油气混输泵动叶轮翼型参数配合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着海洋、边远油田的开发利用,工作方式有效且经济效益好的气液两相混输泵成为研究的热点。由于多相泵输送的是气液两相混合介质,而且其中气或液的含量往往高于常规泵或压缩机的工作范围,所以多相泵应兼备压缩机和泵的性能。由于缺乏对气液两相尤其是高含气率介质流动机理的了解及精确的理论分析指导,使多相泵的设计成为一个难点。目前国内外对于多相泵尚没有成熟的设计方法,还不能象清水泵那样,按给定的流量、扬程、转速等参数进行可靠的设计。在多相泵的设计中,人们关心的主要问题是:泵型选择、总体设计方案的确定、效率分析,本文将对油气混输泵的单压缩级性能进行探讨。
     本文研究的内容为油气混输泵通流部分关键部件的输送性能,利用Pro/E软件对油气混输泵单压缩级建立一个三维的数值模拟计算模型,对内部流场进行数值模拟,并详细分析内部流场的压力、速度、气液两相分布状态,对影响油气混输泵效率的因素进行详细讨论,提出改进结构设计的建议和方法。
     对数值模拟分析过程中发现的问题,本文对油气混输泵叶轮的动叶轮的结构设计进行了优化,分析了影响叶轮输送性能的主要因素。使用Pro/E软件对动叶片进行三维造型,划分网格后,在Fluent软件中进行流场模拟。并从翼型型式的选择、翼型包角变化、翼型最大厚度相对弦长位置变化等方面入手,改善动叶的性能,从而提高动叶轮效率。结果表明,对动叶轮性能的改进效果明显,使单级效率提高9个百分点。
     本文的研究工作在一定程度上为油气混输泵通流部分的内部流场分析和叶片设计提供了有益的意见,所尝试的叶片改进设计方法可以为油气混输泵叶片设计研发缩短研制周期,提高效率,节约成本。
With the development of the oceans and utilization of remote oil field, the effective work and cost-effective way of a good gas-liquid multiphase-pump has become a hot research. As the multi-phase delivery pump is gas-liquid mixture, and gas level is often higher than conventional pump, so it has both multi-phase pump and compressor performance. In the absence of multiphase flow especially for high gas rate mechanism of understanding and guidance accuracy theoretical analysis, the design of multi-phase pump become into a difficult point. In the multi-phase pump in the design, it is concerned about the main question is: pump-choice program to determine the overall design, efficiency analysis, this article will pump oil and gas on the single-level compression performance to explore.
     In the paper, the content of the oil and gas to pump some of the flow of key components of the transmission performance, the use of Pro / E software for the oil and gas pump flow section of the establishment of a three-dimensional numerical simulation platform. To the internal flow field of numerical simulation and detailed analysis of the internal flow of pressure, speed, gas-phase distribution, the impact of oil and gas pump efficiency of the factors discussed in detail and put forward recommendations designed to improve the structure and methods.
     After years of research group, oil and gas pump volute, Francis, the overall structure of the parameters have been set, however, some of the efficiency of the impeller is still not high, leaves a larger impact on the head, a serious loss of efficiency, the need for further analysis, and to propose concrete ways to improve.
     On the numerical simulation analysis found that oil and gas of impeller pump action cascade of optimized structure design, analysis of the impact of the cascade of transmission performance of the main factors. The use of Pro / E software on the move leaves for three-dimensional shape, divided into grids, in the Fluent software for flow simulation.From the type of airfoil and the choice of thickness of the airfoil, the maximum thickness of the airfoil relative location of the chord changes, and other aspects, to improve the performance of the rotor, so as to enhance the efficiency of the impeller action. The results show that the rotor of the improved results, the efficiency improve 9 percentage .
     This paper studies to a certain extent, to pump oil and gas flow section of the internal flow field analysis and design of the leaves provides a useful, the attempt to improve the design of the leaves for oil and gas pump blades designed to shorten the development cycle research and development, improve efficiency and cost savings.
引文
[1]Salis J de,Marolles Ch de,Schachenmann A.Multiphase Pumps for Marginal Oil Fields[J].World pumps,1994.(334):38-41.
    [2]Chiesa G.,S.De Donno,Aggradi G.F..Subsea Testing of a Multiphase Unit Prototype[J].In:Anunal Proceedings-Offshore Technology Confererce,Texas:Offshore Technol Conf(OTC),1994,77-84
    [3]Yves Charron,Philippe Pagnier.Multiphase Flow Helico-Axial Turbine:Application and Performance[J].SPE88643,2004
    [4]D Hellmann.Pumps For Multiphase Boosting.Prof.2nd Intern.Conf.of pumps&Fans[J],Beijing:Petroleum Industry Press of China,1995:44-64
    [5]P Wietstock,G Witte.Studies in Multiphase pumping with Serew pumps[J].Qil-Gas European Magazine,1994,1:17-28
    [6]Mike Wysatta.Multiphase Pumping[J]:On The Threshold.JPT,1996,2:118-127
    [7]Keith Oxley,George Shoup.A Multiphase Pump Application in a low Pressure Oil Field Fluid Gathering System in West Texas[J],17thAunual Energy-Sources Technology Conference and Exhibition.1994,New Orleans Louisiana.
    [8]刘武,陈才林,阳朝晖,曹学博.海底凝析天然气管道水合物形成条件预测海洋石油[J].offshore Oil;2004;3:77-80
    [9]何利民,王鑫,赵庆军,陈振瑜,徐建中.水平管道中段塞流的跟踪模拟[J].工程热物理学报,2003,(6):70-73
    [10]李玉星,冯叔初.水平气液混输管道清管操作实验与数值模拟技术[J].化工学报,2004(2):104-107
    [11]曹锋,邢子文,束鹏程.理查森外推法在双螺杆多相混输泵型线设计中的应用[J].水泵技术,1999,(4):15-17.
    [12]马希金,郭俊杰,吴蓓.CFD法设计轴流式油气混输泵初探[J].流体机械,2004,33(7):15-18
    [13]李清平,薛敦松,李忠芳,朱宏武,班耀涛.螺旋轴流式多相泵的实验研究与优化设计[J].工程热物理学报,2004,6:962-964
    [14]赵新学.螺旋轴流式多相混输泵输送气液两相时特性试验研究[D].中国石油大学;2007年
    [15]黄思.多级轴流式混输泵内气液两相流的数值计算[J].水泵技术.2007,6:18-22
    [16]吴世辉,宇富平.螺旋轴流式多相泵的研究[J].2004,5:43-44
    [17]李清平,薛敦松.螺旋轴流式多相泵外特性试验研究[J].工程热物理学报,2000,21(4):451-453
    [18]李清平,薛敦松,朱宏武,李宗芳.螺旋轴流式多相泵的设计与实验研究[J].工程热物理学报.2005,26(1):84-87
    [19]DHellmann.Pumps for Multiphase Boosting.prof.2nd Intern.Conf.of Pumps&Fans,Beijing:Ptroleum Industry Press of China,1995,44-64
    [20]P wietstock,G Witte.Studies in Multiphase Pumping with Serew Pumps[J].Oil Gas-European Magzine,1994(1):17-28
    [21 马希金等.油气混输泵进口气液混合器的设计[J].化工机械,2004,31(5):269-271
    [22]马希金.混输泵半螺旋型吸入室流场的三维模拟分析[J].排灌机械,2005,23(5):11-14
    [23]马希金,郭俊杰,孙永平.轴流式油气混输泵内部的CFD分析及优化设计.化工机械.2004.31(2):90-92
    [24]赵兴艳,苏莫明,张楚华.CDF方法在流体机械设计中的应用[J].流体机械,2000,28(3):22-25
    [25]朱云,郭维.水轮机设计及改造最新技术CDF技术[J].西北水电,2001,2:26-29
    [26]任静.轴流式转轮的三维紊流场分析及优化设计[].北京:清华大学,1999
    [27]王树立,张雅琴,张敏卿.湍流两相流动模式理论综述及展望[J].抚顺石油学院学报,1997.17(2):37-43.
    [28]Furuya,Okitsugu.Analytical model for prediction of two-phase(noncondensable)flow pump performance[J].Journal of Fluids Engineering,Transacti ons of the ASME,1985,107(1):392-147.
    [29]Huang Si,Xue Dunsong.Three-dimensional calculation of gas- oil two-phase flow in helicon-axial booster-pump impeller[C].Pr oceedings of the 1st International Conference on Engineering Thermophysics.1999.674-679
    [30]Huang Si,Xue Dunsong.Calculation of the internal flow in helico-axial type gas-liquid two-phase pump[C].Proceedings of the International Conference on Pumps and Fans.1998:517-525.
    [31]卢金铃,席光,祁大同.离心泵叶轮内气液两相三维流动数值研究[J].工程热物理学报,2003,24(2):237-240
    [32]马希金,郭俊杰,孙永平.轴流式油气混输泵内部的CFD分析及优化设计[J].化工机械,2004,31(2):90-92
    [33]王福军.计算流体力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004
    [34]崔学明.水轮机转轮内三维湍流流场分析及计算模型比较[D].北京:中国农业大学,2002
    [35]M.Pille,E.Nobile,J.Thomas.DNS study of turbulent transport at low Prandtl numbers in a channel flow[J].Jounral of Fluid Mechanics,2002(458):419-441
    [36]J.GWissik.DNS of separating low Reynolds number flow in a turbine cascdae with ineoming wkaes.Inienrational Joumal of Heat and Fluid Flow,2003,24(4):626-635.
    [37].V.Miehelassi,J.G.Wissink,W.Rodi.Direct numerical simulation,large eddy simulation and unsteady Renyolds-averaged Navier-Stokes simulations of periodic unsteady flow in a low-pressure turbine caseade:A comparison.Jounral of Power and Enegy,2003,217(4):403-412
    [38].V.Stephane.Loeal mesh refinement and penalty methods dedicated to the Direct Numerieal Simulation of incompressible multiphase flows[J].Proeeedings of the ASME/JSME Joint Fluids Engineering Conefrenee,2003:1299-1305
    [39]S.Dahlstrom.Large Eddy Simulation of the flow around a high-lift airfoil [M].Doktorsvahandlingar vid Chalmers Tekniska Hogskola,2003(1963):1-50
    [40]B.Koobus,C.Farhat.A variational multiseale method for the lagre eddy simulation of compressible turbulent flows on unstructured meshes-application to vortex shedding[J].Computer Methods in Applied Mechanics and Engineering,2004,193(15-16):1367-1383
    [41]L.Selle,.G.Lartigue,.T.Poinsot,etal.Compressible large eddy simulation of turbulent combustion in complex geometry on unstruetured meshes[J].Combustion and Flame,2004,137(4):489-505
    [42]H.Hartmann,J.J.Derksen,C.Montavon,etal.Assessment of large eddy and RANS stirred tank simulations by means of LDA[J].Chemical Engineering Scienee,2004,59(12):2419-2432
    [43]A.V.Glazunov,V.N.Lykossov.Large-eddy simulation of interaction of ocean and atmospheric boundary layers[J].Russian Jounral of Numerical Analysis and Mathematical Modelling,2003,18(4):279-295
    [44]A.A.Feiz,M.Ould-Rouis,G.Lauriat.Large eddy simulation of turbulent flow in a rotating pipe[J].Journal of Heat and Fluid Flow,2003,24(3):412-420
    [45]I.Mary,.P.Sagaut.Large eddy simulation of flow around an airfoil near stall[J].AIAA Jounral, 2002, 40(6):1139~1145
    [46]D..GE.Grigoriadis, J..GBartzis, A.Goulas.Effieient treatment of complex geometries for lagre eddy simulations of turbulent flows[J].Computers and Fluids , 2004 , 33(2):201~222
    [47]L.Shen, D.K..P.Yue.Lagre-eddy simulation of free-surface turbulence.Jounral of Fluid Mechanics, 2001(440):75~116
    [48]R.E.Julian , K.5.Piotr. Eddy resolving simulations of turbulent solar convection[J].Intenrational Jounral for Numerical Methods in Fluids , 2002 , 39(9):855~864
    [49]J.C.Li.Large eddy simulation of complex turbulent flows:Physical aspects and research trends[J].Acta Mechanica Sinica, 2001, 17(4):289~301
    [50].P.Rollet-Miet, D.Laurence, J.Ferziger. LES and RANS of turbulent flow in tube bundles[J].Interaational Journal of Heat and Fluid Flow, 1999, 20(3):241~254
    [51]V.Michelassi, J..G.Wissink, W.Rodi.Direct numerical simulation, large eddy simulation and unsteady Reynolds-averaged Navier-Stokes simulations of Periodic unsteady flow in a low-Pressure turbine cascade:A comparison.Proceedings of the Institution of Mechanical Engineers[J], PartA:Journal of Power and Energy, 2003, 217(4):403~412
    [52]E..P.N.Duque, R.Gordon, M.D.Berry.etal.Reynolds-Averaged Navier-Stokes simulations of helicopter slung loads.in AHS International Decennial Specialist's Conefernce on Aeromechnics, Jan 21-23 2004.2004, San Francisco, CA, United States:Ameriean HelieoPter Soeiety
    [53]J.pan, E.Loth.Reynolds-averaged Navier-Stokes simulations of airfoils and wings with ice shapes[J].Journal of Aircraft, 2004, 41(4):879~891
    [54]Ine., F., FLUENT User's Guide.Fluent Inc., 2003
    [55]T.Hara, S.Kato.Numerical simulation of thermal plumes in free space using the Standard k-&epsilon model.Fire Safety Journal, 2004, 39(2):105~29
    [56]Y.M.shen, C.O.Ng, .YH.Zheng.simulation of wave propagation over a submerged bar using the VOF method with a two-equation k-&epsilon:turbulence modeling.Ocean Engineering, 2004, 31(1):87~95
    [57]E.Foti, P.Scandura.A low Reynolds number k-&epsilon :model validated for oscil!atory flows over smooth and rough wall.Coastal Engineering, 2004, 51(2):173~184
    [58]R.K.Rahmani,.T.G.Keith,A.Ayasoufi.A study of the accuracy global Peorfmranee,and computational expenses of k-&epsilon:,k-&omega:,and RSM turbulent models for flow in an industrial static mixer in 2004 ASME/JSME Pressure Vessels and iping Conefernee,Jul 25-29 2004.2004,San Diego,CA,United Sattes:American Soeieyt of Mechanical Engineers,New York,NY 10016-5990,United States
    [59]N.G.Wright,.GJ.Eason.Non-linear k-&epsilon:turbulence model results for flow over a building at full-seale.Applied Mathematical Modelling,2003,27(12):1013-1033
    [60]V.Yakhot,S.A.Orsazg.Renomralization group analysis of turbulenee.1.Basie Theory.Journal of scientific Computing,1986,(1):3-51
    [61]T.H.Shih,W.W.Liou,A.Shabbir,et al.New k-eeddy viscosity model for high Reynolds number turbulent flows.Compuetrs&Fluids,1995,24(3):227-238
    [62]A.J.Chorin.A numerical method for solving incompressible viscous flow porblems.Jounrnal of Computational Physics,1997,135(2):118-125
    [63]G.Puckett.Introduction to a numerical method for solving incompressible viscous flow Problems.Journal of Computational Physics,1997,135(2):115-117
    [64]吴玉林,曹树良,戴江.离心泵叶轮中紊流的计算[J].水泵技术,1997(1):9-17
    [65]S.V.patanker,D.B.S..A calculation processure for heat,mass and momentum transfer in three-dimensional parabolic flows[J].Int J Heat Mass Transfer,1972(15):1787-1806.
    [66]柳宁.机械CAD/CAM[M].北京:机械工业出版社,2002,8
    [67]刘厚林,袁寿其.我国泵CAD发展中的几个问题[J].通用机械.2003(3):15-17
    [68]沈建波.叶片泵工程数据库系统[M].镇江:江苏理工大学,2001,7
    [69]赖朝安,李振南.Pro/E二次开发的关键技术[J].机械设计与制造工程.2001,30(1):43-45
    [70]关醒凡.现代泵技术手册[M].北京:宇航出版社.1995.9
    [71]钱瑞战,乔志德,陈迎春,赵克良.基于N-S方程的旋翼翼型优化设计方法[J].飞行力学.2004,22(1):26-29
    [72]Lee S L,Damodaran M.Airfoil design using Naver-Stokes equations[M].ICAS 2000Congress,2000
    [73]席德科,杨青,陆森林,张仲寅,等.先进翼型与先进翼型风机的设计与实验研究[J].Fluid Machinery.2000,28(4):5-9
    [74]芮晓明,马志勇,康传明.大型风电机组叶片翼型的设计方法[J].农业机械学报.2008,39(2):192-194
    [75]李世煌.叶片泵的非设计工况及其优化设计[M].北京:机械工业出版社.2005,8:59-66
    [76]B.Neumann.The Interaction Between Geometry and Permance of a Centrifugal Pump.Mechanical Engineering Publications Limited.London 1991
    [77]杨方飞.离心泵叶轮叶片CAD/CAM的集成[M],江苏大学,2002
    [78]杨萍,张淑珍.基于Pro/E软件平台的混流式水轮机转轮叶片形状拟合及实体模型的建立[J].机械设计与制造,2002,6:62-63
    [79]王栋彦,史明华.基于的常用件参数化系统[J].制造业自动化.2002,26(4):35-38
    [80]刘浩,程培元.逆向工程设计[J].汽车技术.2002,6:4-5
    [81]陶文铨.计算传热学的近代进展[M].北京:科学出版社,2000:6-11,64-80
    [82]刘顺隆,郑群.计算流体力学[M].哈尔滨:哈尔滨工程大学出版社,1998
    [83]吴子牛.计算流体力学基本原理[M1.北京:科学出版社,2001
    [84]李文广.计算流体力学[M].兰州:甘肃工业大学水力机械教研室,2000,7
    [85]林宗虎,李永光,卢家才,等.气液两相流旋涡脱落特性及工程应用[M].北京:化学工业出版社,2001,22-23
    [86]Sloan,D.G,et al,1986,"Modelling Swirl in Turbulent Flow"[J],Prog.Energy and Combustion Science,Vol,12
    [87]龙泽强,王希伯.风轮叶片翼型表面粗糙带影响的试验研究[M].第四届工业流体力学会议论文集,1995,103-106
    [88]陈佐一,钟洪亮,孟繁娟,霍福鹏.叶轮机械叶片节能新技术[J].节能技术.2000,18(99):3-5
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.