复杂曲线曲面位模式插补算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
先进制造技术代表着制造业领域的发展方向,数控技术则是当今先进制造技术和装备中最核心的技术之一,世界上各发达国家都将数控技术以及数控装备列为国家的战略物资。复杂曲线曲面插补技术是数控技术研究中的关键,这些技术目前只被少数国际大公司,如FANUC、Siemens等所掌握。我国国内具备复杂曲线曲面插补功能的中高档数控系统目前还主要依赖进口,而且这些进口的技术设备多被进行了“技术封闭”,用户只有使用权限,而对于其中的关键算法、代码都无法掌握。本论文在江苏省自然科学基金(招标)项目(BK2003005)的资助下,对位模式插补的算法原理及算法实现进行了深入细致的研究,并以位模式插补技术为核心进行扩展,研究了复杂曲线曲面加工中若干关键技术问题,提出了一种复杂曲线曲面位模式插补算法,为提高具有我国自主产权的数控技术水平提供了新的尝试。论文的主要研究内容如下。
     对位模式插补算法原理进行了研究并且给出了利用控制器中断功能实现位模式插补的方法,包括位模式插补脉冲周期的设定以及插补脉冲的发送。在位模式插补原理的基础上提出了位模式插补速度控制方法并分别采用梯形加减速法和S型加减速法对位模式插补数据进行了速度规划。
     根据位模式插补算法原理,提出了一种误差可控复杂曲线位模式插补的插补数据生成算法。在先给出了较为简单的直线段位数据生成方法的基础上,针对复杂列表曲线分别用三次B样条曲线和三次参数曲线进行拟合,重建刀位点轨迹线;然后,在最大误差的控制之下对刀位轨迹进行了离散;最后,用直线段插补数据进行位数据生成。
     针对笔式加工这一目前曲面加工技术中的前沿问题进行了讨论,指出了笔式加工技术目前存在的若干问题。针对这些问题,将位模式插补技术引进到笔式加工技术中,建立起一套以笔式加工和位模式插补为核心技术的复杂曲面上自由曲线三坐标插补模块。针对复杂曲面笔式加工中参数曲面之间求交运算困难的问题,将笔式加工分为小局部区域和局部区域两种情况进行讨论。对于小局部区域,是将目的导引线的起始点映射到曲面的局部待加工区域之上,然后按照目的导引线的位插补数据,以该点为起始点进行插补运算;对于一般的局部区域,首先对目的导引线进行数据离散化,在允许误差的约束下生成数据离散点,然后求出这些离散点在加工曲面上的映射点,最后针对这些映射点的连线进行位数据生成进而实现曲面加工。接着,将位模式插补的应用扩展到整体曲面加工之中。利用等参数法对曲面进行轨迹规划,然后依次对等参数线进行位模式数据生成,实现对整体曲面的加工。通过上述研究,建立起一套复杂曲线曲面三坐标位模式插补加工方法。
     针对五坐标笔式加工中刀轴定位问题展开研究。深入分析了笔式加工两种加工情况的特点,分别为这两种情况选择加工刀具,并制定了无干涉刀轴定位策略。提出了一种新的刀轴矢量函数的生成算法,可以保证全局刀轴矢量连续光顺。在此基础上,将位模式插补算法引入到五坐标笔式加工中,对三坐标位数据生成算法进行扩展,提出了一种五坐标位数据生成算法。通过上述研究,建立起一套复杂曲线曲面五坐标位模式插补加工方法。
     针对五坐标位模式插补中的非线性误差控制问题进行研究。首先,建立了五坐标加工非线性误差模型,分析了非线性误差的产生原因,然后,通过对比分析国内外关于非线性误差控制的相关技术,指出了存在的问题。将RTCP方法引入到五坐标位模式插补计算中,通过将RTCP算法和通常的非线性误差控制算法进行比较,得出结论:RTCP算法不仅可以有效降低非线性误差,还可以避免由于局部加工步长调整而带来的反复修改整个加工程序的问题。
Advanced manufacturing technology represents the developing direction of the manufacturing technology, while the CNC technology is the most important technology in the family of advanced manufacturing technologies and equipments. The CNC technology and equipments are the strategic materials in many developed countries. The interpolating technology of complex curves and surfaces is the key technology in the CNC technologies and it’s mastered only by a few big companies in the world, such as FANUC and Siemens. Nowadays, most of the high performance CNC systems of our country are imported from foreign countries. The kernel technologies in these systems are closed to the users and it is not helpful for the CNC development of our country.
     This dissertation is supported by Natural Science Foundation of Jiangsu Province (Code: BK2003005). The principle and implementation of the bit pattern algorithm are studied in the dissertation, and many key technical problems are solved. One type of algorithm of bit pattern interpolation (BPI) of complex curves and surfaces is developed. A new way for the development of the CNC technology has independent intellectual property right in China. The mainly research achievements are shown as following.
     The principle of the BPI algorithm is researched and the algorithm is implemented by using interrupt function of controller. A velocity control algorithm of the BPI is presented. An error-controllable BPI data-generating algorithm is proposed. Firstly, the tool-path was built according to the key points of the machining curve. Parametric cubic spline was used to fit these key points. Then, the tool-path was dispersed into many line segments. To ensure the calculation accuracy, the equation reflecting the relation between the maximum allowable error and the segment number was deduced. The discrete ratio was based on the equation. At last, the BPI data was generated according to these line segments.
     The front questions of the curve machining technology and pen cutting algorithm of sculptured surface are discussed and the problems of the machining technology of complex curves and surfaces are analyzed. Furthermore, some key problems are pointed out. To solve these problems, the BPI algorithm is introduced into the pen cutting technology. Aiming at the problem of surface intersection operation in the pen cutting, the pen cutting is divided into two conditions, micro local-area cutting and general local-area cutting. For micro local-area cutting, the starting point of the objective driving curve is mapped to the machining area and the bit pattern data is generated according to the objective driving curves. The machining is finished based on the starting point and the bit pattern data. For general local-area cutting, the objective driving curve is dispersed into many short segments in the error range. Then, the endpoints of these short segments are mapped to the machining area, and the bit pattern data is generated according to the connecting lines of the mapping points. Furthermore, the BPI algorithm is introduced into the surface global processing technology. Iso-parametric method is used to make the tool-path plan firstly. Then, the bit pattern data of the iso-parametric curves is generated and the machining is performed according to the bit pattern data. A whole three-coordinate interpolating module of complex curves and surfaces is built according to above research.
     The problem about tool locating is also studied in the dissertation. Two terms of the pen cutting are researched and different tool locating strategies are made according to the terms. A tool-axis vector generating algorithm is proposed. The algorithm can ensure the continuity and smoothness of the global tool-axis vector. The BPI algorithm is introduced into the five-axis pen cutting, and a data generating algorithm of the five-axis BPI is presented. A whole five-axis interpolating module of complex curves and surfaces is built according to above research.
     The nonlinear error controlling problem in the five-axis machining is studied. The reason of the nonlinear error production is analyzed and the existing problems of the general error control methods are pointed out. The RTCP method is introduced into the five-axis BPI. By comparing the RTCP method with the general error control method, a conclusion is drawn that the RTCP method can not only control the nonlinear error effectively but also avoid the problem of repeated modification of processing program.
引文
[1]周济,周艳红.数控加工技术[M].北京:国防工业出版社,2002.
    [2]库祥臣,王润孝.数控技术的发展趋势及对策[J].机床与液压,2004,(9):7-8.
    [3]郭聚东,李兰.数控技术的发展趋势[J].轻工机械,2004,(3):70-72.
    [4]苏会林,董长双.数控技术的发展与展望[J].机械研究与应用,2005,18(6):25-27.
    [5]杨建武.国内外数控技术的发展现状与趋势[J].制造技术与机床,2008,(12):57-62.
    [6]君扬.世界机床名展风采——第八届中国国际机床展览会报道[J].航空制造技术, 2003,(6):62-65.
    [7]范超毅.CIMT2005第九届中国国际机床展览会回眸与启示[J].制造技术与机床,2005,(7),34-37.
    [8] CIMT2007特种加工机床评述专家组.第十届中国国际机床展览会特种加工机床评述[J].世界制造技术与装备市场,2007,(5):56-65.
    [9]韩立岩.国际先进航空企业数控技术的发展现状及趋势[J].机电新产品导报,2004,(10):24-27.
    [10]游华云,叶佩青等.机床工业亟需发展五轴数控技术[J].制造技术与机床,2002,(12):25-28.
    [11]毕留刚,王隆太.网络化数控系统的研究和开发[J].中国制造业信息化,2006,35(1):57-61.
    [12] Gao Junli, Li Di, Zheng Shixiong. Open computerized numerical control system with module architecture [J]. Huanan Ligong Daxue Xuebao, 2005, 33(6): 36-40.
    [13] Erol, Altintas, Ito. Open system architecture modular tool kit for motion and machining process control [J]. IEEE/ASME Transactions on Mechatronics, 2000, 5(3): 281-291.
    [14]徐海银.曲面实时数控加工研究[D].武汉,华中科技大学,2000.
    [15]施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:北京航空航天大学出版社,1995.
    [16]朱心雄.自由曲线曲面造型技术[M].北京:科学出版社,2000.
    [17]王国瑾,汪国昭等.计算机辅助几何设计[M].北京:高等教育出版社,2001.
    [18] Lo Chih-Ching. CNC machine tool surface interpolator for ball-end milling of free-form surfaces [J]. International Journal of Machine Tools and Manufacture. 2000, 40(3): 307-326.
    [19]王晓江,蔡永林等.曲面造型及数控加工刀具轨迹生成方法的研究[J].现代制造工程,2003,(12):31-32.
    [20]周云飞,李国其等.CNC曲面直接插补算法和系统[J].华中理工大学学报,1993,21(4):7-12.
    [21]王水来,周云飞等.曲面沿等参数线加工的实时轨迹生成[J].机械工业自动化,1997,19(3):29-31.
    [22]高三得,周云飞等.曲面直接插补和组合曲面的自适应加工[J].计算机辅助工程,1995,(2):42-47.
    [23]倪其民,王水来等.数控加工中的曲面插补技术[J].机电一体化,2000,(6):34-36.
    [24]谢叻,周儒荣等.自由曲面参数线加工算法[J].模具技术,2001,(1):62-65.
    [25]吴福忠,柯映林.组合曲面参数线五坐标加工刀具轨迹的计算[J].计算机辅助设计与图形学学报,2003,15(10):1247-1252.
    [26] Daniel C, Yang H, Chuang J J, et al. Boundary-conformed toolpath generation for trimmed free-form surfaces via Coons reparametrization [J]. Journal of Materials Processing Technology, 2003, 138(1-3): 138-144.
    [27] Daniel C, Yang H, Chuang J J, et al. Boundary-conformed toolpath generation for trimmed free-form surfaces [J]. Computer-Aided Design, 2003, 35(2): 127-139.
    [28] Chiou Chuang-Jang, Lee Yuan-Shin. A machining potential field approach to tool path generation for multi-axis sculptured surface machining [J]. Computer-Aided Design, 2002, 34(5): 357-371.
    [29]朱翔,孙家广.Loop细分曲面数控加工刀具轨迹的生成[J].清华大学学报(自然科学版),2003,43(4):521-524.
    [30]刘壮,程莜胜等.裁剪NURBS组合曲面的数控加工算法研究[J].南京航空航天大学学报,1997,29(3):257-261.
    [31]谢叻,胡建华等.裁剪NURBS组合曲面精加工方法[J].中国机械工程,1999,10(7):742-745.
    [32]吴光琳,林建平等.参数曲面的快速实时插补[J].机械制造,2002,40(1):33-35.
    [33]单岩,金涛等.基于MODM模型的自由曲面NC加工刀位计算[J].中国机械工程,2002,13(17):1445-1449.
    [34]徐啸峰,周儒荣等.基于实体的三轴数控精加工研究[J].南京航空航天大学学报,2001,33(6):550-554.
    [35]吴光琳,倪其民等.曲面实时插补无干涉刀轨的生成方法[J].机械工程学报,2001,37(5):93-96.
    [36]周凯,陆启建.自由曲面数控加工的直接插补控制方法[J].组合机床与自动化加工技术,1998,(5):7-10.
    [37]陈涛,陈刚等.组合曲面NC加工刀具轨迹的生成[J].应用科学学报,2001,19(1):62-65.
    [38] Feng Hsi-Yung, Teng Zhengji, et al. Iso-planar piecewise linear NC tool path generation from discrete measured data points [J]. Computer-Aided Design, 2005, 37(1): 55-64.
    [39] Ding S, Mannan M A, et al. Adaptive iso-planar tool path generation for machining of free-form surfaces [J]. Computer-Aided Design, 2003, 35(2): 141-153.
    [40] Tam Hon-yuen, Haiyin Xu, et al. Iso-planar interpolation for the machining of implicit surfaces [J]. Computer-Aided Design, 2002, 34(2): 125-136.
    [41]庄海军,周儒荣等.实体模型的三轴数控粗加工刀轨生成算法[J].计算机辅助设计与图形学学报,2003,15(1):81-84.
    [42] Jee Sungchul, Koo Taehoon, et al. Tool path generation for NURBS surface machining [J]. Proceedings of the Americal Control Conference, 2003, 2615-2620.
    [43] Lo Chih-ching. A new approach to CNC tool path generation [J]. Computer-Aided Design, 1998, 30(8): 649-655.
    [44] Lin Y -J, Lee T S, et al. An adaptive tool path generation algorithm for precision surface machining [J]. Computer-Aided Design, 1999, 31(4): 237-247.
    [45]叶佩青,陈涛等.复杂曲面五坐标数控加工刀具轨迹的规划算法[J].机械科学与技术,2004,23(8):883-887.
    [46]蔡永林,席光等.任意曲面叶轮五坐标数控加工刀具轨迹生成[J].西安交通大学学报,2003,37(1):78-81.
    [47]吴宝海,王尚锦.任意曲面叶片四坐标数控加工刀位轨迹的生成方法[J].西安交通大学学报,2004,38(1):64-67.
    [48] Holger Theisel. Are isophotes and reflection lines the same [J]. Computer Aided Geometric Design, 2001, 18(7): 711-722.
    [49] Kim Ku-Jin, Lee In-Kwon. Computing isophotos of surface of revolution and canal surface [J]. Computer-Aided Design, 2003, 35(3): 215-223.
    [50] Yin Zhongwei, Jiang Shouwei, et al. Iso-phote based adaptive surface fitting to digitized pointsand its applications in region-based tool path generation , slicing and surface triangualtion,Computers in Industry,2004, 55(1): 15-28.
    [51]孟书云.高精度开放式数控系统复杂曲线曲面插补关键技术研究[D].南京:南京航空航天大学,2006.
    [52]刘洪泳.四轴伺服运动控制卡的研制[D].南京,南京航空航天大学,2004.
    [53]杜君文,邓广敏.数控技术[M].天津,天津大学出版社,2002.
    [54]廖效果.数控技术[M].武汉,湖北科学技术出版社,2000.
    [55]张春良.基于时间分割法的DDA圆弧插补算法的改进[J].机械工艺师,2000,(5):28-29.
    [56]詹冰,周云飞,周济.五轴数控机床空间圆弧插补[J].华中理工大学学报,2000,28(5):4-6.
    [57]罗欣,李光斌,朱涵梁.时间分割法抛物线插补算法研究[J].华中理工大学学报,1994,22(7):49-53.
    [58]叶伯生,杨叔子.任意三维抛物线的一种高速插补方法[J].华中理工大学学报,1996,24(11):15-17.
    [59]徐海银,陈幼平,周祖德.CNC系统中空间抛物线的五坐标迭代插补法[J].华中理工大学学报,1998,26(4):50-52.
    [60]秦开怀.CNC系统中任意三维椭圆弧的高速插补新方法[J].华中理工大学学报,1992,20(6):7-12.
    [61]冉树成,曲长虹,刘义翔.数控系统中椭圆插补功能的研究与实现[J].组合机床与自动化加工技术,1995,(5):18-21.
    [62]王幼民,杨国太.Bézier曲线插补法在CNC系统中的应用[J].机电工程,2000,17(6):45-47.
    [63]邓勇.B样条曲线的实时插补[J].机械与电子,2001,(4):23-24.
    [64]邓亚洲.非均匀B样条曲线的插补算法[J].华中科技大学学报,2001,20(4):69-71.
    [65] Bahr Behnam, Xiao Xiaomao, Krishnan Krishnan. A real-time scheme of cubic parametric curve interpolation for CNC systems [J]. Computer in industry, 2001, 45(3): 309-317.
    [66]张伟.CNC系统中任意空间曲线的插补方法[J].机械,2002,29(2):36-37.
    [67] Daniel C, Yang H, Kong T. Parametric interpolator versus linear interpolator for precision CNC machining [J]. Computer-Aided Design, 1994, 26(3): 225-233.
    [68] Xu Zhiming, et al. Performance evaluation of a real-time interpolation algorithm for NURBS curves [J]. International Journal of Advanced Manufacturing Technology, 2002, 20(4): 270-276.
    [69] Sotiris L, Omirou. Space curve interpolation for CNC machines [J]. Journal of Materials Processing Technology, 2003, 141(3): 343-350.
    [70]李国龙.复杂曲面高效数控加工的关键技术研究与实现[D].重庆,重庆大学,2001
    [71]郭新贵,李从心.S曲线加减速方法研究[J].机床与液压,2002,(5):60-62.
    [72] Inaba H. Method and apparatus for controlling the acceleration and deceleration of a movable element without abrupt changes in motion [P], U.S. Patent 4555758, 1985, Nov 26.
    [73] Khalsa D K. High performance motion control trajectory commands based on the convolution integral and digital filtering [C]. Proceedings of the Internatonal Intelligent Motion, 1990: 54-61.
    [74]高成秀,刘在德.NURBS曲线插补算法的研究[J].制造业自动化,2006,28(8):27-32.
    [75] Yong Tsehaw, Ranga Narayanaswami. A parametric interpolator with confined chord errors, acceleration and deceleration for NC machining [J]. Computer-Aided Design, 2003, 35(13): 1249-1259.
    [76]陈绍平.三次NURBS插值与应用[J].机械科学与技术,2001,20(5):692-694.
    [77] MCX314 user’s manual. NOVA Electronics Inc, Japan.
    [78]张威,赵东标.基于DSP的位模式插补算法研究[J].机械科学与技术,2008,27(11):1320-1323.
    [79]刘和平,王位俊,江渝,邓力等.TMS320LF240X DSP C语言开发应用[M].北京,北京航空航天大学出版社,2003.
    [80]陈友东,王田苗,魏洪兴等.数控系统的直线和S形加减速研究[J].中国机械工程, 2006,17(15):1600-1604.
    [81]季国顺,王文,陈子辰,数控系统参数曲线加工最大进给速度选择[J].农业机械学报,2007,38(7):199-201.
    [82]任锟,傅建中,陈子辰.高速加工中速度前瞻控制新算法研究[J].浙江大学学报(工学版),2006,40(11):1985-1988.
    [83] Mint MT application reference, http://www.baldor.com, 2003, 10: 10-15.
    [84]汤志斌,唐小琦.数控高速高精运动控制方法的研究[J].制造技术与机床,2003,(3):30-36.
    [85]张莉彦,邱辉,王奎升.列表点曲线数控加工方法的分析与研究[J].机械制造与自动化,2004,33(4):82-85.
    [86]张威,赵东标.一种位插补数据生成算法以及位插补误差分析[J].小型微型计算机系统,2009,30(8):1689-1692.
    [87]张威,赵东标,刘凯.位模式插补以及位插补速度控制算法研究[J].计算机集成制造系统,2009,15(4):762-766.
    [88]黄翔,曾荣,岳伏军,廖文和.NURBS插补技术在高速加工中的应用研究[J].南京航空航天大学学报,2002,34(1):82-85.
    [89]赵国勇,徐志祥,赵福令.高速高精度数控加工中NURBS曲线插补的研究[J].中国机械工程,2006,17(3):291-294.
    [90]赵彤,吕强,张辉,杨开明.三次均匀B样条曲线高速实时插补研究[J].计算机集成制造系统,2008,14(9):1830-1836.
    [91]徐绍华,田新诚,方磊.三次B样条参数曲线插补算法及其特性分析[J].机电一体化,2007,13(6):70-72.
    [92]郑金兴,张铭钧,孟庆鑫.适于高速加工的五次参数样条曲线插补及其速度生成算法的研究[J].哈尔滨工程大学学报,2007,28(7):795-801.
    [93] Farouki Rida T, Han Changyong, et al. Rational approximation schemes for rotation-minimizing frames on Pythagorean-hodograph curves [J]. Computer Aided Geometric Design, 2003, 20(7): 435-454.
    [94] Farouki Rida T, Tsai Yi-Feng, et al. Contour machining of free form surfaces with real-time PH curve CNC interpolators [J]. Computer Aided Geometric Design, 1999, 16(1): 61-76.
    [95] Farouki Rida T, Tsai Yi-Feng, et al. Exact Taylor series coefficients for variable-feedrate CNC curve interpolators [J]. Computer-Aided Design, 2001, 33(2): 155-165.
    [96]董伯麟,王治森,韩江.高速高精度加工中NURBS曲线混合插补算法[J].农业机械学报学报,2008,39(6):174-178.
    [97]谢叻,周儒荣,阮雪榆.自由曲面参数加工算法[J].模具技术,2000,(1):62-64.
    [98]沈建新,平雪良.数控加工中参数线刀具轨迹生成方法的研究[J].CAD/CAM与制造业信息化,2002,(1):30-31.
    [99]谢叻,周儒荣,阮雪榆.自由曲面自适应投影法精加工刀轨生成[J].上海交通大学学报,2000,34(10):1383-1384.
    [100]王孜孜,安鲁陵,徐啸峰,周来水.截平面法加工刀轨算法的研究与实现[J].计算机辅助工程,2000,9(3):33-38.
    [101]刘丽琴,阎献国.自由曲面等粗糙度数控加工刀具路径规划[J].太原重型机械学院学报,2003,24(3):173-176.
    [102]周济,周艳红.数控加工技术[M].北京:国防工业出版社,2002.
    [103] Dragomatz D, Mann S. A classified bibliography of literature on NC milling path generation [J]. Computer-Aided Design, 1997, 29(3): 239-247.
    [104]刘雄伟.数控加工理论与编程技术[M].北京:机械工业出版社, 2000.
    [105] Choi B K, Park J W, Jun C S. Cutter-location data optimization in 5-axis surface machining [J]. Computer Aided Design, 1993, 25(6): 377-386.
    [106] Marciniak K. Influence of surface shape on admissible tool position in 5-axis face milling [J]. Computer Aided Design, 1987, 19(5): 233-236.
    [107] Li S X, Jerard R B. 5-axis machining of sculptured surfaces with a flat-end cutter [J]. Computer Aided Design, 1994, 26(3): 165-178.
    [108] Lee Y S, Chang T C. Machined surface error analysis for 5-axis machining [J]. International Journal of Production Research, 1996, 34(1): 111-135.
    [109] Lee Y S, Ji H. Surface interrogation and machining strip evaluation for 5-axis CNC die and mold machining [J]. International Journal of Production Research, 1997, 35(1): 225-252.
    [110] Lee Y S. Non-isoparametric tool path planning by machining strip evaluation for 5-axis sculptured surface machining [J]. Computer-aided Design, 1998, 30(7): 559-570.
    [111] Lee Y S. Admissible tool orientation control of gouging avoidance for 5-axis complex surface machining [J]. Computer-aided Design, 1997, 29(7): 507-521.
    [112] Lee Y S, Chang T C. Automatic cutter selection for 5-axis sculptured surface machining [J]. International Journal of Production Research, 1996, 34(4): 977-998.
    [113] Manivannan A, Chirila M, Giles N C, Seehra M S, Lo C–C. Efficient cutter-path planning for five-axis surface machining with a flat-end cutter [J]. Computer-Aided Design, 1999, 31(9): 557-566.
    [114] Sarma R. Flat-end tool swept sections for five-axis NC machining of sculptured surfaces [J]. ASME Journal of Manufacturing Science and Engineering, 2000, 122: 158-165.
    [115] Rao A, Sarma R. On local gouging in five-axis sculptured surface machining using flat-end tools [J]. Computer-Aided Design, 2000, 32(7): 409-420.
    [116]王小椿,吴序堂,李燕斌.密切曲率法——一种自由曲面加工的新概念[J] .西安交通(大学学报,1992,26(5):51-58.
    [117] Wang Xiaochun, Li Yanbin, Ghosh S K, et al. Curvature catering——a new approach in manufacture of sculptured surfaces(Part1. Theorem) [J]. Journal of Materias Processing Technology, 1993, 38(1/2): 177-194.
    [118] Wang Xiaochun, Li Yanbin, Ghosh S K, et al. Curvature catering——a new approach in manufacture of sculptured surfaces(Part2. Methodology) [J]. Journal of Materias Processing Technology, 1993, 38(1/2): 177-194.
    [119]李志强,陈五一.四坐标精密加工大型曲面中的刀位优化[J].中国机械工程,2005,16(4):311-314.
    [120]段正澄,喻道远,邓建春.空间自由曲面非球面刀加工轨迹自动生成新原理和计算方法[J].机械工程学报,1994,30(6):21-26.
    [121]喻道远,段正澄,钟建琳等.空间自由曲面平头立铣刀数控编程过程中过切干涉的处理及算法[J].机械,1997,24(3):22-24.
    [122] Ding S, Mannan M A, Poo A N. Oriented bounding box and octree based global interference detection in 5-axis machining of free-form surfaces [J]. Computer-Aided Design, 2004, 36(13): 1281-1294.
    [123]杨勇生.数控加工编程中刀具干涉的研究现状及存在的问题[J].计算机辅助工程,1999,(4):41-47.
    [124] Ji Seon Hwang, Chang T–C. Three-axis machining of compound surfaces using flat and filleted endmills [J]. Computer-Aided Design, 1998, 30(8): 641-647.
    [125]詹泳,周艳红,周云飞.带倒角平底刀曲面加工无干涉刀具轨迹生成[J].中国机械工程,1998,9(9):25-28.
    [126]彭芳瑜,周云飞,周济.复杂曲面的无干涉刀位轨迹生成[J].华中科技大学学报,2002,30(2):1-4.
    [127] Lee Y S, Chang T C. 2-phase approach to global tool interference avoidance in 5-axis machining [J]. Computer-Aided Design, 1995, 27(10): 715-729.
    [128] Tseng Yuan-Jye, Joshi S. Determining feasible tool-approach directions for machining Bézier curves and surfaces [J]. Computer-Aided Design, 1991, 23(5): 367-379.
    [129]谭光宇,袁哲俊,姚英学.加工过程碰撞干涉的矢量法检验[J].中国机械工程,1995,10(5):513-515.
    [130] Hemmet J G, Fussell B K, Jeard R B. Automatic five-axis CNC feed selection vis discrete mechanistic geometric and machine model integration. Machining inpossible shapes [C]. Proceedings of International Conference on Sculptured Surface Mchining, Michigan, USA, 1998: 138-146.
    [131]陈汉军,廖文和,周儒荣.雕塑曲面五轴加工的碰撞处理[J].计算机辅助工程,1997,(1):19-24.
    [132] Morishige K, Takeuchi Y. Tool path generation using C-space for 5-axis control machining [J]. Journal of Manufacturing Science and Engineering, 1999, 121(1): 144-149.
    [133] Balasubramaniam M, Sarma S, Marciniak K. Collision-free finishing toolpaths from visibility data [J]. Computer-Aided Design, 2003, 35(4): 359-374.
    [134] Choi B K, Kim K H, Jeard R B. C-space approach to tool path generation for die and mould machining [J]. Computer-Aided Design, 1997, 29(9): 657-669.
    [135] Jun C S, Cha K, Lee Y S. Optimizing tool orientations for 5-axis machining by configuration-space search method [J]. Computer-Aided Design, 2003, 35(6): 549-566.
    [136] Gupta P Gupta, Janardan R, Majhi J, et al. Efficient geometric algorithm for workpiece orientation in 4- and 5-axis NC machining [J]. Computer-Aided Design, 1996, 28(8): 577-587.
    [137] Woo T C. Visibility maps and spherical algorithms [J]. Computer-Aided Design, 1994, 26(1): 6-16.
    [138] Jimenez P, Torras C. Reducing feasible contracts between polyhedral models to red-blue intersections on the sphere [J]. Computer-Aided Design, 2003, 35(7): 693-705.
    [139] Wang W P. Three-dimensional collision avoidance in production automation [J]. Computers in Industry, 1990, 15(3): 169-174.
    [140] Balasubramaniam M, Laxmiprasad P, Sarma S. Generating 5-axis NC roughing paths directly from a tessellated representation [J]. Computer-Aided Design, 2000, 32(4): 261-277.
    [141] Elber G. Accessibilit in 5-axis milling environment [J]. Computer-Aided Design, 1994, 26(11): 796-802.
    [142] Elber G, Cohen E. A unified approach to verification in 5-axis freeform milling environments [J]. Computer-Aided Design, 1999, 31(13): 795-804.
    [143] Chan C K, Tan S T. Determination of the minimum bounding box of an arbitrary solid: an iterative approach [J]. Computers and Structures, 2001, 79(15): 1433-1449.
    [144] Gregory A, Lin M C, Gottschalk S, et al. Fast and accurate collision detection for haptic interaction using a three degree-of-freedom force-feedback device [J]. Computational Geometry, 2000, 15(1/2/3): 69-89.
    [145] Lo C–C. Efficient cutter-path planning for five-axis surface machining with a flat-end cutter [J]. Computer-Aided Design, 1999, 31(9): 557-566.
    [146]杨长祺,贾维,刘海江.多轴机床加工复杂自由曲面的刀底干涉避免[J].机械工程学报,2006,42(6):174-178.
    [147]陈鼎宁,王乾廷,陈文哲.汽车玻璃钢化风栅成形器五轴加工刀轴矢量插值[J].中国机械工程,2006,17(20):2113-2117.
    [148] Ho M C, Hwang Y R. Five-axis tool orientation smoothing using quaternion interpolation algorithm [J]. International Journal of Machine Tools and Manufacture, 2003, 43(12): 1259-1267.
    [149]姬俊锋,周来水,安鲁陵,李桂东.一类开式整体叶轮五坐标数控加工刀轴矢量生成及其光顺方法的研究[J].中国机械工程,2009,20(2):202-206.
    [150]孙全平.高速铣削数控编程基础算法的研究与实现[D].南京:南京航空航天大学,2005.
    [151]陈劲松.NUM数控系统在五轴插补上的特点[J].制造技术与机床,2006,(6):54.
    [152]刘宏.复杂曲面多轴数控加工非线性误差理论分析及控制[J].组合机床与自动化加工技术,2003,(12):66-68.
    [153] Yoshimi Takeuchi, Takahiro Watanabe. Generation of 5-axis control collision-free tool path and postprocessing for NC data [J]. Annals of the CIRP, 1992, 41(1): 539-542.
    [154]张健,赵福令,杨连文,吕凤民.五轴数控加工后处理关键技术分析与实现[J].机床与液压,2007,35(1):65-68.
    [155] Bohez E L J. Compensating for systematic errors in 5-axis NC machining [J]. Computer-Aided Design, 2002, 34(5): 391-403.
    [156] Ramesh R, Mannan M A, Poo A N. Error compensation in machine tools—a review: Part I: geometric, cutting-force induced and fixture-dependent errors [J]. International Journal of Machine Tools and Manufacture, 2000, 40(9), 1235-1256.
    [157]范冬青,张洪.曲面数控加工中的非线性误差[J].机械设计与制造,2004,(4):35-37.
    [158]王丹,陈志同,陈五一.五轴加工中非线性误差的检测和处理方法[J].北京航空航天大学学报,2008,34(9):1003-1006.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.