非点源污染分布式模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
密云水库是北京市目前唯一的地表饮用水水源地,近年来面临着水体富营养化的威胁。研究表明在点源污染已经得到有效控制的情况下,非点源污染已经上升为密云水库水质污染的主要来源,如不及时采取有力的措施势必引起水质持续恶化。因此,如何有效地控制密云水库流域的非点源污染关系到北京市的饮水安全和经济社会的可持续发展。同时,北京市具有地位重要、城市化程度高、人口众多等特点,因此探讨和解决困扰北京市多年的地表饮用水水源地水质恶化的问题,是对“水和城市和谐”、“人水和谐”等新思想、新理念的科学实践,也是对“在开源节流的同时保护现有的清洁水源不受污染”这一解决地区性缺水问题思路的科学实践。
     本文以集水区管理、点源和非点源联合控制、土地利用和管理、多屏障方法、水源保护规划等水源地保护的理论和方法为基础,以GIS技术为依托,在密云水库上游流域建立了基于物理机制的分布式水文模型SWAT,对密云水库水源地的水源保护进行研究。全文共八章,可以分为四个部分。第一部分包括第一章和第二章,对非点源污染模拟进行综述并介绍了SWAT模型的基本原理和最新进展;第二部分包括第三章和第四章,简要地介绍了研究区概况,重点论述了SWAT模型构建、率定和验证等;第三部分包括第五章、第六章和第七章,主要借助于SWAT模型和GIS技术探讨水源地保护的途径;第四部分为第八章,即结论和建议。得到如下主要结论:
     (1)建立了日照时数与辐射日值的相关关系、利用SPAW软件和数值插值方法估算了密云水库流域主要土壤的物理属性,并借助GIS技术,成功地在密云水库上游流域构建了SWAT模型。模拟结果表明所建立的天气发生器正确的反映了流域内的气候特征,通过土壤质地插值并由SPAW软件得出的土壤物理属性基本反映了流域内土壤物理特性的空间分布特征,SWAT模型适用于海河流域北部以山地为主的地区。
     (2)对SWAT模型进行了敏感性分析、率定和验证,确定了模型的主要参数,为研究密云水库上游流域的非点源污染建立了一个技术平台,揭示了密云水库上游流域的非点源污染时空分布特征。非点源污染主要发生在汛期,潮河流域的非点源污染流失状况比白河流域严重。
     (3)计算了密云水库1986~1991年间营养物污染的贡献率。研究表明,密云水库流域由于人类活动影响而产生的TN、TP污染负荷占流域总污染负荷的1/3左右,其余的污染负荷是土壤背景值产生的,与土地利用有关。在这部分人为可控的污染负荷中由非点源所产生的污染负荷占4/5,因此加强流域内的非点源控制是未来流域管理的重点。
     (4)对密云水库土壤侵蚀和营养物流失的关键区进行了识别。根据SWAT模型模拟结果计算各子流域的侵蚀模数,然后按照土壤侵蚀强度分级标准对各子流域内的土壤侵蚀强度进行了分级。为了保护人体的健康和生物安全,采用USEPA颁布的水质标准,对各子流域出口的硝态氮和可溶解磷的浓度进行了估算。其结果表明,潮河和白河上游部分子流域的河流中可溶解磷的浓度存在过高的风险,应采取有效措施予以减缓。
     (5)分析了密云水库流域20世纪90年代土地利用的时空变化规律。研究表明,流域内土地利用程度较低,植被覆盖情况良好,而以90年代中期最佳。流域内地类间的转移、增减处在不断的变动中,且主要发生在耕地、林地和草地这三种主要的土地利用类型之间。耕地的消长是影响其它两种地类的重要因素,因而在密云水库流域农业活动是土地利用变化的主要驱动力。通过把90年代三期土地利用图分别输入SWAT模型,采用1986~1991年的气象条件,模拟结果表明与90年代初期和末期的土地利用相比,90年代中期的土地利用/覆盖下可以减少密云水库的非点源污染负荷。
     (6)采用Dillon模型计算了密云水库TN和TP环境容量。结果表明,TN的入库负荷在90年代初就已经接近或超过了水库的环境容量,进入90年代以来,随着化肥施用量的逐年增加和畜禽养殖业的快速发展,TN的入库负荷随之增加,导致密云水库长期以来TN指标不能达到国家地表水II类水体标准。同样,TP虽然有一定的环境容量,但是如不加以控制,势必超过水体的纳污能力。
     (7)根据污染负荷贡献率的大小对污染负荷进行了分配,初步制定的分配方案是在赤城和大阁两个乡镇建立污水处理厂,畜禽养殖和化肥施用量减少2/5。模型模拟结果表明,该方案可以实现预期的总量控制指标,是切实可行的。
     (8)通过情景分析,为非点源污染控制提供了决策的依据。模拟了8种不同的管理情景下密云水库流域非点源污染负荷的削减量,在实际工作中可以选用一个或多个的组合达到非点源污染控制的目的,为流域管理和非点源污染控制提供了科学依据。
     论文主要创新点为:
     研究了20世纪90年代密云水库流域土地利用变化的时空特征及其对水资源的质和量的影响。
     对SWAT模型的构建方法进行了有益的尝试。
     把SWAT模型与水源地保护相结合,拓展了SWAT模型的应用领域。
With the development of economy and society as well as the aggravation of the urbanization process, the issues on water and city become one of the great challenges that the international society faces this century. It is an important measure to solve the regional shortage of water for protecting current clean water sources from pollution while developing new resources and reducing wastes. Miyun Reservoir, the mere surface water source for drinking water in Beijing presently,is facing serious threat of eutrophication in recent years. The improvement of water quality in the reservoir is related with the safety of drinking water and the sustainable development of economy and society in Beijing. On the basis of the theories and methods such as watershed management, conjunctive control of both point and nonpoint sources, land use and management, etc., a distributed hydrological model SWAT was developed by using GIS (Geographic Information System) technique to investigate the water source protection on the Miyun Reservoir. The main conclusions are as follows:
     (1) For the purpose to develop the weather generator in SWAT model, a method to estimate daily solar radiation was proposed on the basis of relationship between sunshine duration and solar radiation. The interpolation method was used to make the soil grain size conversion, and the soil water characteristics were estimated by the SPAW program to build up soil property database. The result shows that the weather generator accurately reflects the climate characteristic and the estimated soil property parameter value can describe the soil spatial distribution in the basin. It is proved that the SWAT model can be used in the upland areas in northern Hai Basin.
     (2) The sensitive parameters were identified through sensitive analysis and the calibration and validation for streamflow, sediment and nutrients were performed. A scientific platform was built to investigate NPS (Nonpoint source) pollution in the Miyun Reservoir basin. The spatio-temporal distribution features of NPS pollution in the Miyun Reservoir basin were revealed. NPS pollution mainly takes place in flood season, and it is more serious in the Cao River watershed than that in Bai River watershed.
     (3) The nutrition contributing ratio in the Miyun Reservoir was estimated. The study shows that one third of the total TN and TP load are produced by the human activity in the Miyun Reservoir basin, and other pollution load was produced by the soil background value which is related to landuse. Nearly four fifth of the pollution load which is controlled by people is attributed to NPS. Therefore, the emphasis of basin management should be put on the NPS control in the Miyun Reservoir basin.
     (4) The critical areas of soil erosion and nutrient loss were identified. According to the simulation result the soil erosion module were calculated in each subbasin and their soil erosion intensities were classified. For the purpose to protect people health and biological safety, the concentration of nitrate and soluble phosphorus were calculated at the outlets of each subbasin. The result shows there may be potential risks in too high concentration of soluble phosphorus at some outlets of subbasins in upstream of the Miyun Reservoir basin.
     (5) The spatio-temporal features of land use changes in the Miyun Reservoir basin during 1990s were analyzed. The result shows that the centric shift and transition between different landuse were intensive, and agriculture activity was major driving forces for the changes. Comparatively, the land use in 1995 was beneficial to reduce the NPS pollution load into the Miyun Reservoir.
     (6) The environmental capacity of TN and TP in the Miyun Reservoir were calculated by using Dillon model during the period from 1991 to 2003. Compared with the inflow load, there is no margin for TN load even in the early 1990s. With the increase of fertilizer use and the development of poultry and livestock breeding, the inflow load will increase too and lead to the water quality below to meet the national standard II of water environment. It is same for TP, but there still have some margin for it. Measures must be taken to prevent the entering load from exceeding the capacity.
     (7) The pollution loads were assigned by the contribution ratio. The preliminary allocative decision is to build sewage treatment plants in both Chicheng and Dage towns and decrease 2/5 pollution load from poultry, livestock and fertilizer. The simulation result shows that these measures are feasible.
     (8) Eight scenarios were proposed to find the best management practices, from which one or different combination of these scenarios may be selected to prevent NPS pollution. The main innovations in this study include:
     The spatio-temporal features of land use changes in the Miyun Reservoir basin during the 1990s and its effects on water resources have been analyzed;
     The method to set up SWAT model has been proposed;
     The field of SWAT model application has been extended to water source protection.
引文
[1] World Water Assessment Program. Water security: a preliminary assessment of policy progress since Rio in Chinese[M]. Paris: UNESCO, 2001.
    [2] United Nations Country Team in China. Millennium development goals China's progress[M]. 北京: Office of the United Nations Resident Coordinator in China, 2003.
    [3] 中华人民共和国水利部. 2004 年中国水资源公报[R]. 北京: 2005.
    [4] 国家环境保护总局. 2004 年中国环境状况公报[R]. 北京: 2005.
    [5] 温家宝. 国务院政府工作报告 2005[R]. 北京: 2005.
    [6] USEPA. Summary of the Clean Water Acts[EB/OL]. http://www.epa.gov/oecaagct/lcwa.html#Nonpoint%20Source%20Pollution, /2006-10-20.
    [7] Tsihrintzis, V. A., Hamid, R. Modeling and management of urban stormwater runoff quality: A review[J]. Water Resources Management. 1997, 11(2):137-164.
    [8] Pimentel, D. World soil erosion and conservation[M]. Cambridge University Press, 1993.
    [9] 郑涛, 穆环珍, 黄衍初, 等. 非点源污染控制研究进展[J]. 环境保护. 2005, (2):31-34.
    [10] USEPA. Water quality conditions in the United States: a profile from the 1998 national water quality inventory report to congress[R]. Washington: Office of Water, 2000.
    [11] USEPA. Non-point source pollution from agriculture[EB/OL]. http://www.epa.gov/region08/water/nps/npsag.html /2006-10-20.
    [12] 唐莲, 白丹. 农业活动非点源污染与水环境恶化[J]. 环境保护. 2003, (3):18-20.
    [13] 王东胜, 杜强. 水体农业非点源污染危害及其控制[J]. 科学技术与工程. 2004, 4(2):123-126, 142.
    [14] 何萍, 王家骥. 非点源(NPS)污染控制与管理研究的现状、困境与挑战[J]. 农业环境保护. 1999, 18(5):234-237.
    [15] 王晓燕, 王一峋, 蔡新广, 等. 北京密云水库流域非点源污染现状研究[J]. 环境科学与技术. 2002, 25(4):1-3.
    [16] 王晓燕, 郭芳, 蔡新广, 等. 密云水库潮白河流域非点源污染负荷[J]. 城市环境与城市生态. 2003, 16(1):31-33.
    [17] 鲍全盛, 曹利军, 王华东. 密云水库非点源污染负荷评价研究[J]. 水资源保护. 1997, (1):8-11.
    [18] 杜桂森, 刘晓端, 刘霞, 等. 密云水库水体营养状态分析[J]. 水生生物学报. 2004, 28(2):191-195.
    [19] 刘昌明, 李丽娟. 解决我国水问题的途径[J]. 科学对社会的影响(中文版). 1999, (3):4-9.
    [20] 钱易. 对北京水资源保护战略的思考[J]. 北京水利. 2001, (6):1-3.
    [21] Loague, K., Corwin, D. L., Ellsworth, T. R. The challenge of predicting nonpoint source pollution[J]. Environmental Science and Technology. 1998, 32(5):130A-133A.
    [22] Heng, H. H., Nikolaidis, N. P. Modeling of nonpoint source pollution of nitrogen at the watershed scale[J]. Journal of the American Water Resources Association. 1998, 34(2):359-374.
    [23] Di Luzio, M., Arnold, J. G. Formulation of a hybrid calibration approach for a physically based distributed model with NEXRAD data input[J]. Journal of Hydrology. 2004, 298(1-4):136-154.
    [24] Woolhiser, D.A. and Brakensiek, D.L.. Hydrologic system synthesis[A]. Haan,C.T., Johnson, H.P. and Brakensiek, D.L. eds. Hydrologic modeling of small watersheds[C]. St. Joseph: ASAE, 1982.
    [25] Singh, V. P. Hydrologic systems. Volume I: rainfall-runoff modeling[M]. Englewood Cliffs: Prentice Hall, 1988.
    [26] Muleta, M. K. A decision support system for the management of non-point source pollution from watersheds[D]. Illinois: Southern Illinois University at Carbondale, 2003.
    [27] 中华人民共和国水利部. 水土保持监测技术规程[M]. 北京: 中国水利水电出版社, 2002.
    [28] Chen, Y. D. Watershed modeling: where are we heading?[J]. Environmental Informatics Archives. 2004, 2:132-139.
    [29] Crawford, N. H., Linsley, R. K. Digital simulation in hydrology: Stanford watershed model IV[R]. Tech. Rep. No. 39. Palo Alto: Stanford University, 1966.
    [30] Hydrologic Engineering Center (HEC). HEC-1 flood hydrograph package, user's manual[M]. Davis: U.S. Army Corps of Engineers, 1968.
    [31] Metcalf and Eddy, Inc., Univ. of Florida, and Water Resources Engineers, Inc. Storm water management model - Final report[M]. Washington, D.C.: USEPA, 1971.
    [32] Singh, V. P., Woolhiser, D. A. Mathematical modeling of watershed hydrology[J]. Journal of Hydrologic Engineering. 2002, 7(4):270-292.
    [33] Sugawara, M. The flood forecasting by a series storage type model[J]. Int Symposium Floods and their Computation. 1967, 1:555-560.
    [34] Bicknell, B. R., Imhoff, J. C., Kittle J.L, Jr. et al. Hydrologic simulation program—Fortran; User's manual for release 10[M]. Athens: Environmental Research Laboratory, USEPA, 1993.
    [35] Knisel, W. G. CREAMS: A field scale model for chemicals, runoff, and erosion from agricultural management systems[R]. USDA Conservation Research Report No. 26, 1980.
    [36] Young, R. A., Onstad, C. A., Bosch, D. D., et al. AGNPS, Agricultural nonpoint-source pollution model: A watershed analytical tool[R]. Conservation Research Report No. 35. Washington: USDA, 1987.
    [37] Young, R. A., Onstad, C. A., Bosch, D. D., et al. AGNPS: A nonpoint-source pollution model for evaluating agricultural watersheds[J]. J. Soil Water Conservat. 1989, 44(2):168-173.
    [38] Beasley, D. B., Huggins, L. F., Monke, E. J. ANSWERS: a model for watershed planning[J]. Transactions, American Society of Agricultural Engineers. 1980, 23(4):938-944.
    [39] Abbott, M. B., Bathurst, J. C., Cunge, J. A. et al. An introduction to the European Hydrological System - systeme hydrologique europeen, 'SHE', 1: history and philosophy of a physically-based, distributed modelling system[J]. Journal of Hydrology. 1986, 87(1-2):45-59.
    [40] Abbott, M. B., Bathurst, J. C., Cunge, J. A. et al. An introduction to the European Hydrological System - Systeme Hydrologique Europeen, 'SHE', 2: structure of a physically-based, distributed modelling system[J]. Journal of Hydrology. 1986, 87(1-2):61-77.
    [41] Beven, K. J., Kirkby, M. J. Toward a simple physically-based variable contributing area of catchment hydrology[R]. Working Paper No. 154. Leeds: School of Geography, Univ. Leeds, 1970.
    [42] Beven, K. J., Kirkby, M. J. Physically Based, Variable Contributing Area Model of Basin Hydrology[J]. Hydrol Sci Bull Sci Hydrol. 1979, 24(1):43-69.
    [43] 朱萱, 鲁纪行, 边金钟, 等. 农田径流非点源污染特征及负荷定量化方法探讨[J]. 环境科学. 1985, (5):6-11.
    [44] Frere, M. H., Onstad, C. A., Holtan, H. N. ACTMO: an agricultural chemical transport model[M]. Washington: USDA, 1975.
    [45] 薛金凤, 夏军, 马彦涛. 非点源污染预测模型研究进展[J]. 水科学进展. 2002, 13(5):649-656.
    [46] Xu, Z. X., Ito, K., Schultz, G. A. et al. Integrated hydrologic modeling and GIS in water resources management[J]. Journal of Computing in Civil Engineering. 2001, 15(3):217-223.
    [47] Nyerges, T. GIS for environmental modellers: an overview[A]. First International Conference/Workshop on Integrating GIS and Environmental Modeling[C]. Boulder: NCGIA, 1991.
    [48] 黄金良, 洪华生, 张珞平. 农业非点源污染模型与 GIS 集成研究述评[J/OL]. 上海环境科学(网络版). http://www.sesmag.sh.cn/admin/2/doc/14118.mht, 2003-10/2006-11.
    [49] Bingner, R. L., Theurer, F. D. AnnAGNPS technical processes: documentation version 2[EB/OL]. http://www.sedlab.olemiss.edu/AGNPS.html, 2001/2006-10-18.
    [50] Bouraoui, F., Dillaha, T. A. Answers-2000: runoff and sediment transport model[J]. Journal of Environmental Engineering. 1996, 122(6):493-501.
    [51] Bouraoui, F., Braud, I., Dillaha, T. A. Answers: A nonpoint source pollution model for water, sediment and nutrient losses. In: V. P. Singh, and D. K. Frevert, eds. Chapter 22 in Mathematical models of small watershed hydrology and applications. Highlands Ranch: Water Resources Publications, 2002. 833-882.
    [52] Refsgaard, J. C., Storm, B. MIKE SHE In: Vijay P. Singh. Computer models of watershed hydrology. highlands ranch: Water Resources Publications, 1995:809-846.
    [53] 熊立华, 郭生练. 分布式流域水文模型[M]. 北京: 中国水利水电出版社, 2004.
    [54] Donigian, A. S., Bicknell, B. R., Imhoff, J. C. Hydrological simulation program - Fortran (HSPF). In: V. P.Singh, ed. Chapter 12 in Computer models of watershed hydrology, Highlands Ranch. Colo.: Water Resources Publications, 1995. 395-442.
    [55] Johanson, R. C., J. C. Imhoff, and H. H. Davis. User’s manual for the hydrologic simulation program – FORTRAN (HSPF)[M]. Athens: U.S. EPA Environmental Research Lab, 1980.
    [56] Lahlou, M., Shoemaker, L., Choudhury, S., et al. Better assessment science integrating point and nonpoint sources: BASINS Version 2.0[M]. Washington: USEPA, 1998.
    [57] Arnold, J. G., Williams, J. R., Srinivasan, R. et al. Large area hydrologic modeling and assessment part I: Model development[J]. Journal of the American Water Resources Association. 1998, 34(1):73-89.
    [58] Neitsch, S. L., Arnold, J. G., Kiniry, J. R., et al. Soil and water assessment tool user's manual[M]. Temple: Grassland, Soil and Water Research Laboratory, Agricultural Research Service, 2002.
    [59] Arnold, J. G., Williams, J. R., Nicks, A. D., et al. SWRRB: a basin scale simulation model for soil and water resources management[M]. College Station: Texas A&M Press, 1990.
    [60] Leonard, R. A., Knisel, W. G., Still, D. A. GLEAMS: Groundwater Loading Effects of Agricultural Management Systems [J]. Transactions of the American Society of Agricultural Engineers. 1987, 30(5):1403-1418.
    [61] Williams, J. R., Jones, C. A., Dyke, P. T. A modelling approach to determining the relationship between erosion and soil productivity[J]. Transactions - American Society of Agricultural Engineers. 1984, 27(1):129-144.
    [62] Arnold, J. G., Williams, J. R., Maidment, D. R. Continuous-time water and sediment-routing model for large basins[J]. Journal of Hydraulic Engineering - ASCE. 1995, 121(2):171-183.
    [63] Dawdy. D. R. and Litchy. R. W. Methodology of hydrologic model building[A]. Symposium on the use of analog and digital computers in hydrology[C]. Tucson: International Association of Hydrology, 1968, 2(81):347-355.
    [64] Dooge, J. C. Mathematical models of hydrologic systems[A]. Proceedings of the international symposium on modeling techniques in water resources systems[C]. Ottawa: 1972, 1:171-189.
    [65] Singh, V. P. Computer models of watershed hydrology[M]. Highlands Ranch: Water Resources Publications, 1995.
    [66] Neitsch, S. L., Arnold, J. G., Kiniry, J. R., et al. Soil and water assessment tool theoretical documentation version 2000[M]. College Station: Texas Water Resources Institute, 2002.
    [67] Tsang, CF. Modeling process and model validation[J]. Ground Water. 1991, 29(6):825-831.
    [68] Krause, P., Boyle, D. P., Base, F. Comparison of different efficiency criteria for hydrological model assessment[J]. Advances in Geosciences. 2005, (5):89-97.
    [69] ASCE Task Committee. Criteria for evaluation of watershed models[J]. Journal of Irrigation and Drainage Engineering. 1993, 119(3):429-442.
    [70] Van Liew, M. W., Garbrecht, J. Hydrologic simulation of the Little Washita River experimental watershed using SWAT[J]. Journal of the American Water Resources Association. 2003, 39(2):413-426.
    [71] Krause, P., Boyle, D. P., Base, F. Comparison of different efficiency criteria for hydrological model assessment[J]. Advances in Geosciences. 2005, (5):89-97.
    [72] Janssen, P. H. M., Heuberger, P. S. C. Calibration of process-oriented models[J]. Ecological Modelling. 1995, 83(1-2):55-66.
    [73] Popov, E. G. Gidrologicheskie prognozy (Hydrological forecasts)[M]. Leningrad: Gidrometeoizdat, 1979.
    [74] Nash, J. E., Sutcliffe, J. V. River flow forecasting through conceptual Models-PT 1[J]. Journal of Hydrology. 1970, 10(3):282-290.
    [75] Martinec, J., Rango, A. Merits of statistical criteria for the performance of hydrological models[J]. Water Resources Bulletin. 1989, 25(2):421-432.
    [76] Willmott, C. J. On the validation of models[J]. Physical Geography. 1981, 2(2):184-194.
    [77] Martinec, J., Rango, A., Roberts, R. The Snowmelt Runoff Model (SRM) user's manual[M]. Beltsvilless: USDA, 2006.
    [78] 李贵宝, 尹澄清, 单宝庆. 非点源污染控制与管理研究的概况与展望[J]. 农业环境保护. 2001, 20(3):190-191.
    [79] USEPA. Protocol for developing nutrient tmdls[R]. Washington: Office of Water, USEPA, 1999.
    [80] USEPA. Guidelines for reviewing tmdls under existing regulations issued in 1992[EB/OL]. http://www.epa.gov/owow/tmdl/guidance/final52002.html /2006-10-30.
    [81] USEPA. Overview of current total maximum daily load - TMDL - Program and regulations[EB/OL]. http://www.epa.gov/owow/tmdl/overviewfs.html /2006-10-30.
    [82] Santhi, C., Arnold, J. G., Williams, J. R. et al. Application of a watershed model to evaluate management effects on point and nonpoint source pollution[J]. Transactions of the American Society of Agricultural Engineers. 2001, 44(6):1559-1570.
    [83] 曹丽萍, 王晓燕, 广新菊. 非点源污染控制管理政策及其研究进展[J]. 地理与地理信息科学. 2004, 20(1):90-94.
    [84] 高超, 张桃林. 欧洲国家控制农业养分污染水环境的管理措施[J]. 农村生态环境. 1999, 15(2):50-53.
    [85] USDA Forest Service. An approach to water resources evaluation on non-point silvicultural sources (A procedural handbook)[M]. Athens: U.S. Environmental Protection Agency Environmental Research Laboratory, 1980.
    [86] Ice, G. History of innovative best management practice development and its role in addressing water quality limited waterbodies[J]. Journal of Environmental Engineering. 2004, 130(6):684-689.
    [87] Roesner, L. A., Matthews, R. Stormwater management for the 1990s[J]. American City and County. 1990:45-54.
    [88] Schueler, T. R., Anacostia Resoration Team. Design of stormwater wetland systems: guidelines for creating diverse and effective stormwater wetlands in the mid-Atlantic Region[M]. Washington: Anacostia Restoration Team Dept. of Environmental Programs Metropolitan Washington Council of Governments, 1992.
    [89] CIRIA. Background of sustainable urban drainage systems[EB/OL]. http://www.ciria.org/suds/background.htm /2006-03-20.
    [90] D'Arcy, B., Frost, A. The role of best management practices in alleviating water quality problems associated with diffuse pollution[J]. The Science of The Total Environment. 2001, 265(1-3):359-367.
    [91] Sivertun, A., Prange, L. Non-point source critical area analysis in the Gisselo watershed using GIS[J]. Environmental Modelling and Software. 2003, 18(10):887-898.
    [92] Maas, R. P., Smolen, M. D., Dressing, S. A. Selecting critical areas for nonpoint-source pollution control[J]. Journal of Soil & Water Conservation. 1985, 40(1):68-71.
    [93] Chu, Tzyy-Woei. Modeling hydrologic and water quality response of a mixed land use watershed in Piedmont physiographic region[D]. Maryland: University of Maryland, College Park, 2003.
    [94] Line, D. E., Spooner, J., Specialists, W. Q. E., et al. Critical areas in agricultural nonpoint source pollution control projects[EB/OL]. http://www.bae.ncsu.edu/programs/extension/wqg/brochures/five.html, 1995-03/2006-10.
    [95] Arnold, J. G., Srinivasan, R., Muttiah, R. S. et al. Continental scale simulation of the hydrologic balance[J]. Journal of the American Water Resources Association. 1999, 35(5):1037-1051.
    [96] Santhi, C., Arnold, J. G., Williams, J. R. et al. Validation of the SWAT model on a large river basin with point and nonpoint sources[J]. Journal of the American Water Resources Association. 2001, 37(5):1169-1188.
    [97] Weber, A., Fohrer, N., Moller, D. Long-term land use changes in a mesoscale watershed due to socio-economic factors -- effects on landscape structures and functions[J]. Ecological Modelling. 2001, 140(1-2):125-140.
    [98] Van Griensven, A., Bauwens, W. Integral water quality modelling of catchments[J]. Water Science and Technology. 2001, 43(7):321-328.
    [99] Eckhardt, K., Haverkamp, S., Fohrer, N. et al. SWAT-G, a version of SWAT99.2 modified for application to low mountain range catchments[J]. Physics and Chemistry of the Earth, Parts A/B/C. 2002, 27(9-10):641-644.
    [100] Tripathi, M. P., Panda, R. K., Raghuwanshi, N. S. Identification and prioritisation of critical sub-watersheds for soil conservation management using the SWAT model[J]. Biosystems Engineering. 2003, 85(3):365-379.
    [101] Lenhart, T., Fohrer, N., Frede, H. G. Effects of land use changes on the nutrient balance in mesoscale catchments[J]. Physics and Chemistry of the Earth, Parts A/B/C. 2003, 28(33-36):1301-1309.
    [102] Grizzetti, B., Bouraoui, F., Granlund, K. et al. Modelling diffuse emission and retention of nutrients in the Vantaanjoki watershed (Finland) using the SWAT model[J]. Ecological Modelling. 2003, 169(1):25-38.
    [103] Bouraoui, F., Benabdallah, S., Jrad, A. et al. Application of the SWAT model on the Medjerda river basin (Tunisia)[J]. Physics and Chemistry of the Earth, Parts A/B/C. 2005, 30(8-10):497-507.
    [104] Behera, S., Panda, R. K. Evaluation of management alternatives for an agricultural watershed in a sub-humid subtropical region using a physical process based model[J]. Agriculture, Ecosystems and Environment. 2006, 113(1-4):62-72.
    [105] 郝芳华. 流域非点源污染分布式模拟研究[D]. 北京: 北京师范大学环境学院, 2003.
    [106] Hao, F. H., Zhang, X. S., Yang, Z. F. A distributed non-point source pollution model: calibration and validation in the Yellow River Basin[J]. Journal of Environmental Sciences. 2004, 16(4):646-650.
    [107] 万超, 张思聪. 基于 GIS 的潘家口水库面源污染负荷计算[J]. 水力发电学报. 2003, (2):62-68.
    [108] 胡远安, 程声通, 贾海峰. 非点源模型中的水文模拟——以 SWAT 模型在芦溪小流域的应用为例[J]. 环境科学研究. 2003, 16(5):29-32, 36.
    [109] 刘昌明, 李道峰, 田英, 等. 基于 DEM 的分布式水文模型在大尺度流域应用研究[J]. 地理科学进展. 2003, 22(5):437-445.
    [110] 王中根, 刘昌明, 黄友波. SWAT 模型的原理、结构及应用研究[J]. 地理科学进展. 2003, 22(1):79-86.
    [111] 张蕾娜, 李秀彬, 王兆锋, 等. 一种可用于表征土地利用变化水文效应的水文模型探讨──SWAT 模型在云州水库流域的应用研究[J]. 水文. 2004, 24(3):4-8.
    [112] 陈军锋, 李秀彬, 张明. 模型模拟梭磨河流域气候波动和土地覆被变化对流域水文的影响[J]. 中国科学 D 辑. 2004, 34(7):668-674.
    [113] 黄清华, 张万昌. SWAT 分布式水文模型在黑河干流山区流域的改进及应用[J]. 南京林业大学学报(自然科学版). 2004, 28(2):22-26.
    [114] 王宏, 娄华君, 田廷山, 等. SWAT/GMS 联合模型在华北平原地下水库研究中的应用[J]. 世界地质. 2005, 24(4):368-372.
    [115] 张东, 张万昌, 朱利, 等. SWAT 分布式流域水文物理模型的改进及应用研究[J]. 地理科学. 2005, 25(4):434-440.
    [116] Santhi, C., Srinivasan, R., Arnold, J. G. et al. A modeling approach to evaluate the impacts of water quality management plans implemented in a watershed in Texas[J]. Environmental Modelling & Software. 2006, 21(8)1141-1157.
    [117] Mol?ler, D., Kuhlmann, F. ProLand: A New Approach to Generate and Evaluate Land Use[C]. Ⅸ European Congress of Agricultural Economists. Warsaw, Poland: 1999.
    [118] Lenhart, T., Fohrer, N., Frede, H. G. Effects of land use changes on the nutrient balance in mesoscale catchments[J]. Physics and Chemistry of the Earth. 2003, 28(33-36):1301-1309.
    [119] Chang, C. C., McCarl, B. A., Mjelde, J. W. et al. Sectoral implications of farm program modifications[J]. American Journal of Agricultural Economics. 1992, 74:38-49.
    [120] Attwood, J. D., McCarl, B., Chen, C.-C. et al. Assessing regional impacts of change: linking economic and environmental models[J]. Agricultural Systems. 2000, 63(3):147-159.
    [121] Jayakrishnan, R., Srinivasan, R., Santhi, C. et al. Advances in the application of the SWAT model for water resources management[J]. Hydrological Processes. 2005, 19(3):749-762.
    [122] Moon, J., Srinivasan, R., Jacobs, J. H. Stream flow estimation using spatially distributed rainfall in the Trinity River Basin, Texas[J]. Transactions of the American Society of Agricultural Engineers. 2004, 47(5):1445-1451.
    [123] Hansen, E. and M. Christ. Suggested next steps to develop nutrient criteria for lakes and reservoirs in West Virginia[EB/OL]. http://cacaponinstitute.org/lake_criteria.htm, 2003-06-20/2006-12-18.
    [124] 杜桂森, 孟繁艳, 李学东, 等. 密云水库水质现状及发展趋势[J]. 环境科学. 1999, (2):110-112.
    [125] 徐清, 杨天行, 刘晓端, 等. 密云水库总磷的富营养化分析与预测[J]. 吉林大学学报(地球科学版). 2003, 33(3):315-318.
    [126] 杨忠山, 李其军, 张德举, 等. 密云水库营养化防治技术研究[R]. 北京:《密云水库营养化防治技术研究》课题组, 2005.
    [127] 刘阳, 王凯, 徐淳宁, 等. 密云水库流域坡面降雨侵蚀的计算机模拟[J]. 吉林大学学报(信息科学版). 2004, 22(1):79-81.
    [128] 王晓燕, 王一峋, 王晓峰, 等. 密云水库小流域土地利用方式与氮磷流失规律[J]. 环境科学研究. 2003, 16(1):30-33.
    [129] 王晓燕, 王晓峰, 汪清平, 等. 北京密云水库小流域非点源污染负荷估算[J]. 地理科学. 2004, 24(2):227-231.
    [130] Dawdy, D. R., O'Donnell, T. Mathematical models of catchment behavior[J]. Journal of the Hydraulics Division. 1965, 91(HY4):123-137.
    [131] Papa, B. and Pollution Probe. The source water protection primer.[M] Toronto: Pollution Probe, 2004:36-37.
    [132] Rose, C. W. An introduction to the environmental physics of soil, water, and watersheds, Cambridge University Press[M]. Cambridge: Cambridge University Press, 2004:289-292.
    [133] Lal, R. Chapter 1: Rationale for watershed as a basis for sustainable management of soil and water resources[A]. In Lal, R. Soil and water conservation society (U.S.) and International Affairs Committee. Integrated watershed management in the global ecosystem[C]. Boca Raton, FL: CRC Press, 2000.
    [134] Hopper, K., Ernst, C., Summers, D. et al. Source protection handbook: using land conservation to protect drinking water supplies[M]. San Francisco: Trust for Public Land, 2005, 9-11.
    [135] Advisory Committee on Watershed-based Source Protection Planning. Protecting Ontario's drinking water: toward a watershed-based source protection planning framework[R]. Toronto: Ministry of the Environment, Ontario, 2003.
    [136] Integrated Environmental Planning Division, Strategic Policy Branch, Ministry of the Environment. White paper on watershed-based source protection planning[M]. Ontario: Queen's Printer for Ontario, 2004: 6-8.
    [137] State of Oregon Department of Environmental Quality, Water Quality Division, Drinking Water Protection Program, et al. Source water assessment report[R]. Oregon: Seaside Water Dept., 2000.
    [138] USEPA. Source Water Assessment[EB/OL]. http://www.epa.gov/safewater/protect.html /2005-09-16.
    [139] 梁博, 王晓燕. 我国水环境污染物总量控制研究的现状与展望[J]. 首都师范大学学报(自然科学版). 2005, 26(1):93-98.
    [140] White, K. L., Chaubey, I. Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model[J]. Journal of the American Water Resources Association. 2005, 41(5):1077-1089.
    [141] Morris, M. D. Factorial sampling plans for preliminary computational experiments[J]. Technometrics. 1991, 33(2):161-174.
    [142] McKay, M. D., Beckman, R. J., Conover, W. J. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics. 1979, 21(2):239-245.
    [143] Holvoet, K., van Griensven, A., Seuntjens, P. et al. Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT[J]. Physics and Chemistry of the Earth, Parts A/B/C. 2005, 30(8-10):518-526.
    [144] Griensven, A. v., Meixner, T., Grunwald, S. et al. A global sensitivity analysis tool for the parameters of multi-variable catchment models[J]. Journal of Hydrology. 2006, 324(1-4):10-23.
    [145] Neitsch, S. L. Differences between SWAT2000 and SWAT2005[Z]. Temple: Grassland, Soil and Water Research Laboratory, Agricultural Research Service, 2005.
    [146] Krysanova, V., Muller-Wohlfeil, D. I., Becker, A. Integrated modelling of hydrology and water quality in mesoscale watersheds[R]. Potsdam Institute for Climate Impact Research (PIK) Report No. 18, 1996.
    [147] Sophocleous, M. A., Koelliker, J. K., Govindaraju, R. S. et al. Integrated numerical modeling for basin-wide water management: The case of the Rattlesnake Creek basin in south-central Kansas[J]. Journal of Hydrology. 1999, 214(1-4):179-196.
    [148] Eckhardt, K., Arnold, J. G. Automatic calibration of a distributed catchment model[J]. Journal of Hydrology. 2001, 251(1-2):103-109.
    [149] Eckhardt, K., Haverkamp, S., Fohrer, N. et al. SWAT-G, a version of SWAT99.2 modified for application to low mountain range catchments[J]. Physics and Chemistry of the Earth. 2002, 27(9-10):641-644.
    [150] Fohrer, N., Eckhardt, K., Haverkamp, S. et al. Effects of land use changes on the water balance of a rural watershed in a peripheral region [Auswirkungen von landnutzungsanderungen auf den wasserhaushalt eines landlichen einzugsgebiets in einer peripheren region][J]. Zeitschrift fur Kulturtechnik und Landentwicklung. 1999, 40(5-6):202-206.
    [151] Krysanova, V., Meiner, A., Roosaare, J. et al. Simulation modelling of the coastal waters pollution from agricultural watershed[J]. Ecol Modelling. 1989, 49(1-2):7-29.
    [152] Krysanova, V., Müller-Wohlfeil, D. I., Becker, A. Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds[J]. Ecological Modelling. 1998, 106(2-3):261-289.
    [153] Brown, L. C., Barnwell, J. T. O. The enhanced stream water quality models QUAL2E and QUAL2E-UNCAS: documentation and user model[M]. Athens,GA: Environmental Research Laboratory, USEPA, 1987.
    [154] Gassman, P. W., Reyes, M., Green, C. H. et al. Review of peer-reviewed literature on the SWAT model[EB/OL]. http://www.brc.tamus.edu/swat/3rdswatconf/PDF/Session_I/Gassman.pdf, /2006-12-18.
    [155] Bera, M., Borah, D. K. Watershed-scale hydrologic and nonpoint-source pollution models: Reviewof mathematical bases[J]. Transactions of the American Society of Agricultural Engineers. 2003, 46(6):1553-1566.
    [156] Romanowicz, A. A., Vanclooster, M., Rounsevell, M. et al. Sensitivity of the SWAT model to the soil and land use data parametrisation: a case study in the Thyle catchment, Belgium[J]. Ecological Modelling. 2005, 187(1):27-39.
    [157] USDA, Soil Conservation Service. SCS national engineering handbook[M]. Washington: Govt. Print. Off., 1972.
    [158] Sloan, P. G., Morre, I. D., Coltharp, G. B. et al. Modeling surface and subsurface stormflow on steeply-sloping forested watersheds[R]. Lexington, Kentucky: Water Resouces Inst. Report 142, University of Kentucky, 1983.
    [159] Arnold, J. G., Allen, P. M., Bernhardt, G. A comprehensive surface-groundwater flow model[J]. Journal of Hydrology. 1993, 142(1-4):47-69.
    [160] Overton, D. E. Muskingum flood routing of upland streamflow[J]. Journal of Hydrology. 1966, (4):185-200.
    [161] Williams, J. R. Flood routing with variable travel time or variable storage coefficients[J]. Transactions of the American Society of Agricultural Engineers. 1969, 12(1):100-103.
    [162] Hargreaves, G. H., Samani, Z. A. Reference crop evapotranspiration from ambient air temperature[J]. Applied Engineering in Agriculture. 1985, 1:96-99.
    [163] Priestley, C. H. B., Taylor, R. J. On the assessment of surface heat flux and evaporation using large-scale parameters[J]. Monthly Weather Review. 1972, 100:81-92.
    [164] Monteith, J. L. Climate and the efficiency of crop production in Britain[J]. Philosophical Transactions of the Royal Society of London. 1965, 281:277-329.
    [165] Williams, J. R. Sediment routing for agricultural watersheds[J]. Water Resources Bulletin. 1975, 11(5):965-974.
    [166] Bagnold, R. A. bedload transport in natural rivers[J]. Water Resources Research. 1977, 13(2):303-312.
    [167] Williams, J. R., Jones, C. A., Dyke, P. A. A modeling approach to determining the relationship between erosion and soil productivity[J]. Transactions of the American Society of Agricultural Engineers. 1984, 27(1):129-144.
    [168] McElroy, A. D., Chiu, S. Y., Nebgen, J. W. Loading functions for assessment of water pollution from nonpoint sources[R]. Washington, D.C.: Environmental Protection Technical Services, USEPA, 1976.
    [169] Williams, J. R., Hann, R. W. Optimal operation of large agricultural watersheds with water quality constraints[R]. College Station, TX: Texas Water Resources Institute, Texas A&M University, 1976.
    [170] Saxton, K. E., Rawls, W. J., Romberger, J. S. et al. Estimating generalized soil-water characteristics from texture[J]. Soil Science Society of America Journal. 1986, 50(4):1031-1036.
    [171] Saxton, K. E., Rawls, W. J. (2005). Soil water characteristic estimates by texture and organic matter for hydrologic solutions[EB/OL]. http://users.adelphia.net/~ksaxton/SPAW%20Download.htm, /2006-08-16.
    [172] 蔡永明, 张科利, 李双才. 不同粒径制间土壤质地资料的转换问题研究[J]. 土壤学报. 2003, 40(04):511-517.
    [173] Sharpley, A. N., Williams, J. R. EPIC-erosion productivity impact calculator, 1. model documentation[M]. Washington, D.C.: Agricultural Research Service, USDA, 1990.
    [174] 童成立, 张文菊, 汤阳, 等. 逐日太阳辐射的模拟计算[J]. 中国农业气象. 2005, 26(03):165-169.
    [175] Hunt, L. A., Kuchar, L., Swanton, C. J. Estimation of solar radiation for use in crop modelling[J]. Agricultural and Forest Meteorology. 1998, 91(3-4):293-300.
    [176] Duffie, J. A., Beckman, W. A. Solar engineering of thermal processes[M]. New York: Wiley, 1980.
    [177] Perrin de Brichambaut, C. Cahiers A.F.E.D.E.S., supplément au[M]. Paris: Européennes Thermique et Industrie, 1975.
    [178] 左大康, 王懿贤, 陈建绥. 中国地区太阳总辐射的空间分布特征[J]. 气象学报. 1963, 33(1):78-95.
    [179] Yorukoglu, M., Celik, A. N. A critical review on the estimation of daily global solar radiation from sunshine duration[J]. Energy Conversion and Management. 2006, 47(15-16):2441-2450.
    [180] Liersch, S. The programs dew.exe and dew02.exe user's manual[EB/OL]. http://www.brc.tamus.edu/swat/manual_dew.pdf /2006-8-19.
    [181] Allen, R. G., Pereira, L. S., Raes, D. et al. Crop evapotranspiration : guidelines for computing crop water requirements[M]. Rome: Food and Agriculture Organization of the United Nations, 1998.
    [182] H?ckel, H. Meteorologie. 4., v?llig überarb. und neugestaltete Aufl[M]. Stuttgart: Ulmer, 1999.
    [183] 郝芳华, 陈利群, 刘昌明, 等. 降雨的空间不均性对模拟产流量和产沙量不确定的影响[J]. 地理科学进展. 2003, 22(05):446-452.
    [184] 徐谦, 朱桂珍, 向俐云. 北京市规模化畜禽养殖场污染调查与防治对策研究[J]. 农村生态环境. 2002, 18(02):24-28.
    [185] 张忠祥, 钱易. 城市可持续发展与水污染防治对策[M]. 北京: 中国工业出版社, 1998.
    [186] 水利部水力水电规划设计总院, 全国水资源综合规划技术工作组. 全国水资源综合规划地表水水质评价及污染物排放量调查估算工作补充技术细则[R]. 北京: 水利部水利水电规划设计总院, 2003.
    [187] 李利生. 密云水库流域下游营养元素流失入库规律研究[D]. 北京: 北京工业大学, 2003.
    [188] 邓绶林. 河北地理概要[M]. 石家庄: 河北人民出版社, 1984:370-382.
    [189] 河北省农业区划办公室, 河北省气象局. 河北省农业气候及其区划[M]. 北京: 气象出版社, 1988:87-89.
    [190] 余松烈. 作物栽培学[M]. 重庆: 重庆出版社, 2001:143-148.
    [191] Seibert, J. Conceptual runoff models-fiction or representation of reality?[D]. Uppsala: the Faculty of Science and Technology, Uppsala University, 1999.
    [192] Beven, K. J. Rainfall-runoff modelling : the primer[M] Chichester: J. Wiley, 2001.
    [193] Naumov, A. Multi-criteria validation of the SWAT hydrologic model in a small forested watershed[D]. New York: State University of New York at Buffalo, 2005.
    [194] Gaas, S. I. Decision-aiding models: validation, assessment, and related issues in policy analysis[J]. Operations Research. 1983, 31:603-631.
    [195] Beldring, S. Multi-criteria validation of a precipitation-runoff model[J]. Journal of Hydrology. 2002, 257(1-4):189-211.
    [196] Arnold, J. G., Allen, P. M., Muttiah, R. et al. Automated base flow separation and recession analysis techniques[J]. Ground water. 1995, 33(6):1010-1018.
    [197] Arnold, J. G., Allen, P. M. Automated methods for estimating baseflow and ground water recharge from streamflow records[J]. Journal of the American Water Resources Association. 1999, 35(2):411-424.
    [198] Wahl, T. L., Wahl, K. L. BFI: A computer program for determining an index to base flow[EB/OL]. http://www.usbr.gov/pmts/hydraulics_lab/twahl/bfi/ /2006-08-19.
    [199] Sloto R A, Crouse M Y. HYSEP: A computer program for steramflow hydrograph separation and analysis[R]. Lemoyne: U.S. geological survey, Water-Resources Investigations Report 96-4040, 1996.
    [200] Winter, T. C. Uncertainties in estimating the water balances of lakes[J]. Water Resources Bulletin. 1981, 17(1):82-115.
    [201] Walling, D. E., Webb, B. W. The reliability of rating curve estimates of suspended sediment yield: some further comments. In M. P. Bordas, D. E. Walling, International Association of Hydrological Sciences., Brazil. Ministério da Educa??o e Cultura., and Universidade Federal do Rio Grande do Sul. Instituto dePesquisas Hidráulicas., eds. Sediment budgets.Wallingford, Oxfordshire, UK: IAHS publication, 1988.
    [202] Chaplot, V. Impact of DEM mesh size and soil map scale on SWAT runoff, sediment, and NO3-N loads predictions[J]. Journal of Hydrology. 2005, 312(1-4):207-222.
    [203] Jha, M., Gassman, P. W., Secchi, S. et al. Effect of watershed subdivision on swat flow, sediment, and nutrient predictions[J]. Journal of the American Water Resources Association. 2004, 40(3):811-825.
    [204] SL190-96, 土壤侵蚀分类分级标准[S]. 北京: 中国水利水电出版社出版, 1997.
    [205] USEPA. Quality criteria for water[R]. Washington: Office of Water, 1976.
    [206] Tim, U. S., Mostaghim, S., Shanholtz, V. O. Identification of critical nonpoint pollution source areas using geographic information systems and water quality modeling[J]. Water Resources Bulletin. 1992, 28(5):877-887.
    [207] USEPA. Quality criteria for water[R]. Washington: Office of Water, 1985.
    [208] Schaüble. Erosionsprognosen mit GIS und EDV - Ein Vergleich Verschiedener Bewertungskonzepte am Beispiel einer Gaülandschaft[R]. Tübingen: Geographisches Institut, Universit?t Tübingen, Germany, 1999.
    [209] De Roo, A. P. J. Soil Erosion Assessment using G.I.S. In Singh V. P. and Fiorentino M., eds. Geographical information systems in hydrology. Boston: Kluwer Academic Publishers, 1996.
    [210] Rindfuss, R. R., Walsh, S. J., Turner Ii, B. L. et al. Developing a science of land change: Challenges and methodological issues[J]. Proceedings of the National Academy of Sciences of the United States of America. 2004, 101(39):13976-13981.
    [211] Warrick, A. W., Nielson, D. R. Spatial variability of soil physical properties in the field. In Hillel D., ed. Applications of soil physics. New York, Academic Press, 1980.
    [212] 李昌峰, 高俊峰, 曹慧. 土地利用变化对水资源影响研究的现状和趋势[J]. 土壤. 2002, (04):191-205.
    [213] Bhaduri, B., Harbor, J., Engel, B. et al. Assessing watershed-scale, long-term hydrologic impacts of land-use change using a GIS-NPS model[J]. Environmental Management. 2000, 26(6):643-658.
    [214] Sharma, R. H., Shakya, N. M. Hydrological changes and its impact on water resources of Bagmati watershed, Nepal[J]. Journal of Hydrology. 2006, 327(3-4):315-322.
    [215] 陈建刚, 侯旭峰, 吴敬东. 密云水库集水区水土流失及其防治对策[J]. 北京水利. 2001, (01):32-33.
    [216] 王秀兰, 包玉海. 土地利用动态变化研究方法探讨[J]. 地理科学进展. 1999, 18(01):81-87.
    [217] 朱会义 , 李秀彬 . 关于区域土地利用变化指数模型方法的讨论 [J]. 地理学报 . 2003, 58(05):643-650.
    [218] 刘纪远. 中国资源环境遥感宏观调查与动态研究, 中国科学出版社, 1996:158-188.
    [219] López, E., Bocco, G., Mendoza, M. et al. Predicting land-cover and land-use change in the urban fringe A case in Morelia city, Mexico[J]. Landscape and Urban Planning. 2001, 55(4):271-285.
    [220] 王光谦, 王思远, 陈志祥. 黄河流域的土地利用和土地覆盖变化[J]. 清华大学学报(自然科学版). 2004, 44(09):1218-1222.
    [221] Azócar, G., Romero, H., Sanhueza, R. et al. Urbanization patterns and their impacts on social restructuring of urban space in Chilean mid-cities: The case of Los Angeles, Central Chile[J]. Land Use Policy. 2007, 24(1):199-211.
    [222] 王思远, 刘纪远, 张增祥, 等. 中国土地利用时空特征分析[J]. 地理学报. 2001, 56(06):631-639.
    [223] Daniel, E. S., White, M., Smolen, M. D. et al. Modeling phosphorous loading for the lake eucha basin[R]. Stillwater, Oklahoma: Biosystems and Agricultural Engineering Department of Oklahoma State University, 2001.
    [224] 于静洁, 刘昌明. 森林水文学研究综述[J]. 地理研究. 1989, 8(01):88-98.
    [225] 金栋梁. 森林对水文要素的影响[J]. 人民长江. 1989, (1):28-35.
    [226] 周延辉. 森林对径流影响的综述[J]. 地理科学进展. 1990, (03):33-37.
    [227] 金相灿. 湖泊富营养化控制和管理技术[M]. 北京: 化学工业出版社, 2001:29.
    [228] 金相灿, 刘鸿亮, 屠清理, 等. 中国湖泊富营养化[M].北京: 中国环境科学出版社, 1990.
    [229] 杨文龙, 杨常亮. 滇池水环境容量模型研究及容量计算结果[J]. 云南环境科学. 2002, 21(03):20-23.
    [230] 郭献军, 宋建国, 韩玉梅. 烟台门楼水库水环境容量研究[J]. 环境科学与技术. 2006, 29(10):43-45.
    [231] 杨诗君, 李广源. 洞庭湖水环境质量评价及水环境容量分析[J]. 水文. 2006, 26(05):83-85.
    [232] 梁博. 密云水库流域非点源污染总量控制研究[D]. 北京: 首都师范大学, 2005.
    [233] 徐清, 杨天行, 刘晓端, 等. 密云水库总磷的富营养化分析与预测[J]. 吉林大学学报(地球科学版). 2003, 33(03):315-318.
    [234] 刘霞. 密云水库水体富营养化研究[D]. 北京: 首都师范大学, 2002.
    [235] USEPA. Guidance for water quality-based decisions: The TMDL process[R]. Washington, DC: Assessment and Watershed Protection Division, USEPA, 1991.
    [236] USEPA. Draft guidance for water quality-based decisions: The TMDL process (Second Edition)[R]. Washington, DC.: USEPA, 1999.
    [237] 郭希利, 李文岐. 总量控制方法类型及分配原则[J]. 中国环境管理. 1997, (5):47-48.
    [238] Wischmeier, W. H., Smith, D. D. Predicting rainfall erosion losses: a guide to conservation planning[M]. Washington, DC: USDA-ARS, 1978.
    [239] GB18918-2002. 城镇污水处理厂污染物排放标准[S].
    [240] 熊慧欣, 赵秀兰, 徐轶群. 规模化畜禽养殖污染的防治[J]. 家畜生态. 2004, 25(4):249-255.
    [241] 王兆军, 张怀成, 刘键, 等. 规模化畜禽养殖污染有效防治途径探讨[J]. 中国人口资源与环境. 2001, 11(S1):72-74.
    [242] 徐伟朴, 陈同斌, 刘俊良, 等. 规模化畜禽养殖对环境的污染及防治策略[J]. 环境科学. 2004, 25(S1):105-108.
    [243] USEPA. Managing livestock, poultry, and horse waste to prevent contamination of drinking water[R]. Washington DC.: Office of Water, USEPA, 2001.
    [244] 张陆彪, 彭新宇. 我国畜禽养殖污染防治的立法思考[J]. 环境保护. 2007, (1A):39-42.
    [245] Stauffer, M.D. Beaton J.D. 肥 料 在 世 界 农 业 中 的 地 位[EB/OL].http://cclab.caas.ac.cn/jrepository/articletext.jsp?id=550, /2007-04-18.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.