高压干法GMAW电弧行为及熔滴过渡研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着海洋油气资源的开发,石油平台、海底管道等大量的结构件被用于水下。而这些结构件长期工作在海水侵蚀和水流冲击的环境中,随着服役年限的增加,这些结构件的水下焊接修复工作量将日益增加。高压干法熔化极气体保护焊(高压干法GMAW)由于其良好的焊缝性能、较深的水深适用范围,被认为是一种具有现实意义的深水焊接方法。本文以高压干法GMAW实验为基础,在环境压力小于2MPa,即等效水深为200m的范围内,针对高压干法GMAW电弧行为、熔滴过渡特性、飞溅产生机理等问题进行了深入研究;从焊接过程的物理本质入手,揭示高压环境中GMAW工艺特点;在此基础上,进行了80m水深条件下X65管线用钢的对接焊试验。
     首先根据高压干法焊接过程特点,研制了陆上模拟压力环境的焊接实验装备,该装备包含高压环境模拟系统和自动焊接试验系统,能够满足环境压力5MPa以内的自动焊接要求。
     建立了典型的高压干法GMAW电弧形态模型。采用高速摄像机对电弧形态进行采集,通过分析发现,环境压力的增加使弧柱区电场强度增加;压力环境中,焊接电流的增加使电极斑点和弧柱区尺寸扩展;焊接电压与弧长的变化仍近似为线性关系。直流正接阴极弧根沿焊丝侧面上爬高度随环境压力的增加而减小,当环境压力高于0.4MPa后,直流正接的电弧稳定性有明显的提升。压力环境中,直流正接时,阴极斑点在熔滴下表面始终存在,而熔池表面未见阳极斑点;直流反接时,阳极斑点在熔滴下表面形成,熔池一侧可以形成一至若干个阴极斑点。高压干法GMAW的电弧静特性曲线仍为上升特性,且随环境压力的升高而曲线上移;焊丝熔化速度与干伸长仍近似为线性关系;低于0.4MPa时,直流正接的焊丝熔化效率更高,而超过0.6MPa后直流反接与直流正接的熔化效率区别不明显。
     采用激光背光辅助的高速摄像系统对高压干法GMAW的熔滴过渡特征进行了观察和分析。直流反接的典型熔滴过渡可分为:大滴排斥过渡、射滴排斥过渡、高压射流过渡。前两者主要区别是熔滴尺寸和过渡频率,它们的熔滴均偏离焊丝轴线方向过渡,易产生与熔滴尺寸相近的飞溅;高压射流过渡时,熔滴尺寸很小,电弧弧根包裹着焊丝末端燃烧,熔滴在电弧内部完成过渡,几乎无飞溅产生。压力环境中采用直流正接时,根据焊接电压的不同,熔滴过渡形式主要有短路过渡和排斥过渡。通过分析发现阳极弧根沿熔滴一侧上爬是形成直流反接排斥过渡的前提条件。压力环境中电弧弧根收缩,弧根不再包裹着熔滴四周,而是在熔滴一侧燃烧,导致了斑点力、电磁力方向发生改变,对熔滴产生不对称的侧向力的作用,使熔滴偏离焊丝轴线方向,从而形成排斥过渡。分析了阳极弧根沿熔滴上爬现象产生的原因。阐述了直流反接时熔滴过渡形式转变的临界环境压力,通过实验得出了不同焊接参数下的熔滴过渡形式分布图。随环境压力的增加,高压干法GMAW直流反接的熔滴过渡形式最终均转变为排斥过渡。
     分析了高压干法GMAW焊接飞溅产生机理,其主要包含两种飞溅形式:熔滴偏离型飞溅和熔滴反弹型飞溅。前者是排斥过渡过程中形成的,熔滴脱离焊丝端部时具有一定水平速度,其不能落入熔池中从而形成的飞溅,可出现在环境压力大于0.2MPa的直流正接与直流反接时,飞溅尺寸与熔滴尺寸接近。后者是熔滴接触母材后由于向上的电磁力作用反弹至自由空间而形成的飞溅,飞溅尺寸一般小于熔滴尺寸,只出现在环境压力大于0.4~0.6MPa的直流反接时。提出形成熔滴反弹型飞溅必须要满足的两个基本条件:第一,下落的熔滴接触到母材后,电弧弧根在其表面燃烧相比在熔池表面更容易;第二,环境压力需达到一定程度,电弧弧根收缩至接触到母材的熔滴表面燃烧,使流过熔滴的电流达到一定值。
     最后,进行了等效水深为80m条件下X65钢板的对接焊工艺试验研究。同参数时,直流正接的平均电流相比反接有所升高,其幅度约为20~40A。因此,规划了第一层打底焊与第二层填充焊采用直流反接、第三层填充焊和第四层盖面焊采用直流正接的工艺,试验结果表明,焊缝成形良好,焊接接头内部无缺陷,拉伸性能与母材接近,能够满足性能要求。
Underwater structures such as oil platforms, subsea pipelines are used widely with developing offshore oil and gas resources. These structures are working in the long-term under the environment with water flow and sea erosion. As time goes on, underwater welding repair work for the structures will be increased. Due to its good performance and wide depth of application, dry hyperbaric gas metal arc welding (GMAW) is considered to be a deep-water welding method with practical significance. In this thesis, based on dry hyperbaric GMAW experiments within2MPa ambient pressure which equals to the water depth of200m, the arc behavior, metal transfer characteristics and spatter generation mechanism are the research emphasis. And then the butt welding of X65plate at the water depth of80m using dry hyperbaric GMAW method is studied.
     Based on the characteristics of underwater welding process, experimental equipment is developed for onshore simulating. The equipment consists of high pressure environment system and automatic welding test system, which can satisfied the welding test requirements within5MPa ambient pressure.
     A typical arc shape model of dry hyperbaric GMAW is established. As ambient pressure increased, electric field intensity of arc column increases. At high ambient pressure, electrode spot and arc column area expanded with increasing welding current. The relationship between welding voltage and arc length is approximate to linear, which is consistent with GMAW at normal pressure. Rising height of cathode arc root along the wire side in direct current electrode negative (DCEN) decreases with the increasing ambient pressure. The arc stability with DCEN has obvious improvement at ambient pressure more than0.4MPa. In pressure environment, with DCEN, the cathode spots can be seen under the droplet and the anode spots is not generated on the molten pool. This phenomenon is different from direct current electrode positive (DCEP) welding process, whose anode spots and one or several cathode spots can be seen. Arc static characteristic curve of dry hyperbaric GMAW is still rising characteristic. The curve moves downward with increasing ambient pressure. The relationship between wire melting rate and wire extension is approximate to linear. The wire melting efficiency with DCEN is higher than that with DCEP at ambient pressure below0.4MPa. After0.6MPa, the wire melting efficiency with DCEN is nearly the same to that with DCEP.
     The metal transfer mode in dry hyperbaric GMAW has been investigated by using high speed camera system with infrared laser as backlight. The metal transfer mode with DCEP can be classified to large droplet repelled transfer, projected repelled transfer and hyperbaric streaming transfer. Droplet size and transfer frequency are mean differences of the former two. The transfer tracks of the former two deviate from the axial direction of welding wire and the spatter with near droplet size is easy to generation. With hyperbaric streaming transfer, welding arc is burning around the wire end and the droplet size is very small which transfer inside the welding arc. The process is nearly no spatter generated. According to the different welding voltage, the metal transfer mode with DCEN is short-circuit transfer and droplet repelled transfer. Through the analysis, it has been found that anode arc root rising along the droplet surface is the precondition of droplet repelled transfer forming with DCEP. In the pressure environment, arc root burning contracts to one side of the wire instead of wrapping around the droplet. It results in the direction changing of spot force and electromagnetic force, which cause the asymmetric side force on the droplet. So that the droplet deviates from the axial direction of the wire, and the droplet repelled transfer formed. In addition, the reason of anode arc root rising along the droplet has been analyzed. The critical ambient pressure for metal transfer mode changing has been expounded. Distribution diagram of metal transfer modes with different welding parameters has been obtained by the experiments. Metal transfer mode of dry hyperbaric GMAW with DCEP will be changed into droplet repelled transfer as the increasing ambient pressure.
     The spatter generation mechanism of dry hyperbaric GMAW has been investigated. Two spatter types, droplet deviated spatter and droplet rebounded spatter, are observed. The former is generated in the process of droplet repelled transfer, which is due to the high horizontal speed of the droplet detachment. This spatter type begins to appear at the ambient pressure reached0.2MPa. In both DCEP and DCEN process, droplet deviated spatter can be generated and its size is close to the droplet. The latter, droplet rebounded spatter, is a new spatter generated process. The spatter is always generated after the cathode root burning on the droplet. And then the droplet rebounds to the free space and changes into the spatter instead of adhering to the workpiece. Droplet rebounded spatter is generated at the ambient pressure over0.4~0.6MPa with DCEP only. The reason that the electromagnetic force is the driving force of droplet rebounded was analyzed. Two basic conditions of droplet rebounded spatter generation is proposed. First, after the droplet contacting with the workpiece, welding arc root burning on the droplet surface is easier than that on the molten pool. Second, the current flowing through the drop reaches a certain value, which caused by the arc root contracting to the droplet surface at more than a certain ambient pressure.
     Finally, Process test research on the butt welding of X65plate at the water depth of80m is studied. With the same welding parameters, average welding current of DCEN is20-40A higher than DCEP. Therefore, the parameters of multi-layer welding process have been planned. DCEP method is employed for the fist layer, backing weld, and second layer, filling weld. DCEN method is employed for the third layer, filling weld, and fourth layer, cosmetic weld. The welding joint without defect is gained. The tensile testing results show that the tensile property is close to the base metal. Therefore, the butt welding of X65plate with dry hyperbaric GMAW process can be satisfy the requirements
引文
[1]唐德渝.海洋石油工程水下焊接技术的现状及发展趋势[J].现代焊接,2009,04:1-5.
    [2]刘占户,曾鹏飞,李晓娜.水下管道焊接技术的研究现状及发展趋势[J].电焊机,2006,07:1-3.
    [3]王常文.深水海底管道维修系统工程应用研究[D].天津大学硕士学位论文,2009:1-8.
    [4]秦萍.中国海洋石油将走向深水——访海洋石油工程专家曾恒一[J].中国船检,2004,06:64-67.
    [5] N. Woodward. Feasibility Study into Deep Water Pipeline Repair[R]. IsoTekInternal Report No. OPS-19-01.2009:5.
    [6]杨永勇.水下干式高压焊接焊缝跟踪实验系统研究[D].北京化工大学硕士学位论文,2008:1.
    [7]周利,刘一搏,郭宁,等.水下焊接技术的研究发展现状[J].电焊机,2012,11:6-10.
    [8]焦向东,朱加雷.海洋工程水下焊接自动化技术应用现状及展望[J].金属加工(热加工),2013,02:24-26,32.
    [9]李志刚,张华,贾剑平.基于旋转电弧传感器的水下焊接高压电弧仿真计算[J].焊接学报,2010,07:17-21,113,114.
    [10]王国荣,杨乾铭.水下焊接电弧温度的光谱诊断[J].华南理工大学学报(自然科学版),1997,02:11-16.
    [11] S. Liu. A Decade of Progress in Underwater Wet Welding Using the SMAWProcess (1990-2003)[C]. ASME200423rd International Conference on OffshoreMechanics and Arctic Engineering. American Society of Mechanical Engineers,2004:927-934.
    [12] Y. Ogawa. Detection of Wet Condition for Underwater Local Dry Welding[C].The Eighth International Offshore and Polar Engineering Conference.International Society of Offshore and Polar Engineers,1998:1-4.
    [13] N. J. Woodward, D. Yapp, S. Blackman, et al. Diverless Underwater GMAWelding for Pipeline Repair Using a Fillet Welded Sleeve[C]. InternationalPipeline Conference. American Society of Mechanical Engineers,2004:1475-1484.
    [14] P. Hart. A Study of Non-consumable Welding Processes for Diverless DeepwaterHyperbaric Welding to2500m Water Depth[D]. UK: Cranfield University,1999
    [15] I. Richardson, J. Nixon. Open Arc Pulsed Current GMAW: Application toHyperbaric Welding Operations[C]. Proc. ASM International Welding Conference,1985.8513-8009.
    [16] M. Perlman, A. Pense, R. Stout. Ambient Pressure Effects on Gas Metal-ArcWelding of Mild Steel[J]. Welding Journal.1969,48(6):231s-238s.
    [17] K. Nishiguchi, A. Matsunawa. Gas Metal Arc Welding in High PressureAtmospheres—Arc Characteristics and Bead Formation Mechanism[C].Proceedings of the Second International Symposium of the Japan WeldingSociety on Advanced Welding Technology,1975.
    [18] I. M. Richardson, P. W. Bucknall, I. Stares. The Influence of Power SourceDynamics on Wire Melting Rate in Pulsed GMA Welding[J]. Welding Journal,1994,73:32s.
    [19] I. M. Richardson. Hyperbaric Open Arc Pulsed GMAW at Pressure20to100bar[R]. Final report for SERC MTD Ltd. and Industrial Sponsors, May1988:1-8.
    [20]续明,陈勇,刘丰,等.水下焊接技术在海洋工程中的应用和发展[C].中国海洋石油总公司第三届海洋工程技术年会论文集.中国海洋石油总公司,2012:5.
    [21]梁富浩,李爱华,张永祥,等.深水海底管线维修系统研究进展及有关问题探讨[J].中国海上油气,2009,05:352-357.
    [22] P. Damsleth, B. Abdalla, K. C. Tang. Large Diameter, Deep Water PLEMConcepts[C]. ASME201231st International Conference on Ocean, Offshore andArctic Engineering. American Society of Mechanical Engineers,2012:193-202.
    [23] A. Vienna. Snam Connection System for Repairing Deepwater and LargeDiameter Sealines[C]. Proceedings of the International Conference on OffshoreMechanics and Arctic Engineering,1997. American Society of MechanicalEngineers:211-230.
    [24] C. J. Dawes, R. E. Dolby, S. B. Jones, et al. Friction forming[P]. U.S. Patent5,469,617.1995.
    [25]高辉.摩擦叠焊试验装置及焊接工艺研究[D].北京化工大学博士论文,2010:1-7.
    [26]周灿丰,焦向东,陈家庆,等.海洋工程深水焊接新技术[J].焊接,2006,04:11-15,28.
    [27] J. abanowski, D. Fydrych, G. Rogalski. Underwater Welding-a Review[J].Advances in Materials Sciences,2008,8(3):11-22.
    [28]李春旭.水下湿法焊接接头力学性能研究[D].哈尔滨工业大学硕士学位论文,2013:1-9.
    [29]吴伦发,王君民,郑晓光,等.低合金钢用湿法水下焊条的研制及应用[J].热加工工艺,2006,03:65-67.
    [30]林文清.水下焊接技术的开发与应用[J].造船技术,1993,03:34-36,45.
    [31] B. Lucas. The Flux-Cored Arc Process for Wet Welding and Cutting-anAssessment[J]. TWI Document.1997,15.
    [32] A. Hasui, J.i Kinugawa, Y. Suga. Development of Underwater Plasma Welding(The2nd Report)[J]. Japan Welding Society,1973(42):18-28.
    [33] S. Liu, M. Rowe. Progress in Underwater Wet Welding: The Quintessential SMAConsumables[C]. ASM International Conference on Trends on Welding Research,Pine Mountain, Georgia.2002:536-541.
    [34] M. D. Rowe, S. Liu, T. J. Reynolds. The Effect of Ferro-Alloy Additions andDepth on the Quality of Underwater Wet Welds[J]. Welding Journal.2002,81(8):156s-166s.
    [35] A. G. Rodríguez, C. R. G. Pérez, J. V. M. Oria, et al. Self-feed Device BehaviourEvaluation Designed for Assessment of Operability of Coated Electrodes[J].Welding International,2010,24(9):665-672.
    [36] R. Q. Puchol, L. P. González, A. D. Scott, et al. Thermodynamic Considerationsof Pore Formation and Hydrostatic Pressure during Underwater Wet Welding[J].Welding International,2010,24(12):911-919.
    [37] D. Fydrych, G. Rogalski. Effect of Shielded-electrode Wet Welding Conditions onDiffusion Hydrogen Content in Deposited Metal[J]. Welding International,2011,25(3):166-171.
    [38]沈晓勤,刘世明,王国荣.湿法探水焊条的研制[J].焊接,2000,10:19-23.
    [39]杨乾铭.水下焊接电弧温度的光谱诊断研究[D].华南理工大学硕士学位论文.1997:1-50
    [40]黄晋,石永华.水下湿法焊接浅水环境下FCAW电弧静特性[J].焊接技术,2011,08:15-18,79.
    [41]李志刚,张华,贾剑平.水下湿法焊接等离子成分计算[J].焊接学报,2009,04:13-16,113.
    [42]高洪宇.水下焊接送丝机的研制及水下焊接工艺实验研究[D].哈尔滨工业大学硕士学位论文,2010:1-16.
    [43]郭宁,刘多,袁新,等. CCSE40钢水下湿法焊接接头力学性能研究[C].中国机械工程学会焊接学会及压力焊专业委员会等.第十六次全国焊接学术会议论文集.2011:3.
    [44]赵博,武传松.水下湿法焊接温度场的数值模拟[C].中国机械工程学会焊接学会及压力焊专业委员会等.第十六次全国焊接学术会议论文集.2011:7.
    [45] S. Scheuch, M. Creutz, D. Mewes. A Process Combining Shielding and GasCleaning in Wet Underwater Welding[C]. The Proceedings of the InternationalOffshore and Polar Engineering Conference. International Society of Offshoreand Polar Engineers,1999:207.
    [46] Y. Yamashita, T. Kawano, K. Mann. Underwater Laser Welding by4kW CWYAG Laser[J]. Journal of Nuclear Science and Technology,2001,38(10):891-895.
    [47] X. Zhang, E. Ashida, S. Shono, et al. Effect of Shielding Conditions of Local DryCavity on Weld Quality in Underwater Nd: YAG Laser Welding[J]. Journal ofMaterials Processing Technology,2006,174(1):34-41.
    [48] T. Hino, M. Tamura, Y. Tanaka, et al. Development of Underwater LaserCladding and Underwater Laser Seal Welding Techniques for ReactorComponents[J]. Journal of Power and Energy Systems,2009,3:51-59.
    [49] M. Tamura, Y. Makino, T. Hino, et al. Development of Underwater LaserCladding and Underwater Laser Seal Welding Techniques for ReactorComponents (III)[C].16th International Conference on Nuclear Engineering.American Society of Mechanical Engineers,2008:547-550.
    [50] N. Yurioka, Y. Horii. Recent Developments in Repair Welding Technologies inJapan[J]. Science and Technology of Welding&Joining,2006,11(3):255-264.
    [51]张旭东,陈武柱,芦田荣次,等.局部干法水下Nd:YAG激光焊接技术[J].应用激光,2002,03:309-312.
    [52]刘桑,钟继光,王国荣.水下焊接技术研究与应用的新进展[J].中国修船,2000,03:12-14.
    [53] C. J. Allum. Characteristics and Structure of High Pressure (1-42bars) GasTungsten Arcs[D]. UK: Cranfield Institute of Technology,1982:1-15.
    [54] G. N. Haddad, A. J. D. Farmer. Temperature-Measurements in Gas TungstenArcs[J]. Welding Journal.1985,64(12):339s-342s.
    [55] T. Enjo, Y. Kikuchi, H. Horinouchi, H. Ueda. MIG Welding Under High PressureAr Arc Atmosphere. Transactions of JWRI,1987.2(16):39-48.
    [56]菅泰雄,蓮井淳.高圧雰囲気中アークの電磁制御(その1):アーク軸方向直流磁場の溶接現象及び溶接結果に及ぼす影響[J]. Pre-Prints of the NationalMeeting of JWS,1987.3(40):256-257.
    [57] Y. Suga. On the Arc Welding under High Pressure Argon and HeliumAtmosphere[J]. Welding Under Extreme Conditions,1989:207-214.
    [58] Y. Suga, A. Hasui. The Effect of Argon Pressure on the TIG Arc Welding[J].Transactions of the Japan Welding Society,1989,20(2):119-125.
    [59] G. J. Shannon, J. Watson, W. F. Deans. Laser Welding in a High Pressure GasEnvironment[J]. Optics&Laser Technology,1995,27(6):397-398.
    [60] G. J. Shannon, Mc W. Naught, W. F. Deans, et al. High Power Laser Welding inHyperbaric Gas and Water Environments[J]. Journal of Laser Applications,1997(9):129-136.
    [61] I. M. Richardson, J. H. Nixon, P. Nosal, et al. Hyperbaric GMA Welding to2500m water depth[C]. Proc. Joint International Conf. New Orleans: ETC/OMAE,2000,2000-2160.
    [62] H. Hoffmeister. The Effect of Pressure on Process Parameters and MechanicalProperties in Hyperbaric Underwater Welding[R]. State of Art Report onUnderwater Welding. Pt.2IIW Doc CREAU8786,1987:1-5.
    [63] J. H. Nixon, I. M. Richardson. The Design and Construction of a250barHyperbaric Welding Research Facility[C]. Proc.14th International Conf.Copenhagen: Offshore Mechanics and Arctic Engineering,1993,553-562.
    [64] H. R. Hansen, A. Rassmussen, I. M. Richardson. Hyperbaric GMA ProcessControl and Properties at Pressures1to60bar[C]. ASM Conf. Stavanger,Norway: Offshore Mechanics and Arctic Engineering,1991,637-648.
    [65] I. M. Richardson, J. H. Nixon. Deepwater Hyperbaric Welding–Initial ProcessEvaluation[C].7th International Conf. Honolulu, Hawaii: Offshore and PolarEngineering,1997,372-379.
    [66] J. H. Nixon. Underwater Repair Technology[M]. Britain: Cambridge England,2004,41-43.
    [67] H. Fostervoll, N. Woodward, O. M. Akselsen. The Effects on ProcessPerformance of Reducing the Pressure from36to1Bar in Hyperbaric MIGWelding[C], ASME200928th International Conference on Ocean, Offshore andArctic Engineering. American Society of Mechanical Engineers,2009:197-205.
    [68] O. M. Akselsen, H. Fostervoll, C. H. Ahlen. Hyperbaric GMA Welding of DuplexStainless Steel at12and35bar[J]. Welding Journal,2009,(2)88:21s-28s.
    [69] A. S. Azar, N. Woodward, H. Fostervoll, et al. Statistical Analysis of the ArcBehavior in Dry Hyperbaric GMA Welding from1to250bar[J]. Journal ofMaterials Processing Technology,2012,212(1):211-219.
    [70] I. Richardson, J. Nixon, P. Nosal, et al. Hyperbaric GMA Welding to2,500mWater Depth[C]. Proceedings of the Joint International Conference ETC/OMAE,2000:927-936.
    [71]蒋力培,王中辉,焦向东,等.水下焊接高压空气环境下GTAW电弧特性[J].焊接学报,2007(6):1-4.
    [72]贾滨阳,薛龙,郭遵广,等.高压GMAW焊电弧温度光谱分析[J].北京石油化工学院学报,2012(1):13-17.
    [73]赵华夏.高压环境焊接电弧特性及熔滴过渡行为研究[D].北京化工大学博士学位论文,2010:1-20.
    [74] J. H. Nixon. Open arc Pulsed Current GMAW Application to HyperbaricOperations[C]. The American Society for Metals. International Welding Congress,Toronto,1985:1-5.
    [75] P. Hart. The Effects of Pressure on Electrical Performance and Weld BeadGeometry in High Pressure GMA Welding[J]. Welding Research Abroad,2000,49(3):29-37.
    [76] N. Christensen, K. Gjermundsen. Effects of Pressure on Weld Metal Chemistry[J].Int. Inst. Weld. Document IIW-doc,1976:212-384.
    [77] H. O. Knagenhjelm, K. Gjermundsen, P. E. Kvaale, et al. Hyperbaric TIGWelding to500m Simulated Depth[C]. Proc. Int. Conf. Underwater Technology.Bergen, Norway.1982:1-8.
    [78] P. E. Kvaale, K. Gjermundsen, N. Christensen. Moisture Absorption of BasicElectrodes under Pressure up to33bar[C]. Proc. Int. Inst. Weld. Conf.Underwater Welding.1983.
    [79] N. Christensen. The Metallurgy in Underwater Welding[C]. Proc. Int. Inst. Weld.Conf. Underwater Welding, Trondheim, Norway. Pergamon Press,1983,71-79.
    [80] O. Grong, D. L. Olson, N. Christensen. Carbon Oxidation in Hyperbaric MMA(Manual Metal Arc) Welding[J]. Metal Construction,1985,17:810-814.
    [81] I. M. Richardson. Underwater Arc Welding-a Survey of Process Behaviour[J].Weld. Rev.,1989,7(1):11-20.
    [82] I. M. Richardson. Properties of the Constricted Gas Tungsten (Plasma) WeldingArc at Elevated Pressure[D]. Cranfield Institude of Technology PhD Thesis,1991:1-50.
    [83] I. M. Richardson, Cave W F. Plasma Welding at Pressure1to100bar[R]. UK:Final report to the Marine Technology Directorate Ltd (EPSRC Grant NoGR/G25917),1994.
    [84] J. H. Nixon, I. M. Richardson. Deepwater Welding and InterventionTechnology[J]. Underwater Technology: The International Journal of the Societyfor Underwater,1995,21(3):3-7.
    [85] I. M. Richardson, N. J. Woodward, J. Billingham. Deepwater Welding forInstallation and Repair—A Viable Technology?[C].12th Int Conf on Offshoreand Polar Engineering (ISOPE), Kita-Kyushu, Japan.2002:295-302.
    [86] J. F. Dos Santos, P. Szelagowski, H. Manzenrieder, et al. Hyperbaric PipelineWelding Beyond600msw: A Conceptual Proposal[M]. SUBTECH’91. SpringerNetherlands,1991:223-239.
    [87] The GKSS-Underwater Simulation Facility (GUSI)–a Research andDevelopment Tool for Underwater Maintenance and Repair[C]. Ship, Machinery,Marine Technology International Exhibition and Congress,1984.
    [88] J. Goedecken, L. Goehr, K. Schmidt. Safety Aspects in Design and OperationPractice of GKSS Underwater Simulation Plant GUSI[C]. ESA, Proceedings ofthe Colloquium on Space and Sea,1988:155-159.
    [89] E. D. Aust, J. F. Santos, K. H. Bohm, et al. Mechanized Hyperbaric Welding byRobots[M]. Bergen: GKSS-Forschungszentrum,1988.
    [90] E. O. F. Brasil. HJ Manthey GKSS Research Center[C]. Offshore Engineering:Proceedings of the7th International Symposium on Offshore Engineering Held atCoppe, Federal University of Rio de Janeiro, Brazil, August1989. Pentech Press,1990:432.
    [91] J. abanowski. Development of Under-water Welding Techniques[J]. WeldingInternational,2011,25(12):933-937.
    [92] CENPES-GKSS Workshop Underwater Technology. Proceedings of the CENPES–GKSS-Workshop on Underwater Technology[C]. UK. Rio de Janeiro,1987.
    [93] O. M. Akselsen, R. Aune, H. Fostervoll, et al. Dry Hyperbaric Welding of SubseaPipelines[J]. Welding Journal,2006,85(6):52s-55s.
    [94] H. Fostervoll, R. Aune, J. O. Berge, et al. Remotely Controlled HyperbaricWelding of Subsea Pipelines[C].6th Pipeline Technology Conference,2011:4.
    [95]林柏山.国内外高压干法水下焊接技术研究概述[J].焊接,1989,12:1-5,10.
    [96]王中辉,张东东.高压焊接试验舱研究现状[J].焊管,2012,05:50-53.
    [97]唐德渝,吕涛,牛虎理,等.水下焊接高压快开舱整体疲劳分析设计[J].电焊机,2011,05:44-47.
    [98]张宝生,袁浩然,王中辉.基于PLC的高压焊接试验舱液气压控制系统设计[J].昆明理工大学学报(自然科学版),2013,02:51-55,73.
    [99]黄晋,石永华.高压舱水下焊接系统设计及电信号采集[J].电焊机,2011,07:10-14,29.
    [100]徐小明,张华,潘际銮,等.水下机器人激光视觉传感焊缝跟踪[J].焊接技术,2012,09:39-42,73.
    [101]张生虎.熔化极等离子弧焊接电弧行为及熔滴过渡研究[D].哈尔滨工业大学硕士学位论文,2011:17.
    [102]巩杉.高压TIG焊接电弧特性研究[D].哈尔滨工业大学硕士学位论文,2013:33.
    [103] A. Matsunawa, K. Nishiguchi. Arc Characteristics in High Pressure ArgonAtmospheres[J]. Arc Physics and Weld Pool Behavior,1979.
    [104] A. E. Guile. The Electric Field in the Column of High-Pressure Argon Arcs[C].Proc.2nd Int. Conf. on―Gas Discharges‖, IEE conf. Publ., No.90, London1972.
    [105] T. G. Edmonds, C. J. Allum, B. E. Pinfold, et al. The Effects of Pressure on theTungsten Argon Welding Arc[C]. Proc. Int. Conf. on―Arc Physics and Weld PoolBehaviour‖, Weld. Inst., London,1979.
    [106] I. M. Richardson. The Influence of Ambient Pressure on Arc Welding Processes-a Review[J]. Physical Aspects of Arc Welding. Glasgow: IIW SG,1993,212:43-68.
    [107]王其隆,殷树言,张九海,等.熔化极脉冲焊电弧形态的可控性及其与熔滴过渡的关系[J].哈尔滨工业大学学报,1980,4:106-119.
    [108]王其隆,殷树言.钢焊丝熔化极气电焊的跳弧现象与射流过渡[J].金属科学与工艺,1982,01:101-112.
    [109] J. Lancaster. The Physics of Welding, International Institute of Welding[M].Pergamon Press, Oxford, UK.1986.
    [110]王其隆,殷树言,张九海.关于熔化极气体保护焊熔滴自由过渡的分类与名称问题[J].焊接学报,1983,03:149-154,168.
    [111]徐鲁宁.磁控高熔覆率MAG焊机理研究[D].北京工业大学博士学位论文,2001,1-15.
    [112] J. Q. Huang, L. Xue, T. Lv, et al. Experiment on Characteristics of GMAW Arc inUnderwater Hyperbaric Air Condition[J]. Transactions of the China WeldingInstitution,2010,31(12):17-20.
    [113]王宝,杨林,王勇.药芯焊丝CO2焊熔滴过渡现象的观察与分析[J].焊接学报,2006,27(7):77-80.
    [114] ASM, Metals Handbook–Vol I: Physical properties of carbon and low-alloy steel,9th edition, American Society for Metals,1978, USA.
    [115] ASM, Guide to engineered materials, Advanced Materials&Processes, No.12,1999:178.
    [116]安藤弘平,長谷川光雄.溶接アーク現象[M].(株)産報,1962:330.
    [117]杨春利,林三宝.电弧焊基础[M].哈尔滨工业大学出版社,2010:145.
    [118]郑海生. CO2焊接飞溅产生原因与防止方法探究[J].机电工程技术,2011,40(8):154-156.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.