基于原位合成方法的超分散稳定纳米组元的制备及其摩擦学特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料具有很多异乎寻常的特性,有着极为广泛的应用前景,是当前材料科学的研究前沿。纳米材料在水相和油相介质中的分散稳定既是纳米材料走向应用的一项关键技术,又是急需解决的一个难题。
    为此,本文首先从理论上阐明了纳米粒子在油性介质中的分散行为特性、分散稳定机制,进而提出了改善纳米粒子在油性介质中分散性和分散稳定性的具体措施。为了获得分散稳定的纳米粒子分散系,首先合成了环烷酸盐类、烷基水杨酸盐类及其它油溶性羧酸盐,然后在设计合成包括胺基型、羧酸型、羟羧/胺羧型、异氰酸酯型和具有后反应特性五大类超分散稳定剂基础上,在液体石蜡、合成基础油和天然菜子油中加入自制油溶性有机盐和超分散稳定剂,通过油溶性盐与硫化氢、水合肼、连苯三酚反应,原位合成了包括软金属和硫属化合物在内的单组元、双组元、三组元、四组元、五组元纳米分散系61种。具有后反应特性的超分散稳定剂不仅具有超分散稳定作用,还可通过后反应直接生成纳米单元。
    纳米粒子在油性介质中的原位合成具有以下显著特点:①将纳米单元(无论是单组元还是多组元)的生成、粒度控制、抗团聚保护和纳米单元的高度分散、长效稳定在一个体系中一次性实现,既改善了性能,又简化了操作,还能大大降低现有方法中因纳米单元制备、后期处理和化学改性等带来的生产成本;②此外,纳米粒子的原位合成均在室温和无外加溶剂情况下完成,分散介质可根据需要进行选择,如液体石蜡、矿物基础油、合成基础油和石油醚、乙酸乙酯、甲苯等;③合成的纳米粒子在油性介质中具有高度分散、长效稳定特点;④分散系中纳米粒子含量可按设计要求来合成,最高含量可达10%以上。
    通过普通离心试验和高速离心试验对原位合成纳米粒子在油性介质中的分散稳定性进行了加速试验,结果表明:经过72 h普通离心试验没有任何纳米分散系发生两相分离,在非连续高速成离心条件下少数纳米分散系34 h后开始发生相分离,大部分纳米分散系经过56 h非连续高速成离心仍未发现有相分离迹象,说明无论在前普通离心场还是在高速离心场中纳米分散系均表现出极高的分散稳定性,能满足在重力场中长期储存的要求。
    用激光散射法和冷冻蚀刻电镜表征了原位合成纳米粒子的粒径、粒径分布和聚集状态,结果显示,纳米粒子为球形,裸露粒径为5-40 nm,粒子大小均匀、分布窄,粒子呈弥散性单粒子分布,无团聚现象。
    用四球摩擦磨损试验机和环块摩擦磨损试验机对部分原位合成单组元和
    
    多组元纳米分散系的摩擦学性能进行了评价,结果发现:①在绝大多数情况下,在所选择的试验载荷范围内纳米粒子的添加能明显改善油品的抗磨减摩性能和抗极压性能;②环块试验评价结果好于四球试验评价结果;③单组元纳米分散系的摩擦学性能与多组元纳米分散系的摩擦学性能相近。
    为了弄清纳米粒子油润滑摩擦学作用机制,通过SEM、EDS和XPS对磨损表面进行了表征。通过对摩擦学评价结果和磨损表面表征的分析,提出了纳米粒子油润滑摩擦学作用机制,认为纳米粒子对油品摩擦学性能的改善是以下三条途径共同作用的结果:①摩擦副表面短程作用力,如吸附、微区电磁场作用导致摩擦副近表面纳米粒子在表面的富集,使具有改善摩擦学性能的表面润滑层(膜)的厚度增加、强度增大;②表面富集的部分纳米粒子在摩擦条件下发生摩擦化学反应,生成新的表面润滑膜;③纳米粒子对摩擦副表面的优化,如机械抛光、填平表面纳米级微坑和表面微损伤等。针对纳米粒子的摩擦学作用机制,提出了纳米粒子最适宜于作为光滑表面,特别是超光滑表面的表面加工、表面微损伤自修复和表面润滑的油品添加剂或介质添加剂。
    为便于与纳米粒子的摩擦学性能进行比较,还对具有化学结构代表性的五种有机铅盐,即月桂酸铅、油酸铅、环烷酸铅、硬脂酸铅和烷基水杨酸铅的摩擦学性能进行了评价。结果表明不同结构的羧酸铅其油溶性、抗磨减摩性能以及抗极压性能存在较大差异,铅盐的摩擦学性能与羧烃基结构密切相关。环烷酸铅和烷基水杨酸铅具有最好的油溶性;月桂酸铅具有最好的抗磨减摩性能和抗极压性能。
Nanomaterials, often referred as research forward field of materials science, have widely applied foreground because of their special physical and chemical properties. The dispersion capacity and stability of nanoparticles in water or oil-soluble media is one of the key technologies before nanomaterials could be applied, and is also a difficult problem to be urgently resolved.
     To resolve the above problems, the mechanism and dispersion behavior of dispersivity and dispersion stability of nanoparticles in nonaqueous medium were clarified, and the measures improving the above-mentioned performance were brought forward. The oil-soluble organic salts(including naphthenate, alkylsalicylate, saturated or unsaturated carboxylate), and five types of hyper-dispersion stabilizer( respectively possessing the anchoring groups end of oil-soluble polymeric chain, amino, carboxyl, amino-carboxyl, hydroxyl-carboxyl, isocyanato-)as well as hyper-dispersion stabilizer having post-reaction characteristic were successfully synthesized according to design performance. Sixty one kinds of nano-dispersion systems, including sulfide and soft metal of single-component, double-component, tri-component, tetra-component and five-component, were in-situ synthesized in oil-soluble medium, containing hyper-dispersion stabilizer self-made, by reacting oil-soluble organic salts with H2S, diamine hydrate, pyrogallic acid. Hyper-dispersion stabilizers possessing past-reaction characteristic have not only superior dispersive ability and stability characteristics, also product nanoparticles by its post-reaction with H2S or reducing agent.
     The remarkable characteristic of nanoparticle in-situ synthesizing in paraffin liquid, synthetic base oils and rapeseed oils is which can synchronously bring to success in a single system for the growth of particles, granularity control, agglomeration control, high degree dispersion and long lasting stability. To compare with existing methods, for example preparing nanoparticles in aqueous medium containing water-soluble organic compounds before dispersing nanoparticle in oil-soluble, in-situ synthesis method of nanoparticles can not only improve the dispersion and stability of nanoparticles in dispersion medium, predigest operating steps, but also remarkably reduce production costs. Furthermore, this method carries
    
    through in room temperature and has no use for additional solvent, and the dispersion medium can be selected according to needs, for instance liquid paraffin, mineral base oil, synthetic base oil, petroleum ether, ethyl acetate, toluene. The nanoparticles content in oil-soluble dispersion medium can be ensured according to practical requirement, and max could exceed 10 percent.
    The accelerated test used for evaluating the dispersivity and dispersion stability of nanoparticles in oil-soluble medium was carried through common speed centrifuge and high speed centrifuge. The results showed that none of all dispersion systems come into being delamination through 72 h uncontinuity(2 h period, 4~5 period per day) common speed centrifuge test, and a few appear delamination through 34 h high speed centrifuge test, but most don't through 56 h . Those give the fact that dispersion systems possess very good dispersion stability not only in the common speed centrifugal field but also in high speed centrifuge field, and it could meet the need that the dispersion systems are long deposited in gravity field. The diameter, diameter distribution and conglomeration behavior of nanoparticles in dispersion medium was observed through freeze-etching replication transmission electron microscopy (ERTEM) technique and laser scattering methods. The results indicated that the nanoparticles scattering in medium, shape sphericity without agglomeration, the bareness diameter were 5~40 nanometer, the size of nanoparticles were uniformity.
    Their tribological properties of single or multi-component nano-dispersion systems as lubricating additives were evaluated with four-ball tribo-tester and ring block tribo-t
引文
[1] 欧忠文, 徐滨士, 丁培道等. 纳米润滑材料应用研究进展. 材料导报. 2000, 14(8): 28-31
    [2] Edelstein A S, Cammarata R C. Nanomaterials synthesis, properties, and appli- cations. Institute of Physics Publishing, Bristol and Philadelphia, 1998, 1-45
    [3] Sieel R W. Nanophase materials: structure, defect and properties, Proc. ATC Int. Symp. (ACTA), Tokyo, Japan, Oct., 1996, 10-92
    [4] Ijima., Helical. Microtubes of graphic carbon. Nature. 1991,354: 56-58
    [5] Ruoff R S, Lorent D C. Mechanical and thermal properties of carbon nanotubes. Carbon. 1995, 33, 95-98
    [6] Gamaly E G. Preparation and properties.in: carbon nanotube S, Ebbesen T W ed. Florida: CRC Press. 1997, 8-19
    [7] 李湘洲. 超微颗粒材料的应用与展望. 科技导报. 1997, (9): 12-14
    [8] Higashi, Kenji. Positive exponent superplasticity in advanced aluminum alloys with nano or near-nano scale grained structures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing. 1993, A166 (1-2 ), 109-118
    [9] 郭景坤. 纳米化学研究及其展望. 科学前沿. 1999, 51(2): 13-16
    [10] Lu L, Sui M L, Lu K. Superlastic extensibility of nanocrystalline copper at room temperature. Science. 2000, 287: 1465-1466
    [11] 师昌绪. 跨世纪材料科学的若干热点问题. 自然科学进展. 1999,9(1): 2-13
    [12] 聂时春, 张嗣伟, 王洪波等. 原子力显微镜在纳米摩擦学中应用的进展. 摩擦学学报. 1998, 18(1): 88-96
    [13] Sheehan P E, Lieber C M. Nanotribology and nanofabrication of MoO3 structure by atomic force microscopy. Science. 1996, 272: 1 158-1 161
    [14] Binnig G, Quate C F, Gerber C. Atom force microscopy. Phys. Rev. Lett.. 1986, 9: 930-933
    [15] Overney R M,Meyer E.Tribology investigations using friction force microscopy. MRS Bullettin. 1993, 18: 26-34
    [16] Bhushan B, Israelachvili J N, Landman U. Nanotribology: friction, wear and lubrication at the atomic scale. Nature. 1995, 374: 607-616
    [17] Granick R. Molecular tribology. MRS Bullitin. 1991, 16(10): 33-35
    [18] Krim J. 原子尺度的摩擦.刘义思译. 科学(中文版). 1997(2): 14-20
    [19] Kaneko R. Tribology and mechanism of magnetic storage system. ASLE Spec. Publ. SP-21: 8-13
    [20] Scherge M, Li X, Schaefer J A. Nanotribological improvements due to surface chemistry
    
    modification. Proceedings of the 1998 MRS Spring Symposium, San Francisco, CA, USA,1998: 418-425
    [21] Belak J F. Nanotribology. MRS Bulletin. 1993, 18(5): 15-19
    [22] 温诗铸. 纳米摩擦学. 北京. 清华大学出版社, 1998: 1-20
    [23] Winer W O. Future trend in tribology. Wear. 1990, 136: 19-27
    [24] 刘维民, 薛群基. 摩擦学研究及发展趋势. 中国机械工程. 2000, 11(1-2): 77-80
    [25] Mate C M. Nanotribology studied of carbon surfaces by force microscopy. Wear. 1993, 168(2): 17-20
    [26] Komvopoulos K. Surface engineering and microtribology for microeletron mechanical systems. Wear. 1996, 200(1-2): 305-327
    [27] Bhushan B. Micro/nanotribology and its applications to magnetic storage devices and MEMS. Tribology International. 1995, 28(2): 85-96
    [28] Cahoon J M, Riga A T, Hong H, et al. The chemistry of sulfonates as metalworking additive. Lubr. Eng.. 1994, 50(2):155-158
    [29] Inoue K, Nose Y. Solubilization by sulfonates and related phenomena. Trib. Trans.. 1987, 31(1): 76-82
    [30] Inoue K, Kiyoshi, Nose et al. U S Patent 4 683 126,1987
    [31] Lenack, Alain L, Tirtiaux, et al. Calcium sulphonatr process. U S Patent 4 387 033, 1983
    [32] Sabel, Albert R. Process for manufacture of overbased of overbased magnesium sulfonates. U S Patent 4 137 186, 1979
    [33] Whittle L, Shhlimkan R V. Method of preparation overbased calcium sulfonates . U S Patent 4 427 559, 1984
    [34] Brooks B W, Shhlimkan R V. Manufacture of calcium carbonate dispersion in lubricating oil. Colloid Polym. Sci.. 1979, 257: 981-986
    [35] Hunt M W. Overbased alkali metal sulfonates. U S Patent 4 867 891, 1989
    [36] Belle C, Beraud C,Faure D, et al. Polyphasic reaction mechanism: Kinetic of overbased calcium sulfonate synthesis in non-polar medium. J Chim. Phys.. 1990, 87: 93-100
    [37] O'Sullival T P, Vickers M E, Heeman R K. The characterization of oil-soluble calcium carbonate dispersions using small-angle X-ray scattering (SAXS)and small-angle neutron scattering(SANS). J Appl. Cryst..1991,24: 732-739
    [38] Markovic I, Ottewill R H, Cebula, et al. Small-angle neutron-scattering studies on non-aqueous dispersions of calcium carbonate. Part 3: Concentrated dispersions. Colloid Polym. Sci.. 1984,262: 648-755
    [39] Markovic I, Ottewill R H. Small-angle neutron-scattering studies on nonaqueous
    
    dispersions of calcium carbonate. Part 2: Determination of the form factor for concentric spheres. Colloid Polym. Sci.. 1986, 264: 65-76
    [40] Markovic I, Ottewill R H. Small-angle neutron-scattering studies on nondispersions of calcium carbonate. Part 3: Concentrated dispersions. Colloid Polym. Sci.. 1986, 264: 454-462
    [41] Ottewill R H,Simagra E, Macdonald I P, et al. Small-angle neutron-scattering studies on non-aqueous dispersions , Part 5: Magnesium carbonates dispersion in hydrocarbon media. Colloid Polym. Sci.. 1992, 270: 602-608
    [42] Inoue K. Calcium borate overbased metallic detergent. J Soc. Tribol. Lub. Eng.. 1993, 49: 263-268
    [43] Delfort B, Chive A , Barre L. Colloidal calcium thiophosphates in organic medium. Synthesis and analysis. J Colloid Interface Sci.. 1997, 186: 300-308
    [44] Mansot J L, Hallouis M, Martin J M. Tribological behavior of colloidal additives in mild regime. Colloids and Surfaces. 1993, 75: 25-31
    [45] Rounds F G. Effects of detergent on ZDDP antiwear performances as measured in four-ball wear tests. Lubr. Eng.. 1989, 45(9): 761-769
    [46] Delfort B, Born M, Daoudal B, et al. Colloid thiophosphorous calcium salt as antiwear additive. Lubr. Sci.. 1996, 8(2): 129-143
    [47] Qiu Sunqing, Dong Junxiu, Cheng Guoxu. A review of ultrafine particles as antiwar additive and friction modifiers in lubrication oils. Lubrication science. 1999, 11(3): 217-226
    [48] Nakahara T. Effect of molybdenum sulfide dispersed in oil on friction in journal bearings. Toraiborojisuto. 1991, 289: 95-101(in Japanese)
    [49] Bartz W J. Some investigations on the influence of particle size on the lubrication effectiveness of molybdenum disulfide. ASME J. Lubr. Tech... 1972, 15, 207-215
    [50] Hisakado T, T sukizoe T, Yoshikawa. Lubrication mechanism of solid lubricants in oil. ASME J. Lubr. Tech.. 1983, 105: 245-253
    [51] 夏延秋, 丁津源, 马先贵等. 纳米级金属粉改善润滑油的摩擦磨损性能试验研究. 润滑油. 1998, 13(6): 37-40
    [52] 于志民. 一种纳米金属微粉的抗磨润滑剂. CN Patent 1 206 737, 1999
    [53] 杨海滨. 多功能润滑油添加剂及其制作方法. CN Patent 1 255 532,2000
    [54] Teterin G A. Activation of oil-insoluble friction-reducing additives. Khim. Tekhnol. Topl. Masel. 1991, 3, 17-19(in Russian)
    [55] 何峰, 张正义, 肖耀福, 王润. 新一代润滑剂——超细金属粉固体润滑剂. 润滑与密封. 1997, (5): 65-66
    
    
    [56] Xu Tao, Zhao Jiazheng, Xu Kang. The ball-bearing effect of diamond nanoparticles as an oil additive. J Phys. D: Appl.. 1996, 29: 2 932-2 938
    [57] Ma G G. Development of a type of energy-saving antifriction additive and its usefulness. Lubriction oil. 1994, 4: 42-44(in Chinese)
    [58] Gupta B K, Bhushan B. Fullerene particle as an additive to liquid lubricants and greases for low friction and wear. Lubr. Eng.. 1994, 50(7): 524-528
    [59] 阎逢元, 薛群基. C60/C70作为润滑油添加剂的摩擦学行为. 摩擦学学报, 1993, 13(1): 59-63
    [60] 李积彬, 李瀚, 孙伟安. C60的摩擦学特性研究. 摩擦学学报. 2000, 20(4): 307-309
    [61] T Hisakado, Kanno A. Effects of fullerene on the friction and wear characteristic of ceramics in ethanol. Tribology International. 1999,32: 413-420
    [62] 段标. 聚合物微球润滑添加剂的合成及摩擦学特性的研究. 博士学位论文, 武汉. 华中理工大学. 1997:1-80
    [63] 雷红. 水溶性富勒烯共聚物纳米微球润滑添加剂的合成及其摩擦学特殊性研究. 博士学位论文, 武汉. 华中理工大学. 2000:1-85
    [64] 雷红, 官文超. 水溶性C60-乙烯基吡咯烷酮纳米微球摩擦学行为. 华中理工大学学报. 2000, 28(7): 98-101
    [65] 胡泽善. 纳米粒子及烷氧基硼酸盐润滑油抗磨减摩添加剂的研究. 博士后工作报告. 重庆. 解放军后勤工程学院. 1998: 1-100
    [66] 胡泽善, 欧忠文, 陈国需等. 油溶性硼酸钠的制备及其抗磨减摩性能. 摩擦学学报. 2001, 21(4): 279-282
    [67] Z S Hu, J X Dong, Z W Ou, et al. Preparation of beryllium borate with supercritical carbon dioxide drying. Powder Technology. 2000, 114(1-3): 163-165
    [68] J X Dong, Z S Hu. A Study of the anti-wear and friction-reducing properties of the lubricant additive, nanometer zinc borate. Tribology Int.. 1998, 31(5): 219- 223
    [69] Z S Hu, J X Dong. Study on antiwear and reducing friction additive of nanometer titanium borate. Wear. 1998, 216: 87-91
    [70] 胡泽善, 王立光, 陈国需等. 十二烷基硼酸锌的合成及其抗磨减摩性能研究. 摩擦学学报. 2000, 20(2): 150-152
    [71] 胡泽善, 王立光, 黄令等. 纳米硼酸铜颗粒的制备及其用作润滑油添加剂的摩擦学性能. 摩擦学报. 2000, 2(4): 292-295
    [72] 叶毅, 董俊修, 陈波水等. 纳米硼酸镧对润滑油抗磨性能影响的研究. 润滑与密封. 2000(2): 22-24
    [73] 张治军. 表面修饰纳米微粒的化学制备及摩擦学行为的研究. 博士学位论文. 甘肃兰
    
    州. 中国科学院兰州化学物理研究所. 1996: 1-70
    [74] Zhijun Zhang, Qunji Xue, Jun Zhang. Synthesis,structure and lubricating ptoperies of dialkyldithiophosphate-modified Mo-S compound nanoclustures. Wear. 1997, 209: 8-12
    [75] ZhiJun Zhang,Jun Zhang,and Qun Ji Xue. Synthesis and characterization of a molybdenum disulfide nanocluster. J Phys. Chem.. 1994, 98: 12973-12977
    [76] 梁起, 张治军, 薛群基. LaPO4纳米微粒的制备及表征. 物理化学学报. 1998, 14(10): 945-949
    [77] 陈爽. 表面修饰纳米微粒的制备、结构表征及摩擦学性能研究. 博士学位论文. 甘肃兰州. 中国科学院兰州化学物理研究所. 2000: 1-150
    [78] Shuang Chen, Weimin Lui, Laigui Yu. Preparation of DDP-coated PbS nanoparticles and investigation of the antiwear ability of the prepared nanoparticles as additive in liquid paraffin. Wear. 1998, 218: 153-158
    [79] Shuang Chen, Weimin Lui, Laigui Yu. Study on the structure of PbS nanoparticles coated with dialkyldithiophosphate. J. Mater. Res.. 1999, 14: 2 147-2 151
    [80] 陈爽, 刘维民. DDP表面修饰PbS纳米微粒的合成及结构表征. 化学物理学报. 1999, 12(1): 103-106
    [81] Shuang Chen, Weimin Lui, Laigui Yu. Preparation and thermal stability of the coated ZnS nanoparticles. The Fifth IUMRS International Conference on Advanced Materials. 1999, Beijing, 630-632
    [82] Shuang Chen, Weimin Lui. Study on the structure of surface-coated ZnS nanoparticles. Langmuir.1999, 19: 8100-8104
    [83] Weimin Lui ,Shuang Chen. Study on the tribological behaviour of the surface-modified ZnS nanoparticles in liquid paraffin. Wear. 200,238: 120-124
    [84] 周静芳. 油溶性纳米微粒的制备及作为润滑油添加剂的摩擦学性能研究, 中国科学院兰州化学物理研究所博士论文, 甘肃兰州, 2000
    [85] 孙磊, 周静芳, 张治军等. 季铵盐修饰的磷钼酸铵纳米微粒作用液体石蜡添加剂的摩擦学性能. 摩擦学学报. 2001, 21(3): 196-200
    [86] 陈爽, 刘维民, 欧忠文等. 油酸表面修饰PbO纳米微粒作为润滑油添加剂的摩擦学性能研究. 摩擦学学报. 2001, 21(5): 344-347
    [87] 高永建. 水基抗磨减摩添加剂的合成及摩擦学行为和作用机理研究, 中国科学院兰州化学物理研究所博士论文, 甘肃兰州, 1999
    [88] 乌学东, 王大璞, 张信刚等. 表面修饰纳米粒子的摩擦学性能. 上海交通大学学报. 1999, 33(2): 224-227
    [89] Hu Z S, Dong J X, Chen G X. Study on antiwear and reducing friction additive of
    
    nanometer ferric oxide. Tribology International. 1998, 31(7): 355- 360
    [90] Zefu Zhang, Weimin Liu, Qunji Xue. Study on lubricating mechanisms of La(OH)3 nanocluster modified by compound containing nitrogen in liquid paraffin. Wear. 1998, 218:139-144
    [91] 张泽抚, 刘维民 ,薛群基. 纳米氢氧化稀土润滑油添加剂, CN 1 218 103.80
    [92] 张泽抚. 稀土化合物作为润滑油脂添加剂的摩擦学性能研究.博士学位论文. 甘肃兰州. 中国科学院兰州化学物理研究所. 1998: 1-88
    [93] 张泽抚, 刘维民含氮有机物修饰的纳米三氟化镧的摩擦学性能研究. 摩擦学报,2000,20(3):217-219
    [94] 赵彦保, 周静芳, 张治军等. 聚合物纳米微球的合成及摩擦学行为. 应用化学. 1999, 16(4): 33-35
    [95] 赵彦保, 周静芳, 张治军等. 油酸/PS/TiO2复合纳米微球对液体石蜡抗磨性能的影响研究. 摩擦学学报. 2001, 21(1): 73-75
    [96] 欧忠文, 刘维民, 徐滨士等. 磨损部件损伤控制新方法—纳米结构耐磨涂层的组装. 功能材料. 2002, (6): 19-22
    [97] 欧忠文, 徐滨士, 马世宁等. 纳米表面工程中的纳米结构涂层组装. 机械工程学报. 2002,38(6): 104-109
    [98] 何春霞, 史丽萍, 沈惠平. 纳米Al2O3填充聚四氟乙烯摩擦磨损性能的研究. 摩擦学学报. 2000, 20(2): 153-156
    [99] 王洪涛. 聚甲醛及其复合材料的机械性能与摩擦学性能研究.硕士学位论文. 甘肃兰州. 中国科学院兰州化学物理研究所. 1995: 1-55
    [100] Wang Q H, Xue Q J, Liu W M, et al. The effect of particle size of nanometer ZrO2 on the tribological behavior of PEEK. Wear. 1996, 198: 216-219
    [101] 颜红侠, 宁荣昌, 马晓燕等. 纳米Si3N4填充聚双马来酰亚胺摩擦磨损性能的研究. 摩擦学学报. 2001, 21(6): 452-455
    [102] 杨伏生, 周安宁, 葛岭梅等. 纳米科技在聚合物改性方面的应用化工进展. 2001, (8): 9-12
    [103] K Okada, K Mastumoto. Sliding characteristics of fullerene C60- C70, Proc. JAST Tribol. Conf., Fukuoka, Japan, October 1991, 618-619
    [104] 张军, 薛群基, 纳米摩擦学进展—95‘纳米摩擦学研讨会论文集. 北京. 清华大学出版社. 1996: 86-90
    [105] 欧忠文, 徐滨士, 马世宁等. 磨损部件自修复原理与纳米润滑材料的自修复设计构思. 表面技术. 2001, 30(6): 47-50
    [106] 陶庭树. 中国工程院化工与材料第二届学术会议论文集, 北京. 1999, 399-405
    
    
    [107] 徐滨士, 欧忠文, 马世宁等. 纳米表面工程. 中国机械工程. 2000, 11(6): 707-711
    [108] T R Lu, C T Kuo, J R Yang , et al. High purity nanocrystalline carbon nitride films prepare at ambient temperature by ion beam sputtering. Surf. And Coat. Tech.. 1999, 115: 116-120
    [109] Taschner C H, et al. Plasmaassisted deposition of hard material layers from organometallic precursors. Surf. and Coat. Tech.. 1993, 59: 207-212
    [110] Erb U et al. Preparation of nanofilm by electrodepositing technology. US Pat 5 433 797, 1995
    [111] Liu A Y, Cohen M L. Prediction of new compressibility solid. Science. 1989, 254: 841- 842
    [112] Sj?str?m H, Stafsr?m M, Boman M, et al. Superhard and elastic carbon nitride thin films having fullerenelike microstructure. Phys. Rev. Lett.. 1995, 75(7): 1336 -1339
    [113] Niu C, Lu Y Z, Lieber C M. Experiment realization of the covalent solid carbon nitride .Science. 1993,261:334-336
    [114] Li D, Chu Z, Cheng S C, et al. Solid state synthesis of Mo(W)-S cluster com- pounds at low heating temperature. Appl. Phys. Lett.. 1995, 67(2): 203-205
    [115] H Nakagawa, S Kibi, M Tagawa, et al. Micotribological properties of ultrathin C60 films grown by molecular beam epitaxy. Wear. 2000, 238: 45-47
    [116] C M Mate. Nanotribology studies of carbon surfaces by force microscopy. Wear. 1993, 168: 17-20
    [117] Liou S H, Chien C L. Granular metal films as recording media . Apply phys. Lett.. 1998, 52(6): 512-514
    [118] Wang Y Y, Xu H Z, Zhang F Q, et al.. Study on optical properties of reactive- sputtering a-Si:H/a-Ge:H super lattices. J semiconductors. 1991, 12(12): 755(in Chinese)
    [119] Testardi L R, Williens R H, Krause J T, et al. Enhanced elastic model in Cu-Ni film with compositional mediation. J Apply. Phys.. 1981, 52(1): 510-514
    [120] J Masil, I Leiper, M Kolega. Nanocrystalline and nanocomposite CrCu and CrCu-N films prepared by magnetron sputtering. Surf. and Coat. Tech.. 1999, 115: 32-36
    [121]Shin K K. Ti/TiN Hf/HF-N and W/W-N multiplayer films with high mechanical hardnees. Appl. Phys. Lett.. 1992, 61: 654-656
    [122] Falicov L M. Metallic Magnetic Super lattices. Physics Today. 1992, (10): 46-50
    [123] Laigui Yu, Pingyu Zhang, Zuliang Du. Tribological behavior and structural change of the LB film of MoS2 nanoparticle coated with dialkyldithiophosphate. Surface and Coating Technology. 2000, 130: 110-115
    [124] 张军, 薛群基. C60-硬脂酸LB膜的润滑特性. 科学通报. 1994, 37(7): 612-614
    
    
    [125] Xue Q J, Zhang J. Friction and wear mechanisms of C60/steric-acid Langmuir Blodgett films. Tribology International. 1995, 28(5): 287-291
    [126] S Sasaki, H Shimura, Y Enomoto. Lubrication characteristics of carbon cluster C60 fullerene , Proc. JAST Tribol. Conf., Fukuoka, Japan, October 1991, 631-632
    [127] Lvov Y, Ariga K, Ichinose I, et al. Assembly of multi-component protein films by means of electrostatics layer-by-layer adsorption. J Am Chem. Soc.. 1995, 117, 6117-6123
    [128] Komvopoulos. Surface engineering and microtribology for microelectromechanical systems. Wear. 1996, 200, 305-327
    [129] Shinjo K. Dynamics of friction: super-lubric state. Surface Science, 1993, 283, 473-478
    [130] Yoshizawa H Mcguiggan P, Israelachvili J. Identification of second dynamic state during stickslip motion. Science. 1997, 7(1): 1-6
    [131] 欧忠文,刘维民,徐滨士等. 油性介质中分散稳定的纳米硫属化合物的合成方法. CN Patent 01124442.9, 2001
    [132] 欧忠文, 刘维民, 徐滨士等. 超分散稳定剂的合成方法. CN Patent 01125113, 2001
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.