthening mechanism was revealed by Digital Image Correlation technique.
     The Ag-Cu-Ti+SiCp composite filler was introduced into joining the Si_3N_4ceramic. When the brazing temperature was lower or holding time shorter, a lowerjoint bend strength was obtained due to insufficient reaction on the interface. Whilerising the brazing temperature or prolonging the holding time, the incorporatedSiCp in the brazing layer reacted with Ti completely, the microstructure obtainedshowed bad ability in decreasing CTE of the filler alloy, and thus resulting in alower joint strength. In this study, when the content of Ti was4wt.%in the joint, thejoint bend strength increased and then decreased with elevating the SiCp content inthe composite filler. In addition, when the content of SiCp was5vol.%in the joint,the joint bend strength also increased and then decreased with increasing the Ticontent in the composite filler. The highest joint strength (506MPa) was receivedwhile the Si_3N_4ceramic was brazed with (Ag_(72)Cu_(28))_(92)Ti_8+5vol.%SiCp at900℃for10min.
     The Ag-Cu-Ti+Mo composite filler was introduced into joining the Si_3N_4ceramic. With elevating brazing temperature, the joint bend strength was increasedand then decreased. However, they decreased with prolonging holding time. Thejoint bend strength increased and then decreased with increasing the Mo particlescontent from0vol.%to20vol.%(Ti:4wt.%). Lots of Ti-Cu intermetallics occurredin the joint while the higher content of Mo particles was incorporated, impairing theplasticity in the filler alloy and causing the lower joint bend strength. The joint bendstrength increased and then decreased while the content of Ti increased from2wt.% to5wt.%(SiCp:5vol.%). The highest joint bend strength (429MPa) could beobtained while the Si_3N_4ceramic was brazed with (Ag72Cu28)96Ti4+5vol.%Mocomposite filler at900℃for10min.
     The formation mechanism in the Si_3N_4ceramic joint brazed withAg-Cu-Ti+SiCp composite filler was as follow: during heating, the brazing alloymelted and the active Ti element diffused towards Si_3N_4ceramic and react withthem. A TiN reaction layer with grain size of30-50nm was formed at the interface.The released Si atoms diffused towards the brazing alloy, a Ti_5Si_3reaction layerwith the grain size of200nm was produced at the TiN/brazing alloy interface.HRTEM analysis revealed that TiN reaction phases were formed along some crystalsurfaces of Si_3N_4ceramic. In the brazing layer, SiCp also reacted with Ti andformed Ti_3SiC_2and Ti_5Si_3. Ti_3SiC_2could be transformed into TiC and Ti_5Si_3owingto the reaction between Ti_3SiC_2and Ti, which was essentially caused by thede-intercalation of Si from Ti_3SiC_2due to the weak bonding between Ti and Si inthe Ti_3SiC_2.
     The formation mechanism in the Si_3N_4ceramic joint brazed with Ag-Cu-Ti+Mocomposite filler was as follow: the reaction products at the Si_3N_4/brazing alloyinterface were similar to the joint brazed with Ag-Cu-Ti+SiCp composite filler. Thecentral part of joint was mainly composed of Ag and Cu based solid solution, inwhich Mo particles and Ti-Cu intermetallics were dispersed. We observed that manykinds of Ti-Cu intermetallics precipitated in the joint, which was also validated bystandard Gibbs free energy of Ti-Cu intermetallics and TEM analysis in the brazinglayer. In addition, by nanoindentaion technique, the elastic modulus and hardnessfor Ti-Cu intermetallics are higher.
     In the research, a high quality joint was received while a definite amount ofSiCp or Mo was incorporated (5vol.%). Here, SiCp were used as an example andstrengthening mechanism was revealed by DIC method. We believed that thefollowing three factors contribute the large joint strength: the lower macroscopicalresidual stresses level in the joint due to SiCp addition, the lower microscopicalresidual stresses due to an earlier and larger plastic deformation in the brazing layer,and the reinforcement effect of SiCp. In addition, the highest joint bend strengthcould be obtained in the joint brazed with Ag-Cu-Ti+SiCp composite filler at thesuitable brazing parameters and compositions, which were higher than the jointstrength brazed with the Ag-Cu-Ti+Mo composite filler. We believed that the optimum structure that relaxed the residual stresses to a large extent could beobtained while the Ag-Cu-Ti+SiCp were introduced by adjusting the content ofSiCp and Ti in the composite filler flexibly. However, the ability in adjusting theCTE mismatch between the joined materials by using Mo particles as theincorporation was limited. In addition, the in-situ formation of Ti-Cu intermetallicsdisplays the poorer mechanical properties than that of TiC and Ti_3SiC_2, so theycould not play the role of reinforcement in the joint and might become the source ofcracks during bending tests.
     In the research, the Ag-Cu-Ti+Mo composite filler was also used to join Si_3N_4ceramic and42CrMo steel. The miximum joint bend strength (587MPa) while thejoint was brazed with (Ag72Cu28)96Ti4+10vol.%Mo composite filler.
引文
[1]梁凯熊,腊森.先进的结构陶瓷材料及其钎焊连接技术的研究进展[J].现代焊接,2006,44:11-15.
    [2]张杰.氮化硅陶瓷活性钎焊工艺与连接机理研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2004:61-76.
    [3]陈力,马坚.氮化硅陶瓷材料的研究现状及其应用[J].硬质合金,2002,19(4):226-229.
    [4]卡恩,哈森,克雷默.陶瓷的结构与性能.材料科学与技术丛书[M].第11卷.郭景坤译,1998:110-111.
    [5]陈辛尘.结构陶瓷——一个需要耐心的行业[J].材料导报,1995,5:12-15.
    [6]周玉.陶瓷材料学[M].哈尔滨工业大学出版社,1995:315-378.
    [7]高仁金.常见陶瓷材料性能及运用[J].科技资讯,2005,23:26-28.
    [8]史耀武.中国材料工程大典第二十二卷[M].化学工业出版社,2006:7-11.
    [9]刘会杰,冯吉才.陶瓷与金属的连接方法及应用[J].焊接学报,1999,(6):5-9.
    [10] Zhang J, Sun Y, Liu C F, et al. Interfacial Microstructure of Si3N4/Si3N4JointBrazed Using Au-Ni-V Filler Alloy[J]. Journal of Materials Science,2010,45:2188-2193.
    [11] Brochu M, Pugh M D, Drew R A L. Joining Silicon Nitride Ceramic Using aComposite Powder as Active Brazing Alloy[J]. Materials Science andEngineering A,2004,374:34-42.
    [12] Kar A, Sagar S P, Ray A K. Characterization of the Ceramic-Metal BrazedInterface Using Ultrasonic Technique[J]. Materials Letters,2007,61:4169-4172.
    [13]刘春凤.活性钎料连接氮化硅陶瓷的接头组织及性能[D].哈尔滨:哈尔滨工业大学硕士学位论文,2002:6-9.
    [14] Liaw D W, Shiue R K. Infrared Brazing of Mo Using the70Au-22Ni-8PdAlloy[J]. Int. J. Refract. Met. Hard Mater.,2005,23(2):91-97.
    [15]孙元. Au-Ni-V基高温活性钎料连接氮化硅陶瓷的工艺与机理研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2011:1-3.
    [16] Liu C F, Zhang J, Zhou Y, et al. Effect of Holding Time on the Self-joining ofSilicon Nitride[J]. Journal of Alloys and Compounds,2009,471:17-21.
    [17]吴斌,陈铮,方芳. Ag-Cu-Ti钎料活性钎焊Si3N4陶瓷的研究[J].华东船舶工业学院学报,1998,12(2):75-79.
    [18]刘会杰,冯吉才.陶瓷与金属的连接方法[J].焊接,1999,(6):5-9.
    [19]冼爱平.金属-陶瓷界面的润湿和结合机制[D].沈阳:沈阳金属所博士学位论文,1991,5(65):132-141.
    [20] Xian A P, Si Z Y. Joining of Si3N4Using Ag57Cu38Ti5Brazing Filler Metal[J].Journal of Materials Science,25:4483-4487.
    [21] Hanson W B, Ironside K I, Fernie J A. Active Metal Brazing of Zirconia[J].Acta Materialia,2000,48:4673-4676.
    [22] Zhang J, Sun Y. Microstructural and Mechanical Characterization of theSi3N4/Si3N4Joint Brazed Using Au–Ni–V Filler Alloys[J]. Journal of theEuropean Ceramic Society,2010,30:751-757.
    [23] Sun Y, Zhang J, Fan G H, et al. Effect of Holding Time on Microstructure andMechanical Properties of Si3N4/Si3N4Joints Brazed with Au58.7Ni36.5V4.8Filler Alloy[J]. Journal of Materials Science,2011,46(17):5830-5837.
    [24] Sun Y, Zhang J, Geng Y P, et al. Microstructure and Mechanical Properties ofSi3N4/Si3N4Joint Brazed with Au–Ni–Pd–V Filler Alloy[J]. Scripta Materialia,2011,64:414-417.
    [25] Sun Y, Zhang J, Zhang H W, et al. Microstructure Evolution of the Si3N4/Si3N4Joints Brazed Using Au-Ni-V Filler Alloys with Different V Content[J].Journal of Alloys and Compounds,2011,509(33):8407-8412.
    [26]张电.氮化硅陶瓷连接技术研究[D].西安:西北工业大学硕士学位论文,2006:11-18.
    [27]郝长岭,亢世江,陈学广.不断发展的固态焊接技术[J].焊接技术,2002,31(5):18-19.
    [28] Nicholas M G. Joining Processes[M]. Dordrecht, Kluwer Academic Publishers.1998:78-91.
    [29] Zheng J, Akine M. Green State Joining of SiC Without Applied Pressure[J].Journal of the American Chemical Society,2001,84:2479-2483.
    [30] Martinlli A E, Drew R A L. Microstructure and Mechanical Strength ofDiffusion-Bonded Silicon Nitride-Molybdenum Joints[J]. Journal of theEuropean Ceramic Society,1999,19:2173-2183.
    [31] Kliauga A M, Ferrante M. Interface Compounds Formed during the DiffusionBonding of Al2O3to Ti[J]. Journal of Materials Science,2000,35:4243-4249.
    [32] Abed A, Hussain P T, Jalham I S, et al. Joining of Sialon Ceramics by aStainless Steel Interlayer[J]. Journal of the European Ceramic Society,2001,21:2803-2809.
    [33] Lemus J, Drew R A L. Joining of Silicon Nitride with a Titanium Foil Layer[J].Materials Science and Engineering A,2003,352:169-178.
    [34] Duvall D S, Owczarsk W A, Paulonis D F. TLP Bonding-a New Method forJoining Heat-resistant Alloys[J]. Welding Journal,1974,53:203-214.
    [35] Kim J J, Park J W, Eagar T W. Interfacial Microstructure of Partial TransientLiquid Phase Bonded Si3N4-to-Inconel718Joints[J]. Materials Science andEngineering A,2002,344:240-244.
    [36]周飞,李志章. Ti/Cu/Ti部分瞬间液相连接Si3N4的界面反应和连接强度[J].中国有色金属学报,2001,11(5):273-278.
    [37] Wu A P, Zou J S, Ren J L, et al. Heat-resistant Joining of Si3N4Ceramics withIntermetallic Compounds Formed in Situ[J]. Journal of Materials Science,2001,36:2673-2678.
    [38] Zhang C G, Qiao G J, Jin Z H. Active Brazing of Pure Alumina to Kovar AlloyBased on the Partial Transient Liquid Phase (PTLP) Technique with Ni-TiInterlayer[J]. Journal of the European Ceramic Society,2002,22:2181-2186.
    [39] Brochu M, Pugh M D, Drew R A L. PTLPB of Si3N4to FA-129Using Nickelas a Core Interlayer[J]. International Journal of Refractory Metals and HardMaterials,2004,22:95-103.
    [40] Gopal M. Joining Silicon Nitride to Itself and to Other Materials UsingChemically Compatible Interlayers[M]. University of California, Berkeley,1997:11-38.
    [41] Weldon L M, Hampshire S, Pomeroy M J. Joining of Ceramics Using Oxideand Oxy-nitride Glasses in the Y-Sialon System[J]. Journal of the EuropeanCeramic Society,1997,17:1941-1947.
    [42] Sainz M A, Miranzo P, Osendi M I. Silicon Nitride Joining Using Silica andYttria Ceramic Interlayers[J]. Journal of the American Chemical Society,2002,85(4):941-946.
    [43] Glass S J, Mahoney F M. Refractory Oxy-nitride Joints in Silicon Nitride[J].Acta Materialia,1998,46(7):2393-2399.
    [44] Mecarteny M L, Sinclair R. Silicon Nitride Joining[J]. Journal of the AmericanChemical Society,1985,68(9):472-479.
    [45] Zhou F. Joining of Silicon Nitride Ceramic Composites with Y2O3-Al2O3-SiO2Mixtures[J]. Journal of Materials Processing Technology,2002,127(3):293-297.
    [46] Xie R J, Huang L P, Chen Y, et al. Evaluation of Si3N4Joints: Bond Strengthand Microstructure[J]. Journal of Materials Science,1999,34:1783-1790.
    [47] Xie R J, Huang L P, Fu X R. Bonding Strength and MicrostructureInvestigation on Si3N4/Si3N4Joint Bonded with Glass-ceramic[J]. Journal ofMaterials Science Letters,1998,17:761-763.
    [48]钱耀川,丁华东,傅苏黎.陶瓷-金属焊接的方法与技术[J].材料导报,2005,19(11):98-104.
    [49] Li S J, Duan H P, Liu S, et al. Inter-diffusion Involved in SHS Welding of SiCCeramic to itself and to Ni-based Superalloy[J]. International Journal ofRefractory Metals and Hard Materials,2000,18:33-37.
    [50] Zhang Y, Feng D, He Z Y, et al. Progress in Joining Ceramics to Metals[J].Journal of Iron and Steel Research,2006,13(2):1-5.
    [51] Peteves S D, Paulasto M. The Reactive Route to Ceramic Joining: Fabrication,Interfacial Chemistry and Joint Properties[J]. Acta Metallurgica Sinica,1998,7(46):2407-2414.
    [52] Mishra P, Sengupta P, Athavale S N, et al. Brazing of Hot IsostaticallyPressed-Al2O3to Stainless Steel (AISI304L) by Mo-Mn Route Using72Ag-28Cu Braze[J]. Metallurgical and Materials Transactions A,2005,36:1487-1490.
    [53]邹玉龙.表面于金属化处理对Si3N4陶瓷活性钎焊的影响研究[D].哈尔滨:哈尔滨工业大学学士学位论文,2007:16-37.
    [54] Shiue R H, Wu S K. Infrared Brazing of Ti50Ni50Shape Memory Alloy Usingtwo Ag-Cu-Ti Active Braze Alloys[J]. Intermetallics,2006,14(6):630-638.
    [55] Chuang H W, Liaw D W, Du Y C, et al. Brazing of Mo and Nb Using twoActive Braze Alloys[J]. Materials Science and Engineering A,2005,390:350-361.
    [56] Feng J C, He P, Xu W. Mechanical Property of Induction Brazing TiAl-basedIntermetallics to Steel35CrMo with AgCuTi Filler[J]. Materials Science andEngineering A,2006,418:45-52.
    [57] Zhang J, He Y M, Sun Y, et al. Microstructure Evolution of Si3N4/Si3N4JointBrazed with Ag–Cu–Ti+SiCp Composite filler[J]. Ceramics International,2010,36:1397-1404.
    [58] Zhang J, Liu C F, Naka M, et al. A TEM Analysis of the Si3N4/Si3N4JointBrazed with a Cu-Zn-Ti Filler Metal[J]. Journal of Materials Science,2004,39:4587-4591.
    [59] Zou J S, Jiang Z G, Zhao Q Z, et al. Brazing of Si3N4with AmorphousTi40Zr25Ni15Cu20filler[J]. Materials Science and Engineering A,2009,507:155-160.
    [60] Gremillard L, Saiz E, Radmilovic V R, et al. Role of Titanium on the ReactiveSpreading of Lead-free Solders on Alumina[J]. Journal of Materials Research,2006,21:3222-3233.
    [61] Tillmann W, Lugscheider E, Schlimbach K, et al. Heat-resistant ActiveBrazing of Silicon Nitride, Part1: Mechanical Evalution of Braze Joints[J].Welding Journal,1997,76(8):300-304.
    [62] Selverian J H, Kang S. Ceramic to Metal Joints Brazed with PalladiumAlloys[J]. Welding Jouranl,2002,71(1):25-33.
    [63] Tamai T, Naka M. Ag Effect on Microstructure and Strength of Si3N4/Si3N4Joint Brazed with a Cu-Ag-Ti Filler Metal[J]. Journal of Materials ScienceLetters,1996,15:1353-1354.
    [64] Iwamoto C, Tanaka S. Interface Nanostructure of Brazed Silicon Nitride[J].Journal of the American Chemical Society,1998,81:363-368.
    [65] Abed A, Jalham I S, Hendry A. Wetting and Reaction between β-sialon,Stainless Steel and Cu–Ag Brazing Alloys Containing Ti[J]. Journal of theEuropean Ceramic Society,2001,21:283-290.
    [66] Liang Y N, Osendi M I, Miranzo P. Joining Mechanism in Si3N4Bonded with aNi-Cr-B Interlayer[J]. Journal of the European Ceramic Society,2003,23:547-553.
    [67] Li R T, Pan W, Chen J, et al. Thermodynamic Properties of Ti in Ag-Cu-TiAlloys[J]. Materials Science and Engineering A,2002,335:21-25.
    [68] Naka M, Zhang J, Fang H Y. Effect of Ti Content on Thermo-micro Structureand Properties of Si3N4/Si3N4Joint Brazed Using Cu-Zn-Ti Alloy[J]. ActaMetallurgical Sinica,2000,13(1):23-27.
    [69] Loehman R E, Hosking F M, Gauntt B, et al. Reactions of Hf-Ag and Zr–AgAlloys with Al2O3at Elevated Temperatures[J]. Journal of Materials Science,2005,40:2319-2324.
    [70] Lee W B, Kwon B D, Jung S B. Effect of Cr3C2on the Microstructure andMechanical Properties of the Brazed Joints between WC-Co and CarbonSteel[J]. International Journal of Refractory Metals and Hard Materials,2006,24:215-221.
    [71] Rijnders M R, Peteves S D. Joining of Alumina Using a V-active FillerMetal[J]. Scripta Materialia,1999,41(10):1137-1146.
    [72] Eustathopoulos N. Dynamics of Wetting in Reactive Metal/Ceramic Systems[J].Acta Materialia,1998,46:2319-2327.
    [73] Eustathopoulos N. Progress in Understanding and Modeling Reactive Wettingof Metals on Ceramics[J]. Current Opinion in Solid State and MaterialsScience,2005,9:152-160.
    [74] Saiz E, Tomsia P. Kinetics of High-Temperature Spreading[J]. CurrentOpinion in Solid State and Materials Science,2005,9:167-173.
    [75] Li W B, Lei B Q, Lindback T, et al. Stresses Developed in Reaction-bonedCeramic[J]. Journal of the European Ceramic Society,1999,19:277-283.
    [76] Serguei P K, Miranzo P, Osendi M I. Finite Element Simulation of ThermalResidual Stresses in Joining Ceramics with Thin Metal Interlayers[J]. Journalof the American Chemical Society,1998,81(9):2342-2348.
    [77] Lee Soon-Bok, Kim Jong-Ho. Finite-element Analysis and X-ray Measurementof the Residual Stresses of Ceramic/Metal Joints[J]. Journal of MaterialsProcessing Technology,1997,67:167-172.
    [78] Suganuma K, Miyamoto Y, Koizumi M. Joining of Ceramics and Metals[J].Annual Review of Materials Science,1998,18:47-73.
    [79]雷永平,韩丰娟,夏志东,等.陶瓷-金属钎焊接头残余应力的数值分析[J].焊接学报,2003,24(5):33-41.
    [80] Wiese J L. Strength of Metal-to-Metal Brazed Joints[D]. Master thesis, MIT,2000:30-35
    [81] Park J W, Mendez P F, Eager T W. Strain Energy Release in Ceramic-to-metalJoints by Ductile Metal Interlayers[J]. Scripta Materialia,2005,53:857-861.
    [82]楚建新,林晨光,孙序.陶瓷-金属连接应力X射线衍射测量方法[J].中国有色金属学报,1997,7(2):82-85.
    [83] Vila M, Prietow C, Miranzo P, et al. Measurements and Finite-elementSimulations of Residual Stresses Developed in Si3N4/Ni Diffusion Bonds[J].Journal of the American Chemical Society,2005,88(9):2515-2520.
    [84] Rabin B H, Williamson R L, Bruck H A, et al. Residual Strains in an A12O3-NiJoint Bonded with a Composite Interlayer: Experiments and FEM Analysis[J].Journal of the American Chemical Society,1998,81(6):1541-1549.
    [85] Hattali M, Valette S, Ropital F, et al. Effect of Thermal Residual Stresses onthe Strength for Both Alumnia/Ni/Alumina and Alumnia/Ni/Nickel AlloyBimaterials[J]. Journal of Materials Science,2009,44:3198-3210.
    [86] Galli M. The Constitutive Response of Brazing Alloys and the ResidualStresses in Ceramic-Metal Joints[D]. PhD thesis, Ecole Polytechnique Federalede Lausanne, Lausanne, Switzerland,2007.
    [87] Zhou Y, Bao F H, Ren J L, et al. Interlayer Section and Thermal Stresses inBrazed Si3N4-steel Joints[J]. Materials Science and Technology,1997,7:863-868.
    [88] Zhou Y, Lkeuchi K J, North T H, et al. Effect of Plastic Deformation onResidual Stresses in Ceramic/Metal Interfaces[J]. Metallurgical and MaterialsTransactions A,1991,22:2822-2824.
    [89] Park J W, Mendez P F, Eagar T W. Strain Energy Distribution inCeramic-to-metal Joints[J]. Acta Materialia,2002,50:883-899.
    [90] Park J W, Eagar T W. Strain Energy Release in Ceramic-to-metal Joints withPatterned Interlayers[J]. Scripta Materialia,2004,50:555-559.
    [91] Lee C S, Lemberg J A, Cho D G, et al. Mechanical Properties of Si3N4-Al2O3FGM Joints with15Layers for High-temperature Applications[J]. Journal ofthe European Ceramic Society,2010,30:1743-1749.
    [92] Li H J, Zhou Y, Duan H P. Joining of SiC Ceramic to Ni-Based Superalloywith Functional Gradient Material Fillers and a Tungsten Intermediate Layer[J].Journal of Materials Science,2003,38:4065-4070.
    [93] Kalinski D, Chmilewski M. Interlayer of Al2O3-Cr Functionally GradedMaterial for Reduction of Thermal Stresses in Alumina-heat Resisting SteelJoints[J]. Journal of the European Ceramic Society,2007,27:1281-1286.
    [94] Glaeser A M. The Use of Transient FGM Interlayer for Joining AdvancedCeramics[J]. Composites Part B,1997,28:71-84.
    [95] Wang R G, Pan W, Chen J, et al. Fabrication and Characterization ofMachinable Si3N4/h-BN Functionally Graded Materials[J]. Journal ofMaterials Science,2002,37:1269-1277.
    [96] Li J Q, Zeng X R, Tang J N, et al. Fabrication and Thermal Properties of aYSZ-NiCr Joint with an Interlayer of YSZ-NiCr Functionally GradedMaterial[J]. Journal of the European Ceramic Society,2003,23:1847-1853.
    [97] Lee C S, Zhang X F, Thomas G. Novel Joining of Dissimilar Ceramics in theSi3N4-Al2O3System Using Polytypoid Functional Gradients[J]. ActaMaterialia,2001,49:3775-3780.
    [98] Lee C S, Jonghe L C De, Thomas G. Mechanical Properties of PolytypoidallyJoined Si3N4-Al2O3[J]. Acta Materialia,2001,49:3667-3773.
    [99]吴京洧,杨建国,方洪渊.复合钎料的特点和研究现状[J].焊接学报,2002,12:11-14.
    [100]贺艳明. Ag-Cu-Ti+SiCp复合钎料钎焊氮化硅的接头组织及性能研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2008:1-4.
    [101] Zhu M G, Chung D D L. Active Brazing Alloy Containing Carbon Fibers forMetal-Ceramic Joining[J]. Journal of the American Chemical Society,1994,77(10):2712-2720.
    [102] Zhu M G, Chung D D L. Improving the Strength of Brazed Joints of Aluminaby Adding Carbon Fibers[J]. Journal of Materials Science,1997,32:5321-5333.
    [103] Lin G B, Huang J H, Zhang H. Joints of Carbon Fiber-reinforced SiCComposites to Ti-alloy Brazed by Ag-Cu-Ti Short Carbon Fibers[J]. Journalof Materials Processing Technology,2007,189:256-261.
    [104] Blugan G, Kuebler J, Bissig V, et al. Brazing of Silicon Nitride CeramicComposite to Steel Using SiC-particle-reinforced Active Brazing Alloy[J].Ceramics International,2007,33:1033-1039.
    [105] Wielage B, Hoyer I, Weis S. Soldering Alumninum Matrix Composites[J].Brazing&Soldering Today.2007:67-70.
    [106] Weis S, Hoyer I, Wielage B. Joining of High-Strength Alumunum-BasedMaterials with Tin-Based Solders[J]. Brazing&Soldering Today.2008:35-37.
    [107] Qin Y Q, Yu Z S. Joining of C/C Composite to TC4Using SiCParticles-reinforced Brazing Alloy[J]. Materials Characterization,2010,61(6):635-639.
    [108]林国标,黄继华,毛建英,等. SiC陶瓷与Ti合金的(Ag-Cu-Ti)-SiC复合钎焊接头组织结构研究[J].航空材料学报,2005,25(6):25-28.
    [109]杨建国.复合钎料钎焊Al2O3陶瓷接头微观组织及残余应力研究[D].哈滨:哈尔滨工业大学博士学位论文,2003:69-75
    [110] Lin G B, Huang J H. Brazed Joints of Cf-SiC Composite to Ti Alloy UsingAg-Cu-Ti-(Ti+C) Mixed Powder as Interlayer[J]. Powder Metallurgy,2006,49(4):345-348.
    [111] Song X G, Cao J, Wang Y F, et al. Effect of Si3N4-particles Addition inAg-Cu-Ti Filler Alloy on Si3N4/TiAl Brazed Joint[J]. Materials Science andEngineering A,2011,528:5135-5140.
    [112] Blugan G, Janczak-Rusch J, Kuebler J. Properties and Fractography ofSi3N4/TiN Ceramic Joined to Steel with Active Single Layer and DoubleLayer Braze Filler Alloys[J]. Acta Materialia,2004,52:4579-4588.
    [113] Lin G B, Huang J H, Zhang H, et al. Microstructure and MechanicalPerformance of Brazed Joints of Cf/SiC Compposite and Ti Alloy UsingAg-Cu-Ti+W[J]. Science and Technology of Welding and Joining,2006,11(4):379-383.
    [114] Li X D, Bhushan B. A Review of Nanoindentation Continuous StiffnessMeasurement Technique and its Applications[J]. Materials Characterization,2002,48:11-36.
    [115] Bhushan B, Li X D. Nanomechanical Characterisation of Solid Surfaces andThin Films[J]. International Materials Reviews,2003,48(3):125-164.
    [116] Li X D, Gao H S, Murphy C J, et al. Nanoindentation of Silver Nanowires[J].Nano Lett.,2003,3(11):1495-1498.
    [117] Li X D, Gao H S, Murphy C J, et al. Nanoindentation of Cu2O Nanocubes[J].Nano Letters,2004,4(10):1903-1907.
    [118] Lagattu F, Brillaud J, Christine M, et al. High Strain Gradient Measurementsby Using Digital Image Correlation Technique[J]. Materials Characterization,2004,53:17-28.
    [119] Tong W. An Evaluation of Digital Image Correlation Criteria for StrainMapping Application[J]. Strain,2005,41:167-175.
    [120] Pan B, Xie H M, Xu B Q, et al. Performance of Sub-pixel RegistrationAlgorithms in Digital Image Correlation[J]. Materials Science andTechnology,2006,17:1615-1621.
    [121] Allais L, Bornert M, Bertheau T, et al. Experimental Characterization of theLocal Strain Field in a Heterogeneous Elastoplastic Material[J]. ActaMetallurgica,1994,42(11):3865-3880.
    [122] Martineau P, Pailler R, Lahaye M, et al. SiC filament/titanium MatrixComposites Regarded as Model Composites: Part2Fiber/matrix ChemicalInteractions at High Temperatures[J]. Journal of Materials Science,1984,19:2749-2770.
    [123] Naka M, Feng J C, Schuster J C. Phase Reaction and Diffusion Path of theSiC/Ti System[J]. Metallurgical and Materials Transactions A,1997,28:1385-1390.
    [124] Choi S K, Chandrasekaran M, Brabers M J. Interaction between Titanium andSiC[J]. Journal of Materials Science,1990,25:1957-1964.
    [125] Kloosterman A B, Kooi B J, Hosson J. TH. M. DE. Electron Microscopy ofReaction Layers between SiC and Ti-6Al-4V after Laser Embedding[J]. ActaMetallurgica,1998,46(17):6205-6217.
    [126] Morozumi M, Endo M, Kikuchi M, et al. Bonding Mechanism betweenSilicon Carbide and Thin Foils of Reactive Metals[J]. Journal of MaterialsScience,1985,20:3976-3982.
    [127]陈振华,陈鼎.机械合金化与固液反应球磨[M].化学工业出版社,2005:68-69.
    [128] Villars P, Prince A, Okamoto H. Handbook of Ternary Alloy PhaseDiagram[M]. ASM International. Metal Park,1995.
    [129] Lin Z J, Zhou M J, Zhou Y C, et al. Microstructural Relationships betweenCompounds in the Ti–Si–C System[J]. Scripta Materialia,2006,55:445-448.
    [130] Du Y, Schuster J C, Seifert H J, et al. Experimental Investigation andThermodynamic Calculation of the Titanium-Silicon-Carbon System[J].Journal of the American Chemical Society,2000,83(1):197-203.
    [131] Massalski T B. Binary Alloy Phase Diagrams[M], ASM International.Metals Park,1990.
    [132] Bolshakov A, Pharr G M. Influences of Pile-up on the Measurement ofMechanical Properties by Load and Depth Sensing Indentation Techniques[J].Journal of Materials Research,1998,13:1049-1058.
    [133] Gong J H, Miao H Z, Peng Z J, et al. Effect of Peak Load on theDetermination of Hardness and Young’s Modulus of Hot-pressed Si3N4byNanoindentation[J]. Materials Science and Engineering A,2003,354:140-145.
    [134] Daia M B, Aubert P, Labdi S, et al. Nanoindentation Investigation of Ti/TiNMultilayers Films[J]. Journal of Applied Physics,2003,87(11):7753-7757.
    [135] Zhu X Y, Liu X J, Zeng F, et al. Microstructure and NanoindentationHardness of Ag/Fe Multilayers[J]. Transactions of Nonferrous Metals Societyof China,2010,20:110-114.
    [136] Kumar K M, Kripesh V, Shen L, et al. Nanoindentation Study of Zn-based PbFree Solders Used in Fine Pitch Interconnect Applications[J]. MaterialsScience and Engineering A,2006,423:57-63.
    [137] Zhang Z, Chen D L. Consideration of Orowan Strengthening Effect inParticulate-reinforced Metal Matrix Nanocomposites: a Model for Predictingtheir Yield Strength[J]. Scripta Materialia,2006,54:1321-1326.
    [138] Barin I. Thermochemical Data for Pure Substance[M]. New York:VCH,1995:1628-1630.
    [139] Zhao S, Li J F, Liu L, et al. Eutectic Growth from Cellular to Dendritic Fromin the Undercooled Ag-Cu Eutectic Alloy Melt[J]. Journal of Crystal Growth,2009,311:1387-1391.
    [140] Zhao S, Li J F, Liu L, et al. Cellular Growth of Lamellar Eutectics inUndercooled Ag-Cu Alloy[J]. Materials Characterization,2009,60:519-524.
    [141] Asthana R, Tewari S N. Review-the Engulfment of Foreign Particles by aFreezing Interface[J]. Journal of Materials Science,1993,28:5414-5425.
    [142] Wu S, You Y, An P, et al. Effect of Modification and Ceramic Particles onSolidification Behavior of Aluminum-matrix Composites[J]. Journal ofMaterials Science,2002,37:1855-1860.
    [143] Braszcynski J, Zyska A. Analysis of the Influence of Ceramic Particles on theSolidification Process of Metal Matrix Composites[J]. Materials Science andEngineering A,2000,278:195-203.
    [144] Racault C, Langlais F, Bernard C. On the Chemical Vapour Deposition ofTi3SiC2from TiCl4-SiCl4-CH4-H2Gas Mixtures: Part I A ThermodynamicApproach[J]. Journal of Materials Science,1994,29:5023-5040.
    [145] Sambasivan S. Phase Relationship in the Ti-Si-C System at High Pressures[D].PhD dissertation, Arizona State University. Tempe, AZ,1990.
    [146] Deng X, Chawla N, Chawla K K, et al. Deformation Behavior of (Cu, Ag)-SnIntermetllics by Nanoindentation[J]. Acta Materialia,2004,52:4291-4303.
    [147] Zhou Y C, Sun Z M, Wang X H, et al. Ab Initio Geometry Optimization andGround State Properties of Layered Ternary Carbides Ti3MC2(M=Al, Si andGe)[J]. Journal of Physics: Condensed Matter,2001,13:10001-10010.
    [148] Zhou Y C, Sun Z M. Electronic Structure and Bonding Properties in LayeredTernary Carbide Ti3SiC2[J]. Journal of Physics: Condensed Matter,2000,12:457-462.
    [149] Myhra S, Summers J W B, Kisi E H. Ti3SiC2-a Layered Ceramic ExhibitingUltra-low Friction[J]. Materials Letters,1999,39:6-11.
    [150] Gu W L, Zhou Y C. Reactions Between Ti and Ti3SiC2in Temperature Rangeof1273-1573K[J]. Transactions of Nonferrous Metals Society of China,2006,16:1281-1288.
    [151] Dezellus O, Voytovych R, Li A P H, et al. Wettability of Ti3SiC2by Ag-Cuand Ag-Cu-Ti Melts[J]. Journal of Materials Science,2010,45:2080-2084.
    [152] Fan Z, Miodownik A P. The Deformation Behavior of Alloys ComprisingTwo Ductile Phases-1. Deformation Theory[J]. Acta Metallurgica,1993,41(8):2403-2413.
    [153] Fan Z, Miodownik A P. The Deformation Behavior of Alloys ComprisingTwo Dctile Phases-1. Application of the Theory[J]. Acta Metallurgica,1993,41(8):2415-2423.
    [154] Ankem S, Margolin H, Greene C A, et al. Mechanical Properties of AlloysConsisting of Two Ductile Phases[J]. Progress in Materials Science,2006,51:632-709.
    [155] Shi N. Plastic Flow in SiC/Al Composites-strengthening and Ductility[J].Annual Review of Materials Science,1994,24:321-357.
    [156] Suganuma K, Miyamoto Y, Koizumi M. Joining of Ceramics and Metals[J].Annual Review of Materials Science,1988,18:47-73.
    [157] Turchanian M A, Agraval P G, Abdulov A R. Thermodynamic Assessment ofthe Cu-Ti-Zr System.1. Cu-Ti System[J]. Powder Metallurgy and MetalCeramics,2008,47:244-360.
    [158] Eremenko V N, Buyanov Y I, Prima S B. Phase Diagram of the SystemTi-Cu[J]. Institute of Materials Science, Academy of Sciences of theUKRSSR.1966,6(42):494-502.
    [159] Yang G H, Zhao B, Gao Y, et al. Investigation of Nanoindentation on Co/MoMultilayers by the Continuous Stiffness Measurement Technique[J]. Surfaceand Coatings Technology,2005,191:127-133.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.