气动机械手空间运动轨迹控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多自由度机械手运动系统在汽车风挡玻璃涂胶作业中应用广泛,其中机械手运动轨迹控制尤为关键。胶水的易燃性使得机械手气压驱动方式极具竞争力。本研究的主要目的就是使用气动位置伺服驱动方式组成多自由度机械手,结合气动系统的特点研究机械手空间运动轨迹控制,为其在汽车风挡玻璃涂胶等领域的工业应用打下坚实的基础。
     本文根据涂胶要求结合现有条件研制了一种三自由度关节串联式气动机械手控制系统。单关节(腰部、大臂、小臂)动力机构采用气动比例流量阀控缸。首先介绍了机械手的基本组成和工作原理,建立了机械手运动学模型,进行了运动学正解和反解分析。结合气动机械手运动学模型,使用基于运动学模型的逆推关节的角度规划轨迹方法,完成了多种轨迹的仿真分析,提出了适合机械手单关节气动位置伺服系统特点的规划轨迹理论指导。
     关节动力学特性是机械手关节控制的理论基础。本文推导了气动机械手关节动力学方程并进行了简化。通过动力学仿真得出机械手在低速运动时重力矩为关节驱动力矩主要部分,由此根据简化的动力学方程,提出了使用规划轨迹位置的重力矩补偿控制方法,得到了各关节实时简单的期望重力补偿力矩。给出了重力补偿力矩的基本变化规律,为轨迹规划提供了参考依据。通过空间直线轨迹运动实验证明了补偿方法的有效性。
     建立了气动机械手单关节的线性化模型。通过机械手关节辨识实验,得到了关节辨识模型,经过对比,二者低频段特性相似,理论推导结果可信。针对气动系统特性复杂等特点,设计了基于关节线性化模型的机械手单关节气动位置伺服系统极点配置控制器,针对机械手运动中单关节不同负载、不同轨迹、不同工况以及不同控制模型条件下,分析了系统极点位置配置区域,得到了适应多任务情况的系统闭环主导极点的配置范围。针对机械手低速运动时气缸易出现爬行现象研究了气动系统的颤振补偿效应,通过叠加正弦颤振信号,使气缸产生交变的微小运动,减小了摩擦力引起的系统非线性影响,消减了低速运行时气缸的爬行,给出了颤振信号幅值与频率与系统性能的关系,提出了气动机械手关节颤振信号参数设计依据。建立了气动机械手Simulink/ADAMS联合仿真模型,对比了机械手单关节及三关节联动时各关节运动跟踪响应特性,发现联动时关节间的耦合明显,误差变大。最后完成了机械手单关节特性实验,结果表明系统具有较好的跟踪能力和鲁棒性。
     气动机械手关节间联动时存在明显的耦合。根据单关节比例流量阀控直线气缸数学模型,结合关节动力学简化方程,建立了机械手大小臂双关节动力机构耦合动力学关系,研究了大小臂关节的耦合影响,分析了关节角加速度对关节耦合惯性力矩的关系。根据重力补偿和实际工况参数,设计了解耦补偿控制器了双关节解耦补偿控制器,该方法对消除机械手关节之间的交连耦合,提高系统单关节的动态特性效果明显。
     最后,进行了机械手空间轨迹控制实验研究。介绍了气动机械手的组成及针对其多关节多任务特点所设计的实时控制系统。综合关节极点配置控制策略控制方法,辅以规划轨迹位置关节重力矩补偿、大小臂解耦补偿控制,进行了机械手三关节联动空间运动轨迹跟踪控制实验,分别跟踪了空间直线,空间圆周以及某车风挡玻璃1:2外形轮廓,结果表明机械手末端跟踪误差少,跟踪轨迹在笛卡尔空间各坐标轴分量平均相对偏差率保持在2%以内,机械手三关节动作同步性好,末端运动速度波动控制在2mm/s以内。综合以上性能气动机械手能够满足实际的工业涂胶应用的精度及均匀性要求,为进一步的工业实用化打下了基础。
The automatic gumming manipulator system has been widely used in the automobile windshield glass gumming. It is particularly critical to control the trajectory tracking of the manipulator. Furthermore, the glue flammability brings the pneumatic drive working mode a highly competitive position. Therefore, the main purpose of this research is to develop a multi-DOF manipulator by using a pneumatic position servo system, and to study the spatial trajectory control of this manipulator. This work will provide a solid foundation for the industrial application of the automobile windshield glass gumming.
     A three DOF serial joint pneumatic manipulator control system was developed based on the gumming requirements and the existing conditions. The pneumatic proportional flow valve controlled cylinder system was used in the power mechanism of the single joint (the waist, the main arm and the lower arm). Firstly, the basic elements and the operating principle of the pneumatic manipulator are introduced. Then, the kinematics model of the pneumatic manipulator was established. The forward and inverse kinematics analysis has been carried out. Several typical kinds of trajectory simulation results were obtained by using inverse angle angles planning trajectory method, based on the pneumatic manipulator kinematics model. Finally, a planning trajectory theoretical guidance which can be suitable for the characteristics of pneumatic position servo system was proposed.
     The joint dynamic characteristics are the theoretical basis for the manipulator joint control. In this paper, the dynamic equations of the pneumatic manipulator were deduced and simplified reasonably. The dynamics simulation results show that the gravity torque is the major part of the driving torque when the end point of pneumatic manipulator is at a low speed. Thus, according to the above simplified joint dynamic equations, a control method on the gravity compensation torque with planning trajectory was presented. In addition, the gravity torque changing law with main arm and lower arm joints angles was obtained. It can provide a reference for the planning trajectory. The experiments verify the validity of this compensation method.
     The computation linearized models of the pneumatic manipulator joints were built. Compared with the identified model in the pneumatic manipulator joints identification experiment, the characteristics in low frequency is as same as the computation models. This result shows that the theoretical model is correct. By considering the complex characteristics of the pneumatic system, the pole-placement controller was designed as the control strategy for the single joint pneumatic position servo system based on the computation linearized models. The system pole configuration region was analyzed, by taking the different loads, the different traces, the different conditions and the different control models into account. The system closed-loop dominant poles which can meet well with the multiple task conditions were obtained. A flutter compensation method was investigated, for describing the cylinder creeping phenomenon when the pneumatic position servo system was at a low speed. The superposition sine flutter signal was used to produce the alternate minimal motion in cylinder and decrease the system nonlinear effect caused by the friction. Thus it can diminish the cylinder creeping phenomenon. The relationship between the frequency and the amplitude of the sine flutter signal and the system characteristics was obtained. A model of co-simulation based on Simulink/ADAMS was built. The simulation results show that the coupling characteristics in the joints were obvious and the tracking error in the tri-joints moving together was bigger than the single joint moving. The characteristic experiments of the pneumatic manipulator single joint were performed. The results show that the system has a good tracking performance and robustness.
     There is obvious coupling phenomenon in the joints of the serial pneumatic manipulator. According to the mathematic model of the electro-pneumatic proportional flow valve controlling a linear cylinder and the simplified equations of the joints, the decoupling dynamic equations of the dual-joint (the main arm and the lower arm) were obtained. And the relationship between the joint angular acceleration and the joint coupling inertial torque was analyzed. According to the gravity compensation and working condition parameters, the decoupling controller of the dual-joint was also designed. It is obvious that this method can eliminate the effect of joints coupling and can improve the system dynamic characteristics.
     Finally, the spatial trajectory control experiments of the pneumatic manipulator were performed. The compositions of the manipulator and the real-time control system which can meet the multi-joint multi-task were introduced. In addition, the single-joint pole–placement controller, the gravity compensation torque with the planning trajectory control method and the decoupling compensation control method were used in the joint control in the pneumatic manipulator. The experiments of the manipulator spatial trajectory tracking with tri-joints combined moving were carried out. The spatial line, the spatial circular and the car windshield 1:2 glass shape were tracked, respectively. The experimental results show that the tracking error of the manipulator end point is small; the average relative tracking error of the trajectory in Cartesian coordinate axes is less than 2%; the tri-joints’moving is in a good synchronization; and the manipulator end point velocity fluctuation is maintained in 10%. The above performances show that the pneumatic manipulator meets well with the industrial gumming precision and the uniformity requirement. The present work provides a support for the industrial application of the pneumatic manipulator.
引文
1郗安民,刘颖等.汽车玻璃涂胶机器人工作站.机电产品开发与创新. 2004, 17(4):39~40
    2马克,张波.机器人在汽车挡风玻璃自动涂胶系统中的应用.华北科技学院学报. 2007, 4(1):47~51
    3裘华徕.气动技术近期发展及其影响因素.液压气动与密封. 2000, (1):1~3
    4 Suzumori K, Tanaka etc. Development of an Intelligent Pneumatic Cylinder and Its Application to Pneumatic Servo Mechanism. 2005 IEEE/ASME International Conference, 2005:479~484
    5王祖温,杨庆俊.气压位置控制系统研究现状及展望.机械工程学报. 2003, 39(12):10~16
    6彭太江等.电气比例/伺服技术现状及发展.农业机械学报. 2005, (6):126~130
    7 Plattenburg D.H. Pneumatic Actuators: a Comparison of Energy-to-mass Ratio's. Rehabilitation Robotics, 2005. ICORR 2005. 9th International Conference, 2005:545~549
    8 J. L. Shearer. Nonlinear Analog Study of a High Pressure Pneumatic Servo mechanism. Trans. American Society of Mechanical Engineers. 1971, Paper D3:37~47
    9 F. E. Sanville. A new method of specifying the flow capacity of pneumatic fluid power valves. Second Fluid Power Symposium, BHRA, England. 1957, (5):143~148
    10 B.W. McDonell, J.E. Bobrow. Modeling, Identification, and Control of a Pneumaticlly Actuated Robot. IEEE Transactions on Robotics and Automation. 1998, 14(5):56~62
    11陶国良.电-气比例伺服连续轨迹控制及其在多自由度机械手中的应用研究.浙江大学博士论文. 2001:16~28
    12李宝仁等.电-气比例流量阀特性分析及研究.机床与液压. 2000(3):51~52
    13川嶋健嗣,藤田壽憲,張志城,香川利香.空气圧流量比例弁?サ一ボ弁の特性試験法.油圧と空気圧. 1995, 28(1):767~768
    14詹长书,杨庆俊等.气压比例方向阀非线性特性校正.液压与气动.2004(6):69~71
    15 Sherear J L. Study of Pneumatic Processes in the Continuous Control of Motion with Compress air. Trans of ASME. 1956, (2):233~242
    16 Burrows C R, Webb C R. Use of Root Loci in Design of Pneumatic Servo- mechanism. Control. 1966, (9):423~427
    17 Liu S, Burrows E J. A new Generation of Pneumatic Servos System and it’s Application to a Computer-Controlled. Robot ASME J. Dyna. Syst. eas. Contr. 1988, 115(3):228~235
    18 Bobrow. James E, McDonell Brian W. Modeling, Identification, and Control of Pneumatically Actuated, Force Controllable Robot. IEEE Transactions on Robo-tics and Automation. 1998, 14(5):732~742
    19 TAPIOV. On the damping of a pneumatic cylinder drive. Proceedings of the 3rd international symposium fluid power transmission and control. 1999:472~477
    20周洪.电-气比例/伺服系统及其控制策略的研究.浙江大学博士论文. 1988:3~14
    21杨庆俊,包钢,聂伯勋,王祖温.比例方向阀控气动缸动力机构建模.哈尔滨工业大学学报. 2001, 33(4):69~71
    22 Shu Ning, Gary M. Bone. High Steady-State Accuracy Pneumatic Servo Positioning System with PVA/PV Control and Friction Compensation. Proceeding of the 2002 IEEE International Conference on Robotics & Automation. 2002, (3):2824~2829
    23 KIMURAT, HARAS, FUJITAT. Control for pneumatic actuator system using feedback linearization with disturbance rejection. Proc of the 1995 American Control Conference Part 1. 1995:825~829
    24杨庆俊,王祖温,路建萍.基于反馈线性化的气压伺服系统非线性H∞控制.南京理工大学学报. 2002, 26(1):52~56
    25 S. Kwawura, K. Miyata. PI type hierarchical feedback control scheme for pneumatic robots. IEEE International Conference on. 1989, (3):14~19
    26 H. Kawnaka, K.Hanada. Many points positioning control of a pneumatic cylinder for a vertical axis actuator using two degrees of freedom PI control method. Advanced Motion Control, 1996 AMC '96-MIE. Proceedings, 1996 4th International Workshop on. 1996, (1):71~74
    27 Majed Hamdan, Zhiqiang Gao. A novel PID controller for pneumatic proportional valves with hysteresis. Industry Applications Conference, 2000.Conference Record of the 2000 IEEE. 2000, (2):1198~1201
    28 Eric J. B., Jianglong Zhang, M. Goldfarb. Sliding mode approach to PWM-controlled pneumatic systems. Proceedings of the American control conference. 2002:8~10
    29 Arun K.P, J.K. Mishra, M.G Radke. Reduced order sliding mode control for pneumatic actuator. IEEE transactions on control systems technology. 1994, 2(3):271~276
    30夏巍,孙彬,何海珍.基于变结构控制的气动伺服控制器的研究.武汉汽车工业大学学报. 1997, (6):62~65
    31 S. Drakunov, G.D. Hanchin, W.C. Su. Modeling, Nonlinear control of a rodless pneumatic servoactuator, or sliding modes versus coulomb friction. Automation. 1992, 33(7):1401~1408
    32 T.L. Shen, K. Tamura, N. Henmi. Robust following controller applied to positioning of pneumatic control valve with friction. Proceedings of the 1998 IEEE inter. conf. on control applications. 1998, 2:1203~1210
    33 Noritsugu T, Takaiwa M. Robust position control of pneumatic servo system with pressure control loop. IEEE Trans. Robotics Autom. 1995, (11):2613~2618
    34 Tetsuya K, Shinju H. H∞control with minor feedback for a pneumatic actuator system. Proceedings of the 35th conference on Decision and control Kobe. 1996, (3):2365~2370
    35杨庆俊.高性能气压位置伺服系统控制研究.哈尔滨工业大学博士论文. 2002:3~14
    36 F.L. Xiang. Block-Oriented Nonlinear Control of Pneumatic Actuator Systems. Actuator Systems.Doctoral Thesis, Royal Institute of Technology, KTH. 2001
    37 T. Kimura, S. Hara, T. Fujita. Feedback linearization for pneumatic actuator systems with static friction. Control Eng. Practice. 1997, 5(10):1385~1394
    38 P. Bigras, K. Khayati, T. Wong. Modified feedback linearization controller for pneumatic system with non negligible connection port restriction. Systems, Man and Cybernetics, 2002 IEEE International Conference. 2002, (2):227~231
    39 Jihong Wang, Junsheng, Philip Moore. A Practical Control Strategy Servo-pneumatic Actuator Systems. Control Engineering Practice.7 1999: 1483~1488
    40 Shu Ning, Gary M. Bone. High Steady-State Accuracy Pneumatic Servo Positioning System with PVA/PV Control and Friction Compensation.Proceeding of the 2002 IEEE International Conference on Robotics & Automation Washington, DC. May 2002
    41李尚义,王春燕,许宏光.一种新型的气压控制系统.机械. 1994, 21(3):12~14
    42 Wang Jihong, Pu Junsheng, Moore Philip R. Modeling Study and Servo-control of Air Motor System. Int. J. Control. 1998, 71(3):459~476
    43 Shunmugham R Pandian, Fumiaki Takemure, Yasuhiro Hayakawa. Control Performance of an Air Motor-Can Air Motors Replace Electric Motors. Proceedings of the 1999 IEEE Inernational Confernece on Robotics & Automation. 1998:518~524
    44 Tillett, N.D, Vaughan, N.D, Bowyer, A. Non-linear model of a rotary pneumatic servo system. Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering. 1997, 211(2):123~133
    45傅晓云,刘浩,李宝仁.摆动气缸位置伺服控制系统的建模与仿真.机床与液压. 2004, (8):48~49
    46 Wang Peng, Peng Guang-zheng, Wu Qing-he. Intelligent PID Control of Pneumatic Rotary Actuator Angle Servo-System. Journal of Beijing Institute of Technology. 2003, (12):518~524
    47柏艳红.气动旋转位置伺服控制技术研究.南京理工大学博士学位论文. 2006:3~14
    48叶骞,孟国香,谢文华.偏心负载对摆动气缸角加速度影响实验研究.液压与气动. 2006, (7):39~40
    49陈伟.开关阀式气动马达位置伺服系统的研究.组合机床与自动化加工技术. 2002, (8):57~59
    50陈伟,张剑.气动机器人气马达关节的研制.液压与气动. 2002, (10):1~2
    51杨树斌.直角坐标机器人在汽车发动机涂胶机上的应用.机器人技术. 2008, (4):50~52
    52温海邦. BERGER LAHR机器人在涂胶系统中的应用.伺服控制. 2008, (7):38~39
    53 http://www.kuka-robotics.com/zh/products/industrial_robots/
    54 http://www.abb.com.cn/product/zh/9AAC100735.aspx?country=CN
    55丁学恭.机器人控制研究.浙江大学出版社. 2008:7~20
    56林尚扬,陈善本,李成桐等.焊接机器人及其应用.机械工业出版社. 2000:8~33
    57孙迪生,王炎等.机器人控制技术.机械工业出版社. 1997:16~51
    58 M.Prufer, C.Schmidt. Identification of robot dynamics with differential and integral models: A comparison. IEEE transactions on robotics and automation. 1994, (10):340~345
    59 TakeshiOhtsuki,Toskiko Iguchi. On the identification of robot parameters by the classic calibration algorithms and error absorbing trees. IEEE Intelligent Robots and System. 2002, (2):1916~1923
    60 P.D.Tataryu , N.Sepehri. Experimental comparison of some compensation techniques for the control ofmanipulators with stick-slip friction. Control engineering practice. 1996, 4(9):1209~1219
    61 E.Panteley. An adaptive friction compensator for global tracking in robot manipulators. Systems and control letters. 1998, 33(6):307~313
    62陈大跃.机械手在完成粗糙表面磨削操作的力及位置混合控制.机械工程学报. 2000, 36(1):87~91
    63 Craig J, Ping Hsu, Sastry, S. Adaptive control of mechanical manipulators. Proceedings of the 1986 IEEE International Conference on Robotics and Automation. 1986:190~195
    64 Spong M, Vidyasagar M. Robust linear compensator design for nonlinear robotic control. IEEE Robotics and Automation. 1987, 3(4):345~351
    65 Liu Ming. Computed torque scheme based adaptive tracking for robot manipulators. Proceedings of the 1995 IEEE International Conference on Robotics and Automation. 1995:587~590
    66 Gourdeau R, Schwartz H. M. Adaptive control of robotic manipulators: experimental results. Proceedings of 1991 IEEE International Conference on Robotics and Automation. 1991:8~15
    67代颖,施颂椒,郑南宁.一类关于不确定性机器人的鲁棒控制策略.自动化学报. 1999, 25(2):204~209
    68申铁龙,王炎等.机器人鲁棒控制基础.清华大学出版社. 2000:56~60
    69 LEE S H. Position control of a Stewart platform using inverse dynamics control with approximate dynamics. Mechatronics. 2003, 13:605~619
    70王洪瑞,方一鸣等.状态反馈鲁棒解耦控制器的设计.控制与决策. 1994,
    9(4):306~310
    71唐小琦,周济,蔡李隆.机器人操作臂的解耦跟踪控制.华中理工大学学报.1998, 26(12):10~12
    72罗绍维,吴振顺,张琦隆.关节机器人电液伺服系统最优解耦控制的研究.机床与液压. 1998, (5):224~228
    73张凯,刘成良,付庄等.6R机器人轨迹规划及其在焊接中的应用.机械设计.2002,(10):20~23
    74谭冠政,徐雄,肖宏峰.工业机器人实时高精度路径跟踪与轨迹规划.中南大学学报(自然科学版).2005,36(1):102~107
    75王幼民.机器人连续轨迹控制中的Bezier曲线轨迹优化与控制.机械传动.2003,27(3):42~47
    76 Edwall C W,Ho C Y,Pottinger H J.Trajectory generationand control of a robot arm using splines functions.Robots.1982,(VI):421
    77石宏,郭建烨,蔡光起.基于位移螺旋与Chasles定理的机器人轨迹规划研究.机械与电子.2004,(10):40~43
    78 Piazzi A,Visioli A.Global minimum jerk trajectory planning of robot manipulators.IEEE Transactions on Industial electronics.2000,(1):140~145
    79 Bien Z N,Lee J H.A minimum time trajectory planning method for two robots.IEEE Transations on Robotics and Automation.1992,(3):414~416
    80 Angeles J,Alivizatos A,Zsombor Murray P J.The synthesisof smooth trajectories for pick and place operations.IEEE Trans. Syst. Man. Cybern.1988,(1):173~178
    81 Muller Karger C M,Granados Mirena A L,Scarpati Lopez J T.Hyperbolic trajectories for pick and place operations to elude obstacles.IEEE Transactions and Automation. 2000, (3):294~300
    82恽为民,席裕庚.基于遗传算法的机器人关节空间最优运动规划.机器人.1995,17(4):206~217
    83 Payeur, P . Robot path planning using neural networks and fuzzy logic.Proceedings of the 20th International Conference on Industrial Electronics, Control and Instrumentation.Part 2 (of 3):800~805
    84 E.J. Solteiro Pires, P.B. de Moura Oliveira, J.A. Tenreiro Machado.Manipulator trajectory planning using a MOEA.Applied Soft Computing.2007,(7):659~667
    85 CHANG Che-hang, LIU Guan-jun. M. Hysteresis identification andcompensation using a genetic algorithm with adaptive search space. Mechatronics. 1991, 17(7):391~402
    86 REFAAT. S, NAHAVANDI. S. Nonlinear identification of pneumatic servo-drive. International Journal of Modeling and Simulation. 2006, 26(1):11~16
    87蔡自兴.机器人学.清华大学出版社. 2000:10~232
    88 Santibanez, V, Kelly, R. PD control with feedforward compensation for robot manipulators: Analysis and experimentation. Instituto Tecnologico de la Laguna, Torreon, Coah., 27001, Mexico. 2001, 19(1):11~19
    89李宝仁.数字式电-气压力控制阀及电气位置伺服系统的研究.哈尔滨工业大学博士论文. 1995: 34~64
    90 Qiang Song etc.. Generalized Predictive Control for a Pneumatic System Based on an Optimized ARMAX Model with an Artificial Neural Network. International Conference on Computational Intelligence for Modelling Control and Automation and International Conference on Intelligent Agents,Web Technologies and Internet Commerce (CIMCA-IAWTIC'06). 2006: 1743~1749
    91 Dong Sun, Xiaoyin Shao etc.. A Model-Free Cross-Coupled Control for Position Synchronization of Multi-Axis Motions: Theory and Experiments. IEEE Transactions on Control Sysem Technology. 2007, 15(2):306~314
    92 Ming-chang Shih, Shy-I Tseng. Identificaiton and Position Control a Servo Pneumatic Cylinder. Control Eng Practice. 1995, 3(9):1285~1290
    93詹长书.双轴气压伺服系统轨迹跟踪控制的研究.哈尔滨工业大学工学博士学位论文. 2007: 76~92
    94王燕波.三轴气压伺服空间轨迹控制系统的研究.哈尔滨工业大学工学博士学位论文. 2008: 15~22
    95李建番.气压传动系统动力学.华南理工大学出版社. 1991:23~32
    96 L.Mo, M.M.Bayoumi. Adaptive Pole Placement Control of MIMO Systems. IEEE Transactions on Automatic Control. 1993, 38(6):967~970
    97 Yuji Yamada, Kanya Tanaka, Shigeru Uchikado. Adaptive Pole-Placement ControlMulti-Rate Type Neural Network for Pneumatic Servo System. IEEE International Conference on Control Application. 2000:190~195
    98 T.Yamamoto, S.L.Shah. Design and experimental evaluation of a multivariable self-tuning PID controller. IEE Proc-Control Transactions Theory Application.2004, 151(5):645~652
    99张翠芳,吕强,段运波,许耀明.神经网络在PWM位置伺服系统中的应用.哈尔滨工业大学学报. 1997, 29(2):1~4
    101 M. Sakamoto, T. Matsushita, Y. Mizukami. Model reference adaptive control using delta-operator with neural network for pneumatic servo system. SICE. 2002, (9):5~7
    102朱春波.基于压力比例阀的气动位置伺服系统控制策略研究.哈尔滨工业大学博士论文. 2001:3~14
    103 J.B. Song, X.Y. Bao, Y. Ishida. An application of MNN trained by MEKA for the position control of pneumatic cylinder. Neural Networks 1997 International Conference on. 1997, 2:829~833
    104 D.C. Gross, K.S. Rattan. A feedforward MNN controller for pneumatic cylinder trajectory tracking control. Neural Networks 1997 International Conference on. 1997, 2:794~799
    105 Yuji Yamada, Kanya Tanaka, Shigeru Uchikado. Adaptive Pole-Placement Control with Multi-Rate Type Neural Network for Pneumatic Servo System. 2000 IEEE Conference on Control Applications. 2000:190~195
    106 Arsevld RB, Bone GM. Accurate position control of a pneumatic actuator using on/off solenoid valves. IEEE Trans Robotics Autom. 1997, (13):1196~1201
    107 Young, K-K D. A variable structure model following control design for robotics applications. IEEE Transactions on Robotics and Automation. 1988, 4(5):556~561
    108 Liu Hsu, Lizarralde. Experimental results on variable structure adap tive robot control without joint velocity measurement. Proceedings of the 1995 American Control Conference. 1995:2317~2321
    109 Martin T. Hagan, Howard B. Demuth. An introduction to the use of neural networks in control systems. International Journal of Robust and Nonlinear Control. 2002, 12(11):959~985
    110 Ge S. S, Lee T. H. Robust model reference adaptive control of robots based on neural network parametrization. Proceedings of the 1997 American Control Conference. 1997:2006~2010
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.