Bt毒素(棉)对棉铃虫性信息素通讯系统的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转Bt基因棉花(简称Bt棉)的大面积推广和应用,对有效控制近年棉铃虫的发生和为害起到了重要作用。然而Bt棉仍存在两个突出的问题:其一是Bt棉对棉铃虫的抗性在后期下降问题;其二是棉铃虫的抗性风险问题。本研究即针对这两个问题,从昆虫一生最薄弱的环节——两性间的求偶和交配着手,通过研究棉铃虫性信息素通讯系统在不同情况下的变化,以期为生产上利用性信息素等行为调控技术防治Bt棉后期棉铃虫的为害;为合理设置、利用和评价“庇护所”措施,防止棉铃虫对Bt棉产生抗性,提供理论参考。研究分为两部分:1)研究Bt毒素(与Bt棉中的相同)处理棉铃虫3龄幼虫至化蛹后对存活成虫性信息素通讯系统的影响;2)比较Bt棉抗感棉铃虫品系(室内筛选品系)间性信息素通讯系统的差异。主要研究结果如下:
     1.Bt毒素处理棉铃虫幼虫后对存活成虫性信息素通讯系统的影响
     (1)Bt毒素处理棉铃虫3龄幼虫至化蛹后,使存活雌蛾的求偶百分率、求偶起始时间和求偶持续时间减少。处理雌蛾的求偶起始时间,在第3和第4个暗期分别为3.25±0.93和4.07±0.91hr,而对照雌蛾分别为2.5±0.84和3.45±0.97hr,差异显著;求偶持续时间在7个暗期均差异极显著,7个暗期中处理雌蛾的求偶持续时间分别为1.8±0.61、3.1±0.56、4.25±1.04、3.53±0.74、2.43±0.76、2.05±0.74和1.12±0.36hr,对照雌蛾分别为3.15±0.73、4.25±0.70、5.57±0.89、4.18±0.92、3.3±0.81、2.73±0.80和2.25±0.92hr。Bt毒素对雌蛾的求偶节律(包括时节律和日节律)没有影响,求偶高峰期均为第三个暗期的8-9小时。
     (2)Bt素处理棉铃虫3龄幼虫至化蛹后,存活雌蛾性信息素组分Z11-16∶Ald和Z9-16∶Ald的滴度均有不同程度的降低。存活雌蛾两种性信息素组分的滴度分别为42.88±12.86和3.30±0.84ng/♀,而对照雌蛾分别为47.45±3.91和3.76±0.46ng/♀,Z9-16∶Ald的滴度差异显著。存活雌蛾性信息素组分Z11-16∶Ald和Z9-16∶Ald的滴度比例为12.99±2.17,对照为12.70±1.21,差异不显著。
     (3)Bt素处理棉铃虫3龄幼虫至化蛹后,存活雄蛾对不同剂量的性信息素二元混合物的EAG反应值均有不同程度的增加。处理雄蛾对不同剂量(1、10、100、1,000、10,000和100,000ng)的性信息素二元混合物(Z11-16∶Ald∶Z9-16∶Ald=97∶3)的触角电位(EAG)值分别为7.31±1.63、8.84±2.67、9.73±2.59、12.72±2.22、15.47±3.65和18.61±3.84mV,对照分别为6.30±1.01、6.42±0.83、7.15±1.09、7.91±1.41、9.77±1.86和11.02±2.34mV,当刺激物剂量为1,000、10,000和100,000ng时,EAG反应差异极显
Transgenic Bt cotton (Bt cotton) has been effectively used in many cotton-producing countries to prevent economic injury by H. armigera in fields in recent years. However, the most common used Bt cotton varieties now all over the world still have two serious problems: 1) the decreasing in resistance of the Bt cotton to H. armigera on later cotton development stage, when the 3rd and 4th generation bollworm occur in China, which made it needed to carry on the essential chemical spraying; 2) the resistance risk of H. armigera to the Bt cotton which threat the sustainable use of the Bt cotton as an effective means of cotton bollworm control. Our objectives of this study are aimed to elucidate 1) the effects of sublethal treatment of the cotton bollworm larvae (from 3-instar to pupation) with Cry 1 Ac toxin (same as that in Bt cotton) on the sex pheromone communication system, and 2) the variation of this communication system in resistant cotton bollworm strain to the susceptible one.The major results for the first part of the researches are:1. The calling behavior of female survivors from the artificial diet containing sublethal dose of Bt toxin is suppressed. The calling percent, the mean onset time of calling and the mean time spent calling of survivors are all decreased over the first to seven scotophases, especially significant difference in 3rd and 4th scotophases for the mean onset time of calling (P<0.05) and in all 7 scotophases for the mean time spent calling (P<0.01). In the 3rd and 4th scotophases, the mean onset time of calling of female survivors is 3.25±0.93 and 4.07±0.91 hr after the initiation of scotophase, whereas that of control is 2. 5±0.84 and 3.45±0.97hr, respectively. In all 7 scotophases, the mean time spent calling of female survivors are 1. 8±0.61, 3.1±0.56, 4.25±1.04, 3.53±0.74, 2.43±0.76, 2.05±0.74 and1.12±0.36hr; whereas that of control are 3.15±0.73, 4.25±0.70, 5.57±0.89, 4.18±0.92, 3.38±0.81, 2.73±0.80 and 2.25±0.92hr, respectively. However, the calling periodicities (day periodicity and hour periodicity) of both control and treated females are same, with the peak calling time at 8-9 hr after the initiation of 3rd-scotophase.2. The titers of sex pheromones produced by female survivors from the artificial diet containing sublethal dose of Bt toxin are decreased, but not significantly different to the
    control for Zll-16:Ald. The titers of Zll-16:Ald and Z9-16:Ald females are 47.45±3.91 and 3.76±0.46ng/(?) in control, and 42.88±12.86 and 3.30±0.84 ng/(?) in female survivors, respectively. Similarly, the ratio of Zll-16:Ald to Z9-16:Ald is not significantly different between control (12.70±1.21) and female survivors (12.99±2.17).3. The EAG responses of male survivors to a series dosages of binary sex pheromone mixtures ( 1, 10, 100, 1 000, 10 000 and 100 000ng) increase to 7.31±1.63, 8.84±2.67, 9.73±2.59, 12.72±2.22, 15.47±3.65 and 18.61±3.84mV from 6.30±1.01, 6.42±0.83, 7.15±1.09, 7.91±1.41, 9.77±1.86 and 11.02±2.34mV in control, respectively. When the dosage are 1 000ng and above, the EAG responses between them are significant difference(P<0.01).4. The behavioral response in wind tunnel to sex pheromone lure (300ng) of male survivors is slightly increased than the control males, but there are no significant difference in regard to the percentages of 'taking flight', 'orientation', 'up-wind flight', 'approaching' and 'contacting' behaviors.5. Assortative mating between control and survivor cotton bollworms indicated there is no evidence for assortative mating between them.In the second part of this research, we have carried on a comparative study on the difference of sex pheromone communication systems between Bt cotton-susceptible (S) and Bt cotton-resistant (R) H. armigera The major results as follows:1. The calling behaviors of S and R female are similar not only in the calling periodicities (day periodicity and hour periodicity) with the peak calling time at 8-9 hr after the initiation of 3rd-scotophase, but also in the calling percent, the m
引文
1.陈志宏,倪道凤.国外医学耳鼻咽喉科学分册,2003,27:92.
    2.董双林,杜家纬.交配和温度对甜菜夜蛾(Spodoptera exigua)雌蛾性信息素产生的影响.应用生态学报,2002,13(12):1633-1636.
    3.杜家纬.昆虫信息素及其应用.北京:中国林业出版社,1998.
    4.古德就,Wright D R,Wage J K.农药亚致死剂量对优姬蜂交配行为影响的研究.华南农业大学学报,1995,16(2):55-59.
    5.黄勇平.棉铃虫雄性定向抑制剂的研究.中国科学院上海昆虫研究所博士学位论文,1993.
    6.黄勇平,沈君辉,王淑芬,唐大武.昆虫性信息素变异研究的进展.中南林学院学报,1998,18(4):88-95。
    7.冷欣夫,唐振华,王荫长.杀虫药剂分子毒理学及昆虫抗药性.北京:中国农业出版社,1996.
    8.李阜隶,喻子牛,何绍江.农业微生物学实验技术.北京:中国农业出版社,1996.
    9.刘小侠,汪飞,徐静,张青文,封红兵,宋荣.南疆棉区转Bt基因棉对棉铃虫抗性表达及对节肢动物的影响.中国农业大学学报,2002,7(5):70-74.
    10.刘云国,许少甫,杜家纬.光因子对棉铃虫雌蛾性信息素产生及其求偶行为的影响.生态学报,2001.21(1):113-116.
    11.鲁玉杰,张孝羲.棉铃虫对几种信息素化合物的触角电位(EAG)反应.生态学报,2003,23(2):309-313.
    12.潘灿平,陈馥衡.章鱼胺的作用机理及其受体的研究进展.农药学报,1999,1(3):1-7.
    13.沈晋良,周威君,吴益东,林祥文,朱协飞.棉铃虫对Bt生物农药早期抗性及与转Bt基因抗虫性的关系.昆虫学报,1998,41(1):8-14.
    14.司胜利,许少甫,杜家纬.烟夜蛾雄蛾性附腺因子对雌蛾性信息素合成的抑制作用.昆虫学报,2000,43:120-126.
    15.谭声江,陈晓峰,李典谟.棉铃虫对转Bt基因棉的抗性及其治理策略研究进展.昆虫学报,2002,45(1):138-144.
    16.王桂荣,郭予元,吴孔明.昆虫触角气味结合蛋白的研究进展.昆虫学报,2002,45(1):131 135.
    17.王桂荣,郭予元,徐广,吴孔明.甜菜夜蛾GOBP2基因的克隆及序列测定.中国农业科学,2002,34(6):619-625.
    18.王淑芬,黄勇平,周志华,唐大武,杜家纬.棉铃虫雄性性信息素的研究Ⅰ.与雄蛾味刷有关的交配行为的观察.湖南农业大学学报,1995,21(5):452-457.
    19.魏洪义.低致死剂量杀虫剂处理幼虫后对成蛾化学通讯系统的影响.中国科学院上海昆虫研究所博士学位论文.2004.
    20.吴才宏.棉铃虫雄蛾触角的毛形感器对其性信息素组分及类似物的反应.昆虫学报,1993,36(4):385-389.
    21.吴健.抗性品系和敏感品系棉铃虫Helicoverpa armigera信息素通讯系统的比较研究.中国科学院上海昆虫研究所硕士学位论文,2000.
    22.夏敬源,崔金杰.麦套夏播转Bt基因棉花田主要害虫和天敌的发生规律.棉花学报,1998,10(5):255-262
    23.阎凤明.化学生态学.北京:科学出版社,2003.
    24.杨智化.亚致死剂量的化学农药对亚洲玉米螟性信息素通讯系统的影响及可能机理的研究.中国科学院上海昆虫研究博士学位论文,1997.
    25.张善干,张玉华,任世珍,陈德明.棉铃虫性外激素分泌腺的研究.昆虫学报,1995,38(2):184-187.
    26.张天真,唐灿明.转基因抗虫棉品种的推广利用与棉铃虫抗性的治理.科学通报.2000,45(2):119-127.
    27.赵成华.蛾类昆虫性信息素生物合成的研究进展.昆虫学报,2000,43(4):429-439.
    28.周弘春,杜家纬,杨智化.亚致死剂量溴氰菊酯对亚洲玉米螟雄蛾性信息素通讯行为的影响.植物保护学报,2002,29(4):356-360.
    29.周弘春,杜家纬,黄勇平.溴氰菊酯对亚洲玉米螟雄蛾感受雌性信息素的影响.应用生态学报,2003,14(5):725-729.
    30.左明雪.细胞和分子神经生物学.北京:高等教育出版社,2000.
    31. Abbassy M, Eldefrawi M E, Eldefrawi A T. Pyrethroid action on the nicotinic acetylcholine receptor/channel. Pestic. Biochem. Physiol., 1983, 19:299-308
    32. Ache B W. Toward a common strategy for transducing olfactory information. Semin. Cell Biol., 1994, 5:55 65
    33. Almaas T J, Mustapsrta H. Heliothis virescens: response characteristics of receptor neurons in sensilla trichodea type 1 and type 2. J. Chem. Ecol., 17 (5): 953-972.
    34. Alyokhin A V, Ferro D N. Relative fitness of Colorado Poato Beetle (Coleoptera: Chrysomelidae) resistant and susceptible to the Bacillus thuringiensis Cry3A toxin. J. Econ. Entomol., 1999, 92 (3): 510-515.
    35. Anderbrant O, Hansson B S, Hallberg E Geri C, Varama M, Hedenstrom E, Hog- berg HE, Fagerhag J, Edlund H, Wassgren A B, Bergstrom G, Lofqvist J. Electrophysiological and morphological characteristics of pheromone receptors in male pine sawflies, Diprion pini (Hymenoptera: Diprionidae), and behavioural response to some compounds. J. Insect Physiol., 1995, 41:395-401.
    36. Bargmann C I. Neurobiology of the Caenorhabditis elegans genome. Science, 1998, 282:2028 -2033.
    37. Bjostad L B, Roelofs W L. Sex pheromone biosynthesis in the redbanded leafroller moth, studied by mass-labeling with stable isotopes and analysis with mass spectrometry. J. Chem. Ecol., 1984, 10: 1309- 1323.
    38. Breer H, Raming K, Krieger J. Signal recognition and transduction in olfactory neurons. Biochem. Biophys. Acta, 1994, 1224: 277 287.
    39. Breer H, Boekhoff I, Tareilus E. Rapid kinetics of second messenger formation in olfactory transduction. Nature, 1990, 345: 65 70.
    40. Butenandt A, Beckmann R, Stamm D, Hecker E. Uber den Sexuallockstoff des Seidenspinners Bombyx mori. Reindarstellung und Konstitution. Z. Naturforsch., 1959, 14: 283 284.
    41. Campanhola C, McCutchen B F, Baehrecke E H, Plapp F W. Biological constraints associated with resistance to pyrethroids in the tobacco budworm (Lepidoptera: Noctuidae). J. Econ. Entomol., 1991, 84(5): 1404-1411.
    42. Carde R T, Baker T C. Sexual communication with pheromones, pp.355 - 377, in W. J. Bell and R. T. Carde (eds). Chemical Ecology of Insect Chapman and Hall, London 1984.
    43. Cerda H, Wright D J. Could resistance to transgenic plants produce a new species of insect pest? Agriculture, Ecosystems & Environment, 2001, 91: 1-3.
    44. Chen P S, Stumm-Zollinger E, Aigaki T, Balmer J, Bienz M, Bohlen P. A male accessory gland peptide that regulates reproductive behaviour of female D. melanogaster. Cell, 1988, 54: 291 298.
    45. Choi M Y, Fuerst E J, Rafaeli A, Jurenka R A. Identification of a G protein-coupled receptor for pheromone biosynthesis activating neuropeptide from pheromone glands of the moth Helicoverpa zea. Proc. Natl. Acad. Sci. USA, 2003, 100: 9721 9726.
    46. Clark D C, Haynes K F. Sublethal effects of cypermethrin on chemical communication, courtship, and oviposition in the cabbage looper (Lepidoptera: Noctuidae). J. Econ. Entomol, 1992, 85 (5) :1771 - 1778.
    47. Clyne P J, Warr C G, Freeman M R, Lessing D, Kim J, Carlson J R. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron, 1999, 22: 327 338.
    48. Coburn C M, Bargmann C I. A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans. Neuron, 1996, 17: 695 706.
    49. Cusson M, McNeil J N. Involvement of Juvenile Hormone in the regulation of pheromone release activities in a moth. Science, 1989, 243: 210 -212.
    50. Cusson M, Yu C G, Larruthers K, Carruthers K, Wyatt G R, Tobe S S, McNeil J N. Regulation of
     vitellogenin production in army worm moths, Pseudaletia unipuncta. J. Insect Physiol, 1994, 40 (2): 132 136.
    51. Delisle J. Calling behavior and pheromone titer of the true armyworth Pseudaletia ymipumcta (Hww.) under different temperature and photoperiodie conditions. J. Insect Physiol., 1987, 33:315 324.
    52. Delisle J, Vincent C. Modified pheromone communication associated with insecticidal resistance in the obliquebanded leafroller, Choristoneura rosaceana (Lepidoptera: Trotricidae). Chemoecology, 2002, 12:47 51.
    53. Delpuech J M, Gareau E, Terrier O, Fouillet P. Sublethal effects of the insecticide chlorpyrifos on the sex pheromonal communication of Trichogramma brassicae. Chemosphere, 1998, 36: 1775 -1785.
    54. Delpuech J M, Legallet B, Fouillet P. Partial compensation of the sublethal effect of dektamethrin on the sex pheromonal pheromonal communication of Trichogramma brassicae. Chemosphere, 2001, 42:985-991.
    55. Delpuech J M, Legallet B, Terrier O, Fouillet P. Modificatons of the sex pheromonal pheromonal communication of Trichogramma brassicae by a sublethal dose of deltamethrin. Chemosphere, 1999, 38:29-739
    56. Eliyahu D, Nagalakshmi V, Applebaum S W, Kubli E, Choffat Y, Rafaeli A. Inhibition of pheromone biosynthesis in Helicoverpa armigera by pheromonstatic peptides. J. Insect Physiol., 2003, 49: 569 -574.
    57. El-Sayed A M, Fraser H M, Trimble R M. Modification of the sex-pheromone communication system associated with organophosphorous-insecticide resistant in the obliquebanded leafroller (Lepidoptera: Tortricidae). Canad. Entomol., 2001, 133: 867 - 881.
    58. El-Sayed A M, Trimble R M. Pheromone content of azinphosmethyl-susceptible and -resistant obliquebanded leafroller (Lepidoptera: Tortricidae) as a function of time of day and female age. Canad. Entomol., 2002, 134: 331 - 341.
    59. Environmental Protection Agency. The environmental protection agency white paper on Bt plant-pesticide resistance management. Washington: EPA Publication 739-S-98-001, 1998
    60. Fan Y, Rafaeli A, Gileadi C, Applebaum S W. Juvenile hormone induction of pheromone gland PBAN-responsiveness in Helicoverpa armigera females. Insect Biochem. Molec. Biol., 1999, 29: 635-641.
    61. Fan Y, Rafaeli A, Gileadi C, Kubli E, Applebaum S W. Drosphila melanogaster sex peptide stimulates JH-synthesis and depress sex pheromone production in Helicoverpa armigera. J. Insect Physiol., 1999, 45:127 133.
    62. Fan Y, Rafaeli A, Moshitzky P, Kubli E, Choffat Y, Applebaum S. Common functional elements of
     Drosphila melanogaster seminal peptide inveloved in reproduction of Drosphila melanogaster and Helicoverpa armigera females. Insect Biochem. Molec. Biol., 2000, 30: 805 - 812.
    63. Floyd J P, Crowder L A. Sublethal effects of permethrin on pheromone response and mating of male pink bollworm moths. J. Econ. Entomol, 1981, 74: 634 - 638.
    64. Forrester N W. The research's view. The Australia Cottongrower, 1997, (1): 23
    65. Fox J L. Bt cotton infestations renew resistance concerns. Nat. Biotech., 1996, 14: 1070.
    66. Gilman A G. G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem., 1987, 56: 615-649.
    67. Groeters F R, Tabashnik B E, Finson N, Johson M W. Resistance to Bacillus thuringiensis affects mating success of the diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol., 1993, 86 (4): 1035-1039.
    68. Gyorgyi T K, Roby-Shemkovitz A J, Lemer M R. Characterization and cDNA cloning of the pheromone-binding protein from the tobacco hornworm, Manduca sexta: a tissue-specific developmentally regulated protein. Proc. Natl. Acad. Sci. USA, 1988, 85: 9851 9855.
    69. Hajjor M J, Ford J B. The effect of sublethal doses of cypermethrin on egg laying of mustard beetle Phaedon cochleariae (F.). Pestic. Sci., 1989, 26: 227 - 239.
    70. Hansson B S, Almaas T J, Anton S. Chemical communication in heliothine moths. 5. Antennal lobe projection patterns of pheromone-detecting olfactory receptor neurons in the male Heliothis virescens (Lepidoptera: Noctuidae). J. Comp. Physiol., 1995, 177: 535 - 543.
    71. Hansson B S, Anton S. Function and morphology of the antennal lobe: New developments. Annu. Rev. Entomol, 2000, 45: 203-231.
    72. Hatt H, Ache B W. Cyclic nucleotide and inositol 1,4,5-trisphosphate-gated ion channels in lobster olfactory receptor neurons. Proc. Natl Acad. Sci. USA, 1994, 91: 6264 - 6268.
    73. Haynes K F. Sublethal effects of neurotoxic insecticides on insect behavior. Arm. Rev. Entomol., 1988, 33:149-168.
    74. Haynes K F, Baker T C. Sublethal effects of permethrin on the chemical communication system of the pink bollworm moth, Pectinophora gossypiella. Arch. Insect Biochem. Physiol, 1985, 2: 283 - 293
    75. Haynes K F, Li W G, Baker T C. Control of pink bollworm moth (Lepidoptera: Gelechiidae) with insecticide and pheromone (Attracticide): lethal and sublethal effects. J. Econ. Entomol, 1986, 79: 1466 1471.
    76. Heckel D G, Ganhan L J, Gould F. Genetics of Heliothis and Helicoverpa resistance to chemical insecticide and to Bacillus thuringiensis. Pestic.Sci., 1997, 51: 251 258.
    77. Hildebrand J G, Shepherd G M. Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Ann Rev Neurosci., 1997, 20: 595 — 631.
    78. Howse P E, Stevens L D R, Jones O T. Insect pheromones and their use in pest management, Chepman and Hall, 1998.
    79. Hoy C W, Head G P, Hall F R. Spatial heterogeneity and insect adaptation to toxins. Ann. Rev. Entomol., 1998,43:571-594.
    80. Jagger R. The company's view. The Australia Cottongrower, 1997, (1): 26
    81. Jurenka R A, Jacquin E, Roelofs W L. Stimulation of pheromone biosynthesis in the moth Helicoverpa zea: Action of a brain hormone pheromone glands involves Ca~(2+) and cAMP as second messengers. Proc. Natl. Acad. Sci. USA, 1991, 88: 8631 8625.
    82. Kaissling K E. Peripheral mechanisms of pheromone reception in moths. Chemical Senses, 1996, 21: 257-268.
    83. Kamimura M, Tatsuki S. Diel rhythms of calling behavior and pheromone production of oriental tobacco budworm moth, Helicoverpa assulta (Lepidoptera: Noctuidae). J. Chem. Ecol., 1993, 19: 2953-2963.
    84. Kehat M, Gothile S, Dunkelblum E, Greenberg S. Field evaluation of female sex pheromone of the cotton bollworm, Heliothois armigera. Entomol. Exp. Appl, 1980, 27: 188 - 193.
    85. Kim M S, Repp A, Smith D P. odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melanogaster. Genetics, 1998, 150: 711 721.
    86. Kingan T G, Bonder W M, Raina A K, Shabanowitz J, Hunt D F. The loss of female sex pheromone after mating in the corn earthworm Helicoverpa zea: identification of a male pheromonstatic peptide. Proc. Natl. Acad. Sci. USA, 1995, 99: 5082 - 5086.
    87. Krieger J, Breer H. Olfactory Reception in Invertebrates. Science, 1999, 286:720 -723.
    88. Krieger J, Ganble H, Raming K, Breer H. Odorant binding proteins of Heliothis virescens. Insect Biochem. Molec. Biol., 1993,23: 449-456.
    89. Krieger J, Raming K, H Breer. Cloning of genomic and complementary DNA encoding insect pheromone binding proteins: evidence for microdiversity. Biochim. Biophys. Acta, 1991, 1088: 277 -284.
    90. Krieger J, Nickisch-Roseneck E V, Mameli M. Binding proteins from the antennae of Bombyx mori. Insect Biochem Mol Biol, 1996,26:297 307.
    91. Laue M, Maida R, Redkozubov A. G-protein activation, identification and immunolocalization in pheromone-sensitive sensilla trichodea of moths. Cell Tissue Res., 1997, 288: 149 -158.
    92. Linn C E, Roelofs W L. Sublethal effects of neuroactive compounds on pheromone response
     thresholds on male oriental fruit moths. Arch. Insect Biochem. Physiol., 1984, 1:331-344.
    93. Liu L. Study on features of sublethal damage to Bacillus anthracis spores caused by chemical disinfectants. Journal of Veterinary Science and Technology, 1996, 26(6): 27 29.
    94. Mafra-Neto A, Baker T C. Elevation of pheromone response threshold in almond moth males preexposed to pheromone spray. Physiological Entomology, 1996, 21: 217 222.
    95. Maibeche-Coisne M, Jacquin-Joly E, Francois M C, Meillour P N. cDNA cloning of biotransformation enzymes belonging to the cytochrome P450 family in the antennae of the noctuid moth Mamestra brassicae, Insect Mol. Biol., 2002, 11 (3): 273 281.
    96. Maibeche-Coisne M, Jacquin-Joly E, Francois M C, Nagnan-Le Meillour P. Molecular cloning of two pheromone binding proteins in the cabbage armyworm Mamestra brassicae, Insect Biochem. Mol. Biol., 1998, 28:815-818.
    97. Maibeche-Coisne M, Nikonov A A, Ishida Y, Jacquin-Joly E, Leal W S. Pheromone anosmia in a scarab beetle induced by in vivo inhibition of a pheromone-degrading enzyme. Proc. Natl. Acad Sci. USA, 2004, 101(31): 11459 11464.
    98. McGaughey W H. Insect resistance to the biological insecticide Bacillus thuringiensis. Science, 1985, 229:193 195.
    99. McGaughey W H, Gould F, Gelernter W. Bt resistance management, a plan for reconciling the needs of the many stakeholders in Bt-based products. National Biotechnology, 1998, 16:144-146.
    100. Meng F X, Shen J L, Zhou W J, Cen H M. Long-term selection for resistance to transgenic cotton expressing Bacillus thuringiensis toxin in Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Pest Manag. Sci., 2003, 60:167 172.
    101. Merritt T. J., LaForest S., Prestwich G. D., Quattro J. M. and Vogt R. G. Patternsof gene duplication in lepidopteran pheromone binding proteins. J. Mol. Evol., 1998, 46:272 276.
    102. Mohl C, Breer H, Krieger J. Species-specific pheromonal compounds induce distinct conformational changes of pheromone binding protein subtypes from Antheraea polyphemus. J. Invert. Neurosci., 2002, 4:165 169.
    103. Monti L, Lalanne-Cassou B, Lucas P. Difference in sex pheromone communication systems of closely related species: Spodoptera latifascia (Walker) and S. descoinsi (Lepidoptera: Noctuidae). J. Chem. Ecol., 1995,21:641 660.
    104. Nagnan-LeMeillour P, Huet J C, Maibeche M, Pernollet J C, Descoins C. Purification and characterization of multiple forms of odorant/pheromone binding proteins in the antennae of Mamestra brassicae (Noctuidae). Insect Biochem. Mol. Biol., 1996, 26: 59 67.
    105. Neer E J. Heterotrimeric G proteins: Organizers of Transmembrane Signals. Cell, 1995, 80:249- 257.
    106.Nesbitt B F, Beevor P S, Hall D R, Lester R. Female sex pheromone components of the cotton bollworm, Heliothis armigera. J. Insect. Physiol, 1979, 25: 535 - 541.
    107.Newcomb R. D., Sirey T. M., Rassam M. and Greenwood D. R. Pheromone binding proteins of Epiphyas postvittana (Lepidoptera: Tortricidae) are encoded at a single locus. Insect Biochem. Mol. Biol., 2002, 32: 1543 1548.
    108.Pedersen A, John D, Gauthier D. Sublethal effects of Bacillus thuringiensis on the spruce budworm, Choristoneura fumiferana. Entomol. Exp. Appl, 1997, 83: 253 -262.
    109.Perlak F J, Fuchs R L, Dean D A, McPherson S L, Fischhoff D A. Modification of the coding sequence enhance plant expression of insect control protein genes. Proc. Natl. Acad. Sci. (USA). 1991,88:3324-3328.
    110.Piccardi P, Capizzi A, Cassani G, Spinelli P, Arsura E, Massardo P. A sex pheromone component of the old world bollworm Heliothis armigera. J. Insect Physiol, 1977, 23: 1443 -1445.
    111.Picimbon J F, Gadenne C. Evolution of noctuid pheromone binding proteins: identification of PBP in the black cutworm moth, Agrotis ipsilon. Insect Biochem. Mol. Biol., 2002, 32: 839 - 846.
    112.Rafaeli A, Gileadi C. Down regulation of pheromone biosynthesis: Cellular mechanisms of pheromonostatic responses. Insect Biochem. Molec. Biol, 1996, 26: 797 - 807.
    113.Rafaeli A, Gileadi C. Modulation of the PBAN-stimulated pheromonotropic activity in Helicoverpa armigera. Insect Biochem. Molec. Biol, 1995,25: 827 834.
    114.Rafaeli A, Soroker V, Kamensky B, Gileadi C, Zisman U. Physiological and cellular modes of action of pheromone biosynthesis activating neuropeptide (PBAN) in the control of pheromonotropic activity of female moths. In: Carde R T, Minks A K (eds), Insect Pheromone Research: New Directions. New York: Chapman and Hall, 1997, 74 - 82.
    115.Rafaeli A, Zakharova T, Lapsker Z, Jurenka R A. The identification of an age- and female-specific putative membrane-receptor protein in pheromone glands of Helicoverpa armigera: possible up-regulation by Juvenile Hormone. Insect Biochem. Molec. Biol, 2003, 33: 371 380.
    116.Raina A K, Kempe T G. A pentapeptide of the C-terminal sequence of PBAN with phero-monotropic activity. Insect Biochem., 1990,20: 849 - 851.
    117.Raina A K, Klun J A. Brain factor control of sex pheromone production in the female corn earworm moth. Science, 1984, 225: 531 533.
    118.Raina A K, Klun JA, Stadelbacher E A. Diel periodicity and effect of age and mating on female sex pheromone titer in Heliothis zea (Lepidoptera: Noctuidae) . Ann. Entomol. Soc. Am., 1986, 79: 128 131.
    119.Raming K, Krieger J, Breer H Molecular cloning of an insect pheremone-binding protein. FEBS Lett., 1989,256:215 218.
    120.Riesgo-Escovar J, Raha D, Carlson J R. Requirement for a phospholipase C in odor response: overlap between olfaction and vision in Drosophila. Proc. Natl. Acad. Sci. USA, 1995, 92(7): 2864 2868.
    121 .Roelofs W L. Chemistry of sex attraction. Proc. Natl. Acad. Sci. USA, 1995, 92: 44-49.
    122.Rogers M, Jani M, Vogt R. An olfactory specific gluthanione S-transferase in the sphinx moth Manduca sexta. J. Exp. Biol, 1999, 202: 1625 1637.
    123.Schmitz V, Renou M, Roehrich R, Stockel J, Lechaprentier P. Disruption mechanisms of pheromone communication in the European grape moth Lobesia botrana Den & Schiff. III. Sensory adaptation and habitutation. J. Chem. Ecol, 1997,23:83 95.
    124.Sengupta P, Chou J H, Bargmann C I. odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell, 1996, 84: 899 909.
    125.Shu S, Park Y I, Ramaswamy S B, Srinivasan A. Temporal profiles of juvenile hormone titers and egg production in virgin and mated females of Heliothis virescens (Noctuidae). J. Insect Physiol, 1998,44: 1111 1117.
    126.Singh J P, Marwaha K K. Effects of sublethal concentrations of some insecticides on growth and development of maize stalk borer, Chilo partellus (Swinhoe) larvae. Shashpa, 2000, 7 (2): 181 86.
    127.Steinbrecht R A, Laue M, Ziegelberger G. Immunolocalization of pheromonebinding protein and general odorant-binding protein in olfactory sensilla of the silk moths Antheraea and Bombyx. Cell Tissue Res., 1995, 282: 203 - 217.
    128.Sudhakar K, Dhingra S. Effect of combinations of sublethal concentration of chemical and microbial insecticides to different larval instars of Spodoptera litura (Fabricius). Journal of Pesticide Research, 2002, 14 (1) : 32 - 39.
    129.Tabashnik B E. Evolution of resistance to Bacillus thuringiensis. Ann. Rev. Entomol, 1994, 39: 47 79.
    130,Tang J D, Charlton R T, Carde R T, Yin C M. Effect of allatectomy and ventral nerve cord transaction on calling, pheromone emission and pheromone production in Lymantria dispar. J. Insect PhysioL, 1987,33:469 476.
    131.Tasei J N, Sabik H, Pirastru L, Langiu E, Blanche J M, Fournier J, Taglioni J P. Effects of sublethal doses of deltamethrin on Bombus terrestris. Journal of Apicultural Research, 1994, 33 (3) : 129 -135.
    132.Tillman J A, Seybold S J, Jurenka R A, Blomquist G J. Insect pheromones —An overview of the
     biosynthesis and endocrine regulation. Insect Biochem. Mol. Biol, 1999, 29: 481 514.
    133.Trimble R M, El-Sayed A M, Pree D J. Impact of sublethal residues of azinphosmethyl on the pheromone-communication system of insecticide-susceptible and insecticide-resistant obliquebanded leafrollers Choristoneura rosaceana (Lepidoptera: Tortricidae). Pest Manag. Sci, 2004, 60: 660 - 668.
    134.Troemel E R, Chou J H, Dwyer N D, Colbert H A, Bargmann C I. Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell, 1995, 83: 207 218.
    135.Troemel E R, Kimmel B E, Bargmann C I. Reprogramming chemotaxis responses: Sensory neurons define olfactory preferences in C. elegans. Cell, 1997, 91:161 169.
    136.Vandame R, Meled M, Colin M E, Belzunces L. Alteration of the homing-flight in the honey bee Apis mellifera L. exposed to sublethal dose of deltamethrin. Environmental Toxicology and Chemistry, 1995, 14: 855 - 860.
    137. Vogt R. Biochemical diversity of odor detection: OBPs, ODEs and SNMPs. In Blomquist G and Vogt R (eds), Insect pheromone Biochemistry and Molecular Biology. Elsevier Academic Press, London, 2003, pp. 391 445.
    138.Vogt R G, Prestwich G D, Lerner M R. Molecular cloning and sequencing of general-odorant binding proteins GOBP1 and GOBP2 from tobacco hawk moth Manduca sexta: comparisons with other insect OBPs and their signal peptides. J. Neurosci, 1991, 11: 2972 2984.
    139.Vosshall L B, Amrein H, Morozov P S, Rzhetsky A, Axel R. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell, 1999, 96:725 736.
    140. Wang G. R, Wu K M, Guo Y Y. Partial cloning and characterization of the cDNA of general odorant binding protein gene in the antenna of Helicoverpa armigera (Hubner) J. Entomol. Sin., 2001, 8 (4) : 289-294.
    141.Wei H Y, Du J W. Sublethal effects of larval treatment with deltamethrin on moth sex pheromone communication system of the Asian corn borer, Ostrinia furnacalis. Pestic. Biochem. Physiol., 2004, 80: 12-20.
    142.Wei H Y, Huang Y P, Du J W. Sex pheromones and reproductive behavior of Spodoptera litura (Fabricius) moths reared from larvae treated with four insecticides. J. Chem. Ecol., 2004, 30 (7): 1457 1466.
    143.Willett C S. Do pheromone binding proteins converge in amino acid sequence when pheromones converge? J. Mol. Evol, 2000a, 50: 175 183.
    144.Willett C S. Evidence for directional selection acting on pheromone-binding proteins in the genus Choristoneura. Mol. Biol. Evol, 2000b, 17: 553 562.
    145.Willett C S, Harrison R G. Pheromone binding proteins in the European and Asian corn borers: no protein change associated with pheromone differences. Insect Biochem. Mol. Biol, 1999, 29: 277 284.
    146.Wojtasek H, Leal W S. Degradation of an alkaloid pheromone from the pale-brown chafter, Phyllopertha diversa (Coleoptera: Scarabaeidae), by an insect olfactory cytochrome P450. FEBS Lett., 1999,458:333 336.
    147. Wu D M, Yan Y H, Cui J R. Sex pheromone components of Helicoverpa armigera: chemical analysis and field tests. Entomol. Sin., 1997, 4 (4): 350 - 356.
    148.Yang Z H, Du J W. Effects of sublethal deltamethrin on the chemical communication system and PBAN activity of Asian corn borer, Ostriniafurnacalis (Guenee). J. Chem.Ecol. 2003,29 (7): 1611 -1618
    149.Yang Z H, Du J W, Zhou H C, Xu S F. Effects of sublethal eserine on the chemical communication system of Asian corn borer, Ostriniafurnacalis (Guenee). Entomol. Sin., 2000, 7(3): 250 - 256.
    150.Zhang T Y, Sun J S, Zhang L B, Shen J L, Xu W H. Cloning and expression of the cDNA encoding the FXPRL family of peptides and a functional analysis of their effect on breaking pupal diapause in Helicoverpa armigera. J. Insect Physiol., 2004, 50: 25 33.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.