高坝消力塘防护结构耦合动力分析与健康诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高坝消力塘作为防护下游河床的结构,其自身在高速水流冲击下的安全性是实现消能和防冲目的的关键所在,国内外都不乏破坏的实例。高坝消力塘防护结构的工作和破坏机理十分复杂,是高速水流水动力特性与防护结构的结构动力特性耦合作用的结果。本文结合模型试验、原型观测和数值分析,研究高坝消力塘水动力荷载特性,开展耦合动力分析的数值模拟方法研究,揭示消力塘防护结构的受力特点、工作机理及失稳的动力过程。并在此基础上将力学分析结果、专家经验、人工智能技术有机融合,提出高坝消力塘防护结构的健康诊断方法。主要成果包括:
     (1)引用水跃和冲击射流的研究成果,详细分析了底流和挑跌流消力塘内的水流流态特征,探讨了这两种型式消力塘内时均压力和脉动压力的分布规律。
     (2)开展板块之间、板块与基岩间缝隙脉动压力传播规律研究,着重研究了缝隙宽度对脉动压强的影响。
     (3)开展止水破坏情况下底部渗压与表面动水压力的耦合作用机理研究,分析了渗压耦合作用对板块下表面不同区域时均动水压强、脉动压强的影响,并研究了不同止水破坏方式板块上举力的变化情况。
     (4)探讨了挑跌流和底流消力塘内板块及边坡的最大上举力的预报方法;系统分析了水流脉动压力相关尺度、消力塘底板尺寸、上下表面脉动压力的相关特性对底板水流上举力的影响,基于此对消力塘底板块尺寸优选进行了研究,并对透水底板上举力降低的原因进行了初步分析。
     (5)分析了消力塘底板的失稳破坏过程、稳定性计算模式及它们之间的内在联系,并对消力塘底板稳定性的控制指标进行了研究。
     (6)对高坝水垫塘防护结构泄洪振动进行了原型观测,全面分析防护结构正常工作状态下的动力响应特性。
     (7)分析了水垫塘底板失稳破坏各个阶段的动位移响应特性,提出可以利用底板动位移响应来识别水垫塘防护结构的稳定性。基于粘结滑移、非线性接触及流固耦合理论,建立水垫塘底板、水体、基岩、锚固钢筋的耦合有限元模型,计算不同破坏状态下底板块的极限动位移,结合原型观测结果进行动位移响应特性的分析,从而对水垫塘底板的稳定性进行识别。
     (8)计算了水垫塘底板振动信号的正常盒维数区间和动力失稳过程不同阶段的盒维数变化,并且结合时域、幅值域、频域分析方法,对水垫塘底板振动特征进行了分析与比较,结果显示分形维数对于水垫塘底板泄洪振动异常情况很灵敏。利用分形盒维数对水垫塘底板振动的主要故障信号进行了分析与识别,明确了分形维数与故障特征之间的内在联系。
     (9)通过对模型实验、原型观测、耦合动力数值模拟结果进行综合归纳分析,将力学分析结果、专家经验、人工智能(AI)技术有机融合,提取与防护结构破坏相关的敏感特征量,建立高坝泄洪防护结构安全监控的理论模型、监控指标,构建高坝消力塘防护结构的健康诊断系统。
The safety of protecting structure in high dam plunge pool is the key to success or failure of energy dissipation, there is no lack of the destructive example at home and abroad. Working and destruction mechanism of protecting structure in high dam plunge pool is very complicated. It is coupling effect result between hydrodynamic characteristics of high speed streams and structural dynamics characteristics of protecting structure. This paper studies hydrodynamic characteristics in high dam plunge pool and numerical value imitates for coupled dynamics analysis by model experiment, prototype observation and numerical analysis to open out force characteristics, working mechanism and failure dynamic process of protecting structure in plunge pool. Basing on that, mechanical analysis result, expert experience and artificial intelligence (AI) technology are organically amalgamated to suggest the health diagnosis method for protecting structure in high dam plunge pool. The main achievements include as follows:
     (1)With research results of hydraulic jump and impinging jet,flow patterns in stilling basin and plunge pool are analyzed in detail, the distributing characteristics of mean pressure and fluctuating pressure are investigated.
     (2)It is analyzed in the paper of the characteristics of the propagation of the pressure wave within the contraction joints among slabs and cracks among slabs and bedrock. Influences on fluctuating pressure are especially studied by width of joints and cracks.
     (3)When water-stop is failure, coupling mechanism between osmotic pressure under slabs and hydrodynamic pressure upper slabs is studied. Influences on time averaged pressure, fluctuating pressure in each area under slabs are analyzed by osmotic pressure coupling. That is also investigated the uplift forces changing with different way of water-stop failure.
     (4)Forecast ways of maximal uplift forces acting on slabs or slope in stilling basin and plunge pool are investigated. Influences on the uplift forces acting on the slabs by fluctuating pressure integral scale, the size of stilling basin slabs and correlation characteristics for fluctuating pressure upper and under the slabs are studied systemically. Basing on that, this paper discusses the size optimization of stilling basin slabs and analyzes the reason for uplift forces decrease of the pervious slabs.
     (5)The steady losing and destroying process, stability calculation pattern of slabs in plunge pool and inherent relationship between them are analyzed,stability control indexes for slabs in plunge pool are investigated.
     (6)Prototype observation for the flood discharge vibration of protecting structure in high dam plunge pool is carried out to analyze fully dynamic respond characteristics of protecting structure working regularly.
     (7)The paper defines the response characteristic of dynamic displacement about stability failure process for plunge pool slabs, the method is proposed by means of dynamic displacement response to discriminate the stability of plunge pool slabs. Based on bond-slip theory, nonlinear contact theory and fluid-structure coupling theory, coupling three dimensional finite element model about plunge pool slabs, water, bedrock and anchor bar is established, limiting dynamic displacement considering phases of stability failure is studied in this paper, the response characteristic of dynamic displacement is analyzed in virtue of prototype observation results, and stability of plunge pool slabs are predicted.
     (8)The box dimension for slabs vibration curve in plunge pool of working regularly and the different stage of failure dynamic process is calculated. The vibration feature is analyzed and compared in time-amplitude-frequency domain. The results demonstrate that the fractal dimension is sensitive to abnormal vibration of slabs in plunge pool. The main malfunction signals are distinguished and analyzed using fractal box dimension to make it clear that the inner link between fractal dimension and the main malfunction characteristic.
     (9)The results of model experiment, prototype observation and coupled dynamics numerical simulation are synthesized. Mechanical analysis result, expert experience and artificial intelligence (AI) technology are organically amalgamated to extract sensitive characteristic variable about protecting structure failure. The paper puts forward theoretical model, monitoring indexes for safety monitoring of the high dam flood discharge protection structure, establishes health diagnosis system for protecting structure in high dam plunge pool.
引文
[1]童显武,李桂芬等.高水头泄水建筑物收缩式消能工[M].北京:中国农业科技出版社,2000
    [2]高仪盛,汪世鹏,陈俊.隔河岩枢纽水力学原型观测及检查成果[J],长江科学院院报,2003.5
    [3]安芸周一.关于自由跌落水舌的水垫效果的研究[J].国外科技增刊(2),天津大学图书馆,1981(10):58
    [4]Spyridon Beltaos,Nallamuthu Rajaratnam. Impinging Circular Turbulent Jets[J]. Journal of the Hydraulics Division,ASCE,HY10,1974.10
    [5]石川中晴.自由跌落式消能工的水力机理(1)[J].水工高速水流译文集,天津大学水工高速水流研究室,1980.7
    [6]练继建.二元射流作用下边壁动水荷载极其应用[D].硕士学位论文,天津大学,1987.12
    [7]许多鸣,余常昭.平面射流对槽底的冲击压强极其脉动特性[J].水利学报,1983(5): 52-58
    [8]崔广涛,陈荣光,林继镛.挑跌流对河床的动水压力及基岩的防护问题[J].天津大学学报,1982(2):23-26
    [9]崔广涛,林继镛,梁兴蓉.拱坝溢流水舌对河床作用力及其影响的研究[J].水利学报,1985.8
    [10]黄种为,陈瑾.高拱坝泄洪与水垫塘底板动水压力问题的试验研究[J].水利学报,1992(11):50-56
    [11]S.M.Borghei. Effect of Plunge Pool Width on Hydrodynamic Pressures due to Vertical Jet[J]. 29 thIAHR Proceedings, 2001,Them D,Vol.1,PP622-627
    [12]F.A.罗切尔等.对水跃消力池水流脉动压力研究简介[J].人民长江,1990(10):50-55
    [13]张声鸣.消力池护坦板上水跃脉动压力的特性分析[J].长江科学院院报,1989.2
    [14]尤季茨基,依沃依洛夫,西沃洛式斯卡亚等.水流动水压力对溢流坝挑流鼻坎下游河床影响的模型试验和原型观测[J].高速水流译文集,长科院译,水利电力出版社,1979,PP242-252
    [15]梁兴蓉.挑流冲刷过程的压力谱场特性的随机分析[J].高速水流,1984.2
    [16]崔广涛.关于急流脉动压力振幅取值问题的探讨[J].高速水流情报网第二界全网大会论文集,1986.10
    [17]林继镛,练继建.二元射流作用下点面脉动壁压的幅值计算[J].水利学报,1988(12):34-40
    [18]谢省宗.《水工脉动荷载规范》水流脉动压力研究专题总结[R].水利水电科学研究院,1993.7
    [19]朱荣林.乌江构皮滩拱坝泄洪消能试验报告[R].水利水电科学研究院,1995.6
    [20]A.斯波里亚里克等,B.马克西莫维克,G.哈依丁.因压强脉动而作用在消力池底板上的不恒定冲击力[J].国际水工模型试验会议译文选集,泄水建筑物高速水流情报网,1984.1
    [21]黄涛.高坝泄水建筑物的几个水力学问题[J].水利学报,1983(2):44-49
    [22]崔广涛.水流点脉动压力和面脉动荷载转换问题的探讨[J].溢洪道设计规范专题六,天津大学水工高速水流研究室,1985.10
    [23]Gao-Jizhang et al. Astudy of hydrodynamic loads on concrete slab of plunge pool[J].Int.Symp.On Hydraulic Research in Nature and Laboratory, Wuhan, China, 1992
    [24]高盈孟,唐建华,陈雪珍.高水头大流量泄洪消能研究—小湾水垫塘保护型式及衬砌结构稳定研究[J].电力工业部昆明勘测设计研究院科学研究所,1995(5):27
    [25]Fiorotto, V. and Rinaldo . A . .Turbulent pressure fluctuations under hydraulic jumps[J], J. Hydr. Res., IAHR, VOL. 30, NO. 4, 1992
    [26]廖华胜、许唯临、杨永全等.多股射流入射水垫塘点面脉动压力特性[J].四川联合大学学报(工程科学版),1999,3(1):20-24
    [27]G.Rehbinder. Slot Cutting in Rock with A High Speed A Water Jet[J].Int. J.Rock Mech. Min. Sic.,Vol.14,1977,PP 229-234
    [28]姜文超,梁兴蓉.应用紊流理论探讨脉动压力沿缝隙的传播规律[J].水利学报,1983(9):53-59
    [29]赵耀南,梁兴蓉.水流脉动压力沿缝隙的传播规律[J].天津大学学报,1988(3): 55-65
    [30] Fiorotto.V and Rinaldo.A. Fluctuating uplift and lining design in spillway stilling basins[J].Journal of Hydraulic Engineering,ASCE,VOL. 118 No. 4,1992:578-596
    [31]刘沛清,冬俊瑞,余常昭.在岩缝中脉动压力传播机理探讨[J].水利学报,1994(12):31-36
    [32]刘沛清,李忠义,冬俊瑞.用二维瞬变流方程分析缝面层中脉动压力传播规律[J].水利学报,1996(4):27-32
    [33]刘沛清,邓学蓉.多级板块缝隙中脉动压力传播过程数值研究[J].力学学报,V.30No.6,1998(11):662-671
    [34]张建民,杨永全,戴光清,周著.水垫塘底板缝隙中脉动压力传播特性[J].四川大学学报(工程科学版),V.32 No.3,2000(5):5-8
    [35]王玉蓉,张建民,刁明军,曲景学.脉动水压力沿缝隙传播的实验研究[J].水利学报,2002(12):44-48
    [36]李爱华,刘沛清.脉动压力在消力池底板缝隙传播的瞬变流模型和渗流模型统一性探讨[J].水利学报,2005(10):1236-1240
    [37]李爱华,刘沛清.脉动压力在板块缝隙中传播衰变机理研究[J].水利水电技术,2006(6):33-37
    [38] J. F. Melo, A. N. Pinheiro, and C. M. Ramos.Forces on Plunge Pool Slabs: Influence of Joints Location and Width[J].Journal of Hydraulic Engineering, 2006, 132(1): 49-60
    [39]刘昉.水流脉动壁压特性及其相似率研究[D].博士学位论文,天津大学,2007.5
    [40]夏毓常,张黎明.水工水力学原型观测与模型试验[J].中国电力出版社,1999
    [41]黄涛.水流脉动压力特征及其模型相似律[J].水利学报,1993(1):51-57
    [42]赵耀南.重力相似水力模型中紊流微结构的相似律[J].水利学报,1988(8):97-101
    [43]王木兰.水流脉动压力的数据处理、工程应用及机理研究的进展[J].河海大学科技情报,1990(9):28-43
    [44]阎诗武.泄水结构流激振动研究进展[J].泄水工程与高速水流,1984.3
    [45]崔广涛,练继建,彭新民,林继镛,安刚等.水流动力荷载与流固相互作用[M].中国水利水电出版社,1999
    [46]张声鸣.水跃区水流脉动压力相似律的试验研究[J].长江科学院院报,1991(12):1-9
    [47]练继建,王继敏,辜晋德.水跃区水流脉动压力频谱相似律研究[J].科学通报.2007(8):1832-1839
    [48]长江水利水电科学研究院等合编.泄水建筑物下游的消能防冲问题[R].挑流消能部分.1980
    [49]彭新民,王继敏,崔广涛.拱坝水垫塘拱形底板受力与稳定性实验研究[J].水力发电学报,1999(2):52-59
    [50]杨敏,彭新民.高坝消力塘底板上举力特性与预测方法[J].水利水电技术,2003(9):29-31
    [51]张建民,杨永全,王玉蓉,许唯临.消力塘底板上举力的数值研究[J].水动力学研究与进展,2003(01):63-67
    [52]孙健,陈长植.平底消力塘底板块失稳的数值模拟[J].水利学报,2002(11):84-88
    [53]孙健.反拱消力塘底板块上举力变化规律的试验研究[J].应用力学学报,2004(12):47-51
    [54]侯庆国.消力塘反拱底板单块体上举力的试验研究[J].中国农村水利水电,2006(7):88-90
    [55]林继镛、彭新民.挑跌流作用下底板稳定性试验研究[J].水利水电系统应用概率统计学术讨论会文集,1985.11
    [56]毛野.有关岩基冲刷机理的探讨[J].水利学报,1982,2(2):46-53
    [57]崔莉、张廷芳.射流冲击下护坦板块失稳机理的随机分析[J].水动力学研究与进展A辑,1992,7(2):212-218
    [58]郭航忠.水垫塘底板稳定性判别标准研究[D],硕士学位论文,天津大学,2003,12
    [59]刘沛清,侯建国.坝下游水垫塘混凝土底板块的稳定性分析[J].水利学报,1998(7):1-7
    [60]杨敏,彭新民,崔广涛.水垫塘底板的试验仿真模拟研究[J].水力发电技术,2002,33(3):40-42
    [61]刘喜珠.水垫塘衬砌结构的破坏模式研究[D].硕士学位论文,天津大学,2007.6
    [62]刘沛清.挑射水流对岩石河床的冲刷机理研究[D].博士学位论文,清华大学,1994.12
    [63]王继敏,王珮璜.长潭岗水电站反拱形水垫塘研究及应用[J].水利水电技术,2002,33 (7):10-12
    [64]杨令强,练继建,张社荣等.高拱坝水垫塘反拱底板衬砌结构的非线性静力分析[J].水利学报,2002(9):77-81
    [65]符晓.水垫塘衬砌结构非线性静动力特性研究[D].硕士学位论文,天津大学,2004.12
    [66]史军.反拱底板稳定性分析的块体——弹簧元数值方法[D].硕士学位论文,天津大学,2003.01
    [67]马斌.高拱坝及反拱水垫塘结构泄洪安全分析与模拟[D].博士学位论文,天津大学,2006.10
    [68]中川博次,洪崎一博,多田敏一.拱坝泄水建筑物的水力学性能研究[J].国外科技增刊(1),天津大学图书馆,1981.10
    [69]岩佐义郎,中川博次,藤本成.日本多目标工程消能工的历史性发展[J].高速水流译文集,水利水电出版社,1979(12):433-440
    [70]吴中如,阮焕祥,沈长松.大坝安全监控理论及其应用[M].北京:中国教育出版社,2002
    [71]吴中如,顾冲时.大坝安全综合评价专家系统[M].北京:科学技术出版社,1997
    [72]苏怀智,吴中如,戴会超.初探大坝安全智能融合监控体系[J].水力发电学报,2005(2):122-126
    [73]雷鹏,顾冲时.基于粗集推理的大坝安全监测预报模型研究[J].河海大学学报(自然科学版),2005(7):391-394
    [74]安芸周一.关于拱坝中央溢流泄洪护坦上水垫效果的研究,国外科技增刊(1),天津大学图书馆,1981(10):1-38
    [75]Rajaratnam N.Turbulent jets[M].Amsterdam.Elsevier Se.Publ.Co.1976
    [76]Beltaos S, Rajaratnam N. Plane turbulent impinging jets[J].J. Hydr. Res. IAHR, 1973,11(1):29-59
    [77]Beltaos S.Oblique impinging of plane turbulent jets[J].Proc.of ASCE,1976,V.102 No.9
    [78]Wu S, Rajaratnam N. Submerged flow regimes of rectangular sharp-crested weirs[J].Journal of Hydraulic Engineering,ASCE.1996,122(7):412-413
    [79]Wu S, Rajaratnam N.Impinging jet and surface flow regimes at drop[J] J. Hydr. Res., IAHR.1998,36(1):69-74
    [80]Abdul Khader M.H. and Elango K. Turbulent pressure field beneath a hydraulic jump[J]. Journal of Hydraulic Research. 12(4):469-489
    [81]R.A.Lopardo,J.C.Delio,G.F.Vernet.水跃大尺度紊动引起空穴趋势的物理模拟[J].国际水工模型实验会议译文选集,1984.1
    [82]Schiebe , F. , and Bowers , C.E. Boundary pressure fluctuations due to macroturbulence in hydraulic jumps[J]. Proc.Symp. on Turbulence in Liquids , University of Missouri, Columbia, Mo,1971
    [83]钟用升.水跃区脉动压力的随机分析[D].硕士毕业论文,华北水利水电学院,1981
    [84]天津大学水工高速水流研究室.泄水建筑物水流的脉动压力[R].溢洪道设计规范专题六
    [85]Cola,R. Energy Dissipation of a High Velocity Vertical Jet Entering a Basin[J]. (1965)Proceedings of the 11th International Association for Hydraulic Research Congress, Leningrad, USSR
    [86]Aki,S. Field Measurements of Velocity and Pressure on Spillway Chutes[J].Proceedings of the 13th International Association for Hydraulic Research Congress, Kyoto, Japan,1969
    [87]Hartung,R.,Hausler,E. Scours,Stilling Basins and Downstream Protection Under Free Overfall Jets at Dams[J]. Proceedings of the 11th International Congress on Large Dams,1973,Vol.11 No.41:39-56
    [88]Lencastre,A. Free Overflow Spillways[R]. LNEC,Lisbon,Portugal,Peport No.174
    [89]Armengou,J. Disipacion de energia hidraulica a pie de presa en presas boveda.PHD Thesis,Universitat Politechnica de Catalunya,Barcelona,June.
    [90]Ervine,D.A. Falvey,H.T. Pressure fluctuations on plunge pool floors[J].Journal of Hydraulic Research,1997,Vol.35 No.2:257-279
    [91]L.G.Castillo,J.Puertas and J.Dolz,Discussion of Pressure Fluctuations on Plunge Pool Floors[J].J.Hydr.Res. 1999,Vol.37 No.2:272-277
    [92]田忠,许唯临,王韦,刘善均.高速淹没冲击射流的压强特性[J].水利学报,2005(4): 401-404
    [93]李建中,宁利中.高速水力学[M].西安:西北工业大学出版社,1994.12:223
    [94]混凝土拱坝设计规范(SL282-2003)
    [95]柴华,冬俊瑞,李永祥.热膜测速技术在挑射水流运动特性及高坝消能机理研究中的应用[J].水利学报,1999(10):45-51
    [96]杨永全,戴光清,张建民等.小湾水电站高拱坝大流量泄洪关键技术研究──小湾工程水垫塘优化设计及底板稳定试验研究[R].四川大学,1999,9
    [97]May,R.W.P.,Willoughby,I.R.Impact Pressures in Plunge Pool Basins Due to Bertical Falling Jets.Report SR 242,HR Wallingford,U.K.,January,1991
    [98]Erik Bollaert, Transient Water Pressures in Joints and Formation of rock scour due to High-Velocity Jet Impact.PHD, Belgium,University of Ghent,2002
    [99]张东明.坎型选择对泄流水舌及底板压力的影响研究[M].硕士学位论文,天津大学,2005.1
    [100]Lin CC. On the stability of two dimensional parallel flow[J].Proc. Nat. Acad. Sci., Wash.1944,30
    [101]李炜,徐孝平主编.水力学[M].武汉水利电力大学出版社,2000年
    [102]杨敏.高坝消力塘水动力特性与防护结构的安全研究[D].博士学位论文,天津大学,2003.6
    [103]林继镛,练继建.二元淹没射流脉动壁压的相关与频谱特征[J].天津大学学报,1994(11):691-697
    [104]刘沛清.在冲刷坑底部岩块上的脉动上举力[J].中国科学(E辑),1998(4):175-182
    [105]孙勉.水垫塘透水底板水动力特性研究[D].硕士学文论文,天津大学,2006.12
    [106]张声鸣,陈健.水垫塘底板稳定研究[J].长江科学院院报,1997(3):5-9
    [107]熊贤禄,熊泽璋.二滩溢流坝表孔泄洪时水垫塘动压和冲刷的研究[J].水电站设计,1997(7):59-64
    [108]长江水利委员会长江勘测规划设计研究院,乌江构皮滩水电站泄洪消能专题报告[R].2002.12
    [109]西北勘测设计研究院.黄河拉西瓦水电站工程泄洪消能设计补充专题报告[R].2003.1
    [110]中南勘测设计研究院.金沙江向家坝水电站泄洪消能专题报告[R].2004.3
    [111]成都勘测设计研究院.雅砻江官地水电站泄洪消能专题报告[R].2005.10
    [112]王继敏.高坝消力塘防护结构安全问题研究[D].博士学位论文,天津大学,2007.6
    [113]谢省宗,李世勤,吴一红.高拱坝坝身泄洪流激振动水弹性模拟研究[J].水利学报,1997.12
    [114]刘沛清.应用随机振动理论分析岩块的启动过程[J].水利学报,1997(11):1-10
    [115]王春涛.高拱坝及其附属结构体系静动力分析与模拟[D].博士学位论文,天津大学,2004.6
    [116]刘之平、刘继广等.二滩水电站高双曲拱坝水垫塘水力学原型观测研究[J].2000全国水工水力学学术讨论会论文集,2000
    [117]杨敏,崔广涛.关于水垫塘底板稳定性控制指标的探讨[J].水利学报,2003(8):6-10
    [118]孙建,陈长植.平底水垫塘底板块失稳的数值模拟[J].水利学报,2002,(11):84-88
    [119]C.Edward and Joel Toso. Kanafuli Project model studies of spillway damage[J]. J.Hydr. Eng,ASCE,Vol.114,No.5,1988:469-484.
    [120]王传志,腾志明.钢筋混凝土结构原理[M].北京:中国建筑工业出版社,1985
    [121]周志祥主编.高等钢筋混凝土结构[M].北京:人民交通出版社,2002
    [122]Bresler B and Bertero V V. Behavior of Reinforced Concrete under Repeated Loads[J].J.Struct.DIV.,ASEC,1968.9,94,ST6:1567-1590
    [123] Nilson A H.Nonlinear Analysis of Reinforced Concrete by the Finite Element Method[J].ACI Journal,1968(9):757-766
    [124]Houde J.Study of Force-Displacement Relationships for the Finite Element Analysis of Reinforced Concrete[J].In:Dept. of Civil England Applied Mechanics. Report No.73-2Montreal:Mc Gill University,1973.12
    [125]腾志明主编.钢筋混凝土基本构件(第二版)[M].北京:清华大学出版社,1987
    [126]Comite Euro-International du Betu.D’information No.213/214 CEB-FIP Model Code 1990(Concrete Structures).Lausanne,May 1993
    [127]徐有邻.钢筋混凝土粘结滑移本构关系的简化模型[J].工程力学,1997增刊:34-38
    [128]徐有邻,沈文都,汪洪.钢筋混凝土粘结锚固性能的试验研究[J].建筑结构学报,1994(3):26-37
    [129]崔广涛,彭新民,练继建等.高拱坝大流量泄洪振动及新型水垫塘研究[R].“八.五”国家重点科技攻关,国家自然科学基金资助项目研究成果之三——拱坝水垫塘反拱形底板研究,天津大学水资源与港湾工程系,1996.3
    [130]练继建,杨弘.二滩拱坝水垫塘泄洪消能安全实时监控系统研究[R].天津,天津大学,2005.12
    [131]刘沛清,冬俊瑞,李玉柱.冲坑内岩块起动机理探讨[J].见:泄水工程与高速水流论文集,成都:成都科技大学出版社,1994
    [132]B.B.Mandelbrot. The Fractal Geometry of Nature,New York:W H Freeman,1982:361-366
    [133]Peter R. Massopust,Fractal Functions,Fractal Surfaces and Wavelets,Academic Press,1994,135-355
    [134]林鸿溢,李映雪.分形论—奇异性探索[M].北京:北京理工大学出版社,1992:54-72
    [135]董连科.分形理论及其应用[M].沈阳:辽宁科学技术出版社,1991:16-30
    [136]杨松林.工程模糊论方法及其应用[M].北京:国防工业出版社,1996
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.