复杂整体叶轮数控加工关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
整体叶轮是航空发动机和各类透平机械的关键部件,随着发动机性能要求的提高,整体叶轮的形状也更趋复杂,其特点是:叶片薄,扭曲大,叶片间隔小。这给整体叶轮的制造加工带来了极大的困难。五坐标数控铣削加工柔性好,加工效率高,适用广泛,是整体叶轮加工常用的方法之一。
     本文研究了整体叶轮五坐标数控加工中的一些关键技术。以一类开式整体叶轮为例,提出了一套适合于整体叶轮数控加工编程的核心算法,解决了一些关键技术问题。论文主要内容及成果如下:
     研究了五坐标数控加工编程基础算法。分析了五坐标数控加工中非线性误差产生的原因,建立了适用于五坐标数控加工的非线性误差计算模型。针对五坐标数控加工中刀轴矢量的转动会产生非线性误差及刀轴矢量受机床转动行程限制的问题,提出了满足允许加工误差的五坐标数控加工刀具轨迹计算方法。提出了一种五坐标数控编程过程中刀轴矢量平滑处理方法:根据刀轨特征,在一条刀具路径上设置数个无干涉关键刀轴矢量,通过两阶段三次B样条函数插值,建立平滑过渡刀轴矢量函数,将刀轴矢量与刀具路径上的刀位点一一对应起来,实现了刀轴矢量的平滑过渡。改进弦截法计算走刀步长,获得刀位数据。
     研究了裁剪曲面叶片刀具轨迹计算方法。首先根据裁剪曲面叶片特征,将裁剪后叶片曲面参数域重新映射到一个规范化参数域,从而可以在该规范化参数域上方便地规划与叶片边界相匹配的刀具轨迹。在此基础上,根据自由曲面叶片点铣加工要求,提出了满足允许加工误差的等参数螺旋刀具轨迹计算方法。提出了整体叶轮数控加工无干涉平滑过渡刀轴矢量计算方法。选取叶片若干截面等参线,在每个截面等参线上的关键位置设置指向流道开口处的无干涉关键刀轴矢量并建立平滑过渡刀轴矢量函数,然后沿叶高参数方向再进行插值,最终得到整体叶轮无干涉平滑过渡刀轴矢量。提出了整体叶轮叶片数控加工刀具进给速度平滑处理方法。针对叶片前后缘处曲率大、刀轴矢量转角大、加工质量难以保证的问题,提出对叶盆、叶背加工进给速度采用S型曲线规划,实现了叶盆、叶背及前后缘加工进给速度的平滑过渡,同时实现了刀轴矢量转动速度的平滑过渡,有利于提高叶片加工质量。
     研究了整体叶轮叶片粗加工刀轨计算方法。根据整体叶轮干涉碰撞情况,给出了两种母线生成方式。以叶片截面偏置线为准线,得到整体叶轮叶片粗加工刀轨直纹驱动面,最终计算得到整体叶轮叶片粗加工刀轨。提出了一种整体叶轮轮毂曲面刀具轨迹计算方法:根据轮毂曲面特征,在保证残留高度满足允许加工误差前提下,首先计算出所需刀具轨迹数目,然后推导出轮毂曲面刀触点轨迹的参数方程,以此为依据计算轮毂曲面加工刀轨。针对整体叶轮的变半径叶根圆角曲面,根据该曲面成型原理,可计算得到叶根圆角曲面的最小曲率半径,由此可选择加工刀具。在其基础上,结合曲面几何条件及加工要求计算得到叶根圆角曲面的加工刀轨。
     采用本文提出的一系列关键技术,在UGNX4.0平台上开发了整体叶轮数控加工专用编程模块。采用该软件模块对某企业整体叶轮零件编制了数控加工程序,并进行了加工试验。加工试验表明本文的研究成果是可行有效的。
The integral impeller is the key part of the aero engine and all kinds of turbine machine. With the increase of the engine capability, the integral impeller becomes more and more complex. The blade becomes thinner and more twisted and the tunnel is narrower. This brought the manufacture of the impeller more barriers. The 5-axis NC machining is flexible, efficient and widely adopted. So it is one of the frequently used manufacturing methods of the integral impeller.
     This thesis investigates the 5-axis NC machining technique of the integral impeller. Taking an open integral impeller as an example, a set of key algorithms for the integral impeller NC programming is proposed and some key techniques are resolved. The main content and the research result of this thesis are as follows:
     The foundation algorithms of the 5-axis NC programming are investigated. The peculiar non-linear error in the 5-axis NC machining is analyzed and the non-linear error computation model for general 5-axis NC machines is proposed. Due to the non-linear error in the 5-axis NC machining and the limitation to the tool orientation range by the real NC machine, the tool path computing method for the 5-axis NC machining with meeting the prescribed tolerance is proposed. The smoothing technique of the tool orientations in the 5-axis NC programming is proposed. With considering the tool path character, several key tool orientations are set at a tool path. By the two-phrase interpolation technique, the smooth tool orientation function is built. With this function, the tool orientation and the CL point at the tool path are associated and the smoothed tool orientations are achieved. Finally, the improved secant method is adopted to compute the tool step and the CL files can be obtained.
     The planning method for the trimmed blade surface is studied. According to the character of the trimmed blade, the remained parameter field is mapped to a normalized one and it is convenient to plan the tool path according the normalized parameter field. Based on the proposed method, the algorithm of the error-meeting isoparamter spiral tool path is presented with adopting the point milling method. The computation method of the integral impeller tool orientations is proposed. Several isoparamter curves along the section direction are selected. The interference-free key tool orientations pointing to the opening of the tunnel at each isoparamter curve are set and the smooth tool orientation function is built. The interpolation along the radial direction of the blade is taken and the global smoothed tool orientations of the integral impeller can be obtained. Due to the large curvature and the rotation angle of the tool orientation around the edges of the blade, it is difficult to ensure the machining quality. The S-shape federate-setting method is proposed to set the federate and the tool transits from the middle of the blade to the edges smoothly and the tool orientation rotating speed is also smoothed. This can increase the quality of the machining of the blade.
     The rough machining tool path computation method of the blade of the integral impeller is studied. According to the interference of the integral impeller, two kinds of generatrix computation method are given. The offset of the blade section is taken as the directrix and the ruled driven surface for the rough machining of the blade of the integral impeller is constructed. With the ruled surface, the rough machining tool path can be gained. One tool path planning method for the NC machining of the hub of the integral impeller is proposed. According to the feature of the hub, the number of the tool path is obtained and the parameter function of the CC tool path is deduced with the scallop under the specified error. The tool path planning method for the variable radii bend surface is studied. According to the feature of the variable radius bend surface, the minimal bending radius is obtained and the machining tool can be selected. Then, the toolpath of the bend surface can be obtained with considering the geometric conditions and the machining demand.
     The customized programming modular embedded in UGNX4.0 for the NC machining of the integral impeller is developed by the UPopen apis with the proposed techniques in this thesis. The NC programs are obtained with the modular and applied to the machining test of an integral impeller. The machining test shows that the proposed techniques are validated.
引文
[1]陈晧晖,刘华明,李刚,等.复杂曲面叶轮CAD/CAM一体化系统开发.航天制造技术,2004,(2):26~29
    [2]吴宝海,王尚锦.自由曲面叶轮的四坐标数控加工研究.航空学报,2007,28(4):993~998
    [3]黄春峰.现代航空发动机整体叶盘及其制造技术.航空制造技术,2007,4:1~8
    [4] A.J.格拉兹曼.涡轮设计与应用.北京,国防工业出版社,1982
    [5]吕程辉.整体叶轮的五轴高速铣削加工工艺优化[硕士学位论文].上海,同济大学,2007
    [6]陈晧晖,刘华明,孙春华.国内外叶轮数控加工发展现状.航天制造技术,2002,(2):45~48
    [7]康敏,徐家文.整体叶轮精密展成电解加工技术.农业机械学报,2006,37(7):208~210
    [8]任军学,张定华,史耀耀,田荣鑫.离心叶轮的小摆角五坐标数控加工方法研究.机械科学与技术,2004,23(3):332~335
    [9] W. Ferry, D. Yip-Hoi. Cutter-workpiece engagement calculations by parallel slicing for five-axis flank milling of jet engine impellers. Journal of Manufacturing Science and Engineering, 2008, 130(5):051011-(1~12)
    [10] H. T. Young, L. C. Chuang. An integrated machining approach for a centrifugal impeller. International Journal of Advanced Manufacturing Technology, 2003, 21(8):556~563
    [11]陈良骥,王永章.整体叶轮五轴侧铣数控加工方法的研究.计算机集成制造系统,2007,13(1):141~146
    [12] Y. Jae. Woong, J. Yongtae, P. Sehyung. Interference-free tool path generation in five-axis machining of a marine propeller. International journal of production research, 2003, 41(18):4383~4402
    [13] P. Sehyung, J. Yongtae. Tool path generation for 5-axis machining of an impeller. Proceedings of the Japan/USA Symposium on Flexible Automation, 1999, 1: 729
    [14] H. K. Tonshoff. Optimal tool position for five-axis flank milling of arbitrary shaped surface, Nils Rackow 1999
    [15]蔡永林,席光,樊宏周,等.任意曲面叶轮五坐标数控加工刀具轨迹生成.西安交通大学学报,2003,37(1):77~80
    [16]于源,貟敏,王小椿.整体叶轮五轴粗加工多级刀位规划的计算方法.西安交通大学学报,2002,36(1):39~42
    [17] K. Morishige, Y. Takeuchi. 5-axis control rough cutting of an impeller with efficiency and accuracy. International Conference on Robotics and Automation, Albuquerque, New Mexico, April, 1241~1246, 1997
    [18] H. T. Young, L. C. Chuang, K. Gerschwiler. A five-axis rough machining approach for a centrifugal impeller. International Journal of Advanced Manufacturing Technology, 2004, 23: 233~239
    [19] Shangliang Chen, Wentsai Wang. Computer aided manufacturing technologies for centrifugal compressor impellers. Journal of Materials Processing Technology, 2001,115:284~293
    [20]刘维伟,张定华,史耀耀,等.航空发动机薄壁叶片精密数控加工技术研究.机械科学与技术,2004,23(3):329~331
    [21] Northern research and engineering corporation. Cutter-path generation for 5-axis flank milling of turbomachinery components, 2000
    [22]于源.径向叶轮类零件五轴数控加工软件IUMCAM的研制[博士学位论文].西安,西安交通大学,2003
    [23]仵高升.叶片类零件多轴数控加工中的刀位计算及程序优化研究[硕士学位论文].西安,西北工业大学,2004
    [24]张学超.闭式整体叶轮切触点规划及刀轴矢量研究[硕士学位论文].西安,西北工业大学,2004
    [25]任军学,张定华,王增强,等.整体叶盘数控加工技术研究.航空学报,2004,25(2):205~208
    [26]刘骁,张定华,白瑀.叶片高速铣多轴编程技术的研究.机床与液压,2006,2:59~61
    [27]白瑀.叶片类零件高质高效数控加工编程技术研究[博士学位论文].西安,西北工业大学,2004
    [28]仵高升,卜昆,单晨伟,等.叶片螺旋铣加工刀位计算研究.机床与液压,2006,4:67~69
    [29]丁凡.喷推叶轮五轴数控加工方法的研究与实现[硕士学位论文].北京,北京航空航天大学,2004
    [30]陈晧辉.复杂叶轮曲面的CAD/CAM技术研究[硕士学位论文].哈尔滨,哈尔滨工业大学,1999
    [31]马晓嘉.五坐标数控加工整体叶轮的CAD/CAM[硕士学位论文].大连,大连理工大学,2005
    [32]杨显惠.采用逆向工程对叶轮的建模及其数控加工的研究[硕士学位论文].哈尔滨,哈尔滨工程大学,2006
    [33]何道贵.透平叶轮数控加工.计算机辅助设计与制造,2000,(3):11~14
    [34] Guimu Zhang, Chao Yu, Shirong Chen, et al. Experimental study on the milling of thin parts of titanium alloy(TC4). Journal of Materials Processing Technology,2003,138(1): 489~493
    [35] S. Ratchev, S. Nikov, I. Moualek. Material removal simulation of peripheral milling of thin wall low-rigidity structures using FEA. Advances in Engineering Software,2004, 35 (8-9):481~491
    [36]郑联语,汪叔淳.薄壁零件数控加工工艺质量改进方法.航空学报,2001,22(5):424~428
    [37]董辉跃,柯映林.铣削加工中薄壁件装夹方案优选的有限元模拟.浙江大学学报,2004,38(1):17~21
    [38] J. Tlusty, S. Smith, J. Badrawy, et al. Design of a high speed milling machine for aluminum aircraft parts. ASME 1997 International Mechanical Engineering Congress, Dallas, TX, November 1997
    [39] S. Smith, D. Devrak. Tool path strategies for high speed milling aluminum workpiece with thin webs. Mechatronics,1998,(8): 291~300
    [40] C. H. Chu,J. T. Chen.Five-axis flank machining of ruled surfaces with developable surface approximation.Proceedings of the Ninth International Conference on Computer Aided Design and Computer Graphics,2005,Hong Kong:238~246
    [41] X. W. Liu. Five-axis NC cylindrical milling of sculptured surfaces. Computer-Aided Design, 1995, 27(12):887~894
    [42]刘雄伟,张定华.数控加工理论与编程技术.机械工业出版社,1994
    [43] C. Menzel, S.Bedi, S. Mann. Triple tangent flank milling of ruled surfaces. Computer-Aided Design, 2004, 36(3):289~296
    [44] C. Lartigue, E. Duc, A. Affouard. Tool path deformation in 5-axis flank milling using envelop surface. Computer-Aided Design, 2003, 35(4):375~382
    [45]赖天琴,李峰,孔德治,等.计算机辅助加工直纹面的新方法.西安交通大学学报,1996,30(2):61~68
    [46]陈晧晖,刘华明,孙春华.发动机叶轮侧铣数控加工方法及误差计算.机械工程学报,2003,37(7):143~145
    [47] D. M. Tsay, M. J. Her. Accurate 5-axis machining of twisted ruled surfaces. Journal of Manufacturing Science and Engineering, 2001, 123(4):731~738
    [48] G. Elber,E. Cohen. Tool path generation for freeform surface models. Computer-Aided Design, 1994, 26(6):490~496
    [49] Y. Huang,J. H. Oliver. Non-constant parameter NC tool path generation on sculptured surfaces. The International Journal of Advanced Manufacturing Technology, 1994, 9(5):281~290
    [50]刘槐光,闫光荣,陈言秋.组合曲面的空间环切等距加工.工程图学学报,2002,23(1):1~8
    [51] B. H. Kim, B. K. Choi.Guide surface based tool path generation in 3-axis milling:an extension of the guide plane method. Computer-Aided Design, 2000, 32(3):191–199
    [52] S. G. Lee, H. C. Kim, M. Y. Yang. Mesh-based tool path generation for constant scallop-height machining. The International Journal of Advanced Manufacturing Technology, 37(1-2):15~22
    [53]陈汉军,廖文河,周儒荣.一种新的五轴加工干涉出来算法.航空学报,1996,17(7):416~420
    [54] G. Elber, E. Cohen. Au nified approach to verification in 5-axis freeform milling environment. Computer-Aided Design, 1999, 31(13):795~804
    [55] S. Ho, S. Sarma, Y. Adachi. Real-time interference analysis between a tool and an environement. Computer-Aided Design, 2001, 33(13):935~947
    [56]陈文亮,曾建江,李卫国,等.复杂曲面刀具轨迹干涉的消除算法.东南大学学报(自然科学版), 2000, 30(6): 44~46
    [57] Xiaochun Wang, Yuan Yu. An approach to interference-free cutter position for five-axis free-form surface side finishing milling. Journal of Materials Processing Technology, 2002, 123(2):191~196
    [58] J. H. Yoon. H. Pottmann, Y. S. Lee. Locally optimal cutting positions for 5-axis sculptured surface machining. Computer-Aided Design, 2003, 35(1):69~81
    [59]蔡永林,孙卫青,姜虹.叶轮数控加工中的干涉检查.中国机械工程,2007,18(19):2287~2290
    [60]刘华明.整体叶轮加工关键技术的研究及软件开发[博士学位论文].哈尔滨,哈尔滨工业大学,2003
    [61] D. K. Jang, J. K. Shin, H. K. Lee, et al. A study on tool path generation for machining impellers with 5-axis NC machining. Asia-Pacific Forum on PSFDT , 2003:253~261
    [62] G. Madhavulu,S. A. Sundar,B. Ahmed. CAD/CAM solutions for efficient machining of turbo machinery components by sturz milling method. IEEE 22nd International Conference on Industrial Electronics, Control, and Instrumentation,1996,3:1490~1495
    [63] Y. Keun Choi, A.Banerjee. Tool path generation and tolerance analysis for free-form surfaces. International journal of machine tools & manufacture, 2007, 47(3-4):689~696
    [64]单晨伟.叶片类零件螺旋铣削切触点轨迹规划问题研究[硕士学位论文].西安,西北工业大学,2004
    [65] S. Makhanov. Optimization and correction of the tool path of the five-axis milling machine. Mathematics and Computers in Simulation, 2007, 75(5-6):231~250
    [66] Q. MENG, J. A. ARSECULARATNE, P. MATHEW. Prediction of the cutting conditions giving plastic deformation of the tool in oblique machining. International journal of machine tools & manufacture, 1998, 38(10-11):1165~1182
    [67]王运巧,梅中义,范玉青.航空薄壁结构件数控加工变形控制研究.现代制造工程,2005,(1):31~33
    [68] N.Baskar, P.Asokan, G.Prabhaharan, et al. Selection of optimal machining parameters for multi-tool milling operations using a memetic algorithm. Journal of Materials Processing Technology, 2006, 174(1-3): 239~249
    [69] N. K JAIN, V. K. JAIN, K. DEB. Optimization of process parameters of mechanical type advanced machining processes using genetic algorithms. International Journal of Machine Tools and Manufacture, 2007, 47(6): 900~919
    [70]艾玲,王亮.三坐标测量叶片型面半径补偿技术的应用与分析.测量与设备,2002,(12):22~24
    [71]贾健明,杨继平,薛亮.整体叶轮的多轴数控加工编程.航天制造技术,2002,(6):3~8
    [72]朱佳生.透平机械制造工艺学.北京,机械工业出版社,1980
    [73]王增强,任军学,田荣鑫.整体叶轮制造毛坯设计原则与设计方法研究.新技术新工艺,2007,(2):35~38
    [74] B. Shen, G.Q. Huang, K.L. Mak. A best-fitting algorithm for optimal location of large-scale blanks with free-form surfaces. Journal of Materials Processing Technology, 2003, 139(1-3):310~314
    [75]赵春光,张凤艳.汽轮机叶片毛坯形式的选取及其加工余量的确定.汽轮机技术,2002,44(4):251~252
    [76]肖波,李彬,罗大新.钛合金整体叶轮的高效加工.计算机应用,2007,(4):52~55
    [77]孙春华,陈晧晖,刘华明.整体叶轮侧铣数控加工刀位轨迹生成新方法. 2000,21,(5):86~88
    [78]武凯,何宁,廖文和,等.薄壁腹板加工变形规律及其变形控制方案的研究.中国机械工程,2004,15(8):670~674
    [79] Y. W. Sun, D. M. Guo, Z. Y. Jia. Spiral cutting operation strategy for machining of sculptured surfaces by conformal map approach. Journal of Material Processing Technology, 2006, 180(1-3):74~82
    [80]武凯,何宁,廖文和,等.阶梯对称铣削工艺在薄壁件精密加工中的应用.航空精密制造技术,2005,41(5):37~38,41
    [81]白瑀,张定华,刘维伟.叶片螺旋铣弹性变形分析.机械科学与技术,2005,24(7):800~802
    [82] J. M. Vaz. On the numerical simulation of machining processes. Journal of the Brazilian Society of Mechanical Sciences,2000,22(2):179-188
    [83] B. K. Jha,A. Kumar. Analysis of geometric errors associated with five-axis machining centre in improving the quality of cam profile. International Journal of Machine Tools and Manufacture,2003,43(6):629~636
    [84] G. Erdos,M. Muller,P. Xirouchakis. Parametric tool correction algorithm for 5-axis machining. Advances in Engineering Software,2005,36(10):654~663
    [85] Y. Y. Hsu,S. S. Wang. A new compensation method for geometry errors of five-axis machine tools. International Journal of Machine Tools and Manufacture,2007,47(1):352~360
    [86] J. H. Lee,Y. Liu,S. H. Yang. Accuracy improvement of miniaturized machine tool: Geometric error modeling and compensation. International Journal of Machine Tools and Manufacture,2006,46(12-13):1508~1516
    [87] S. P. Radzevich. A closed-form solution to the problem of optimal tool-path generation for sculptured surface machining on multi-axis. Mathematical and Computer Modelling, 2006,43(3-4):222~243
    [88] J. C. J. Chiou,Y. S. Lee. Optimal tool orientation for five-axis tool-end machining by swept envelope approach. Journal of Manufacturing Science and Engineering,2005,127(4):810~818
    [89]施法中.计算机辅助几何设计与非均匀有理B样条.北京,北京航天航空人学出版社,1994
    [90]张利波,刘晓云,张日敏.五轴NC加工中的非线性误差分析及补偿.华中理工大学学报,1995,23(2):67~70
    [91]范冬青.曲面数控加工中非线性误差的研究[硕士学位论文].北京,北京航空航天大学,2004
    [92] O. Remus T. Fatan,H. Yung. Feng. Determination of geometry-based errors for interpolated tool paths in five-axis surface machining. Journal of Manufacturing Science and Engineering,2005,127(1):60~67
    [93]吴大中.五轴联动数控加工非线性误差控制及后置处理[硕士学位论文].上海,上海交通大学,2007
    [94]孙全平.高速铣削数控编程基础算法的研究与实现[博士学位论文].南京航空航天大学,2005
    [95] M. Munlin. Errors estimation and minimization for the 5-axis milling machine. IEEE International Conference on Industrial Technology, 2002, Bangkok , Thailand
    [96] Y. Takeuchi, T. Idemura. 5-Axis Control machining and grinding based on solid model. Annals of CIRP, 1991, 40(1):455~458
    [97]周济,周艳红.数控加工技术.国防工业出版社,2002
    [98]赖喜德.叶片式流体机械的数字化设计与制造.四川大学出版社,2007
    [99] H. Edling,D. K. Harrison1,D. Kirkwood1,et al. Addressing surface error problems found when using multiple axis milling for the manufacture of turbine impellers. International Journal of Advanced Manufacturing Technology,2002,19(3):180~185
    [100]彭芳瑜,苏永春,邹孝明,等.大型螺旋桨五轴加工中基于方向包围盒层次树的全局干涉碰撞检测.中国机械工程,2007,18(3):304~307.
    [101] S. Ding, M. A. Mannan, A. N. Poo. Oriented bounding box and octree based global interference detection in 5-axis machining of free-form surfaces. Computer-Aided Design, 2004, 36(13): 1281~1294.
    [102] M. Balasubramaniam, S. Ho, S. Sarma, et al. Generation of collision-free 5-axis tool paths using a haptic surface. Computer-Aided Design, 2002, 34(4);267~279
    [103] O. Ilushin, G. Elber, D. Halperin, et al. Precise global collision detection in multi-axis NC-machining.Computer-Aided Design, 2005, 37(9): 909~920.
    [104]蔡永林,席光,樊宏周,等.曲面5轴加工中全局干涉检查与刀位修正.机械工程学报. 2002,38(9):131~135
    [105] C. S. Juna, K. Cha, Y. S. Lee. Optimizing tool orientations for 5-axis machining by configuration-space search method. Computer-Aided Design,2003,35(6):549~566.
    [106]陈晧晖.整体叶轮加工技术的研究及软件开发[博士学位论文].哈尔滨,哈尔滨工业大学,2003
    [107] M. C. Ho,Y. R. Hwang. Five-axis tool orientation smoothing using quaternion interpolation algorithm. International Journal of Machine Tools and Manufacture,2003,43(12):1259~1267
    [108]陈鼎宁,王乾廷,陈文哲.汽车玻璃钢化风栅成形器五轴加工刀轴矢量插值.中国机械工程,2006,17(20): 2113~2117
    [109] B. Lauwers, P. Dejonghe, J. P. Kruth. Optimal and collision free tool posture in five-axis machining through the tight integration of tool path generation and machine simulation. Computer-Aided Design, 2003, 35(5):421~432
    [110]王宁,唐月红.球面NURBS曲线.南京航空航天大学学报,2001,33(6):596~598
    [111] K Shoemake.Animation rotation with quaternion curves[J]. SIGGRAPH, 1985, 19(3):245~254
    [112] T. A. Foley, D. A. Lane, G. M. Nielson. Visualizing functions over a sphere. IEEE Comput Graphics Appl, 1990, 10(1):32~40
    [113]单晨伟,张定华,刘维伟.带边界约束叶片的螺旋加工轨迹规划.中国机械工程,2004,16(18):1629~1632
    [114] T. Chen, P. Q. Ye. A tool path generation strategy for sculptured surfaces machining. Journal of Materials Processing Technology, 2002, 123(3):369~373
    [115] J. Y. Jung. NC tool path generation for 5-axis machining of free formed surfaces. Journal of Intelligent Manufacturing, 2005, 16(1):115~127
    [116] J. Z. Yang, Q. F. Wang, Z. D. Huang, et al. Tool path generation and tolerance analysis for free-form surfaces. International Journal of Advanced Manufacturing Technology, 2007, 47(3-4):689~696
    [117] Li. Chang. Chuang,H. T. Young. Integrated rough machining methodology for centrifugal impeller manufacturing. Internal Journal of Advanced Manufaturing Technology. 2006,34(11-12):1062~1071
    [118] R. S. Lin,Y. Koren. Efficient tool-path planning for machining free-form surfaces. Journal of engineering for industry,1996,118(1):20~28
    [119]张大卫,张永,阎兵,等.自由曲面数控加工刀具路径的自适应算法.天津大学学报,1997,30(5):607~61
    [120]王玉国.数控雕刻加工关键技术研究[博士学位论文].南京,南京航空航天大学,2007
    [121] H. Li,O. Remus T. Fatan, et al. An improved tool path discretization method for five-axis sculptured surface. International Journal of Advanced Manufacturing Technology,2007,33(9-10):994~1000
    [122]叶伯生,杨书子. CNC系统中三次B-样条曲线的高速插补方法研究.中国机械工程,1998,9(3):42~44
    [123] S. S. Yeh, P. L. Hsu. Adaptive-feedrate interpolation for parametric curves with a confined chord error. Computer-Aided Design, 2002, 34(3):229~237
    [124]张韵华,奚梅成,陈效群.数值计算方法与算法.科学出版社,2006
    [125] S. X. Li,R.B. Jerard. 5-Axis machining of sculptured surfaces with a flat end cutter. Computer-Aided Design,1994,26(3):165~178
    [126] C. H. Chu,J. Ting. Chen. Tool path planning for five-axis flank milling with developable surface approximation. International Journal of Advanced Manufacturing Technology,2006,29(7-8):707~713
    [127] S. Bedi,S. Mannb,C. Menzel. Flank milling with flat end milling cutters. Computer-Aided Design,2003,35(3):293~300
    [128]孔马斌,胡自化,李慧,等.整体叶轮五轴侧铣刀位优化新算法与误差分析.计算机集成制造系统,2008,14(7):1386~1391
    [129] Quan Liang,Yongzhang Wang,Hongya Fu, et al. Cutting path planning for ruled surface impellers. Chinese Journal of Aeronautics,2008,21(5):462~471
    [130]吴宝海,罗明,张莹,等.自由曲面五轴加工刀具轨迹规划技术的研究进展.机械工程学报,2008,44(10)9~18:
    [131] B. K. Choi,J.W. Park,C. S. Jun. Cutter-location data optimization in 5-axis surface machining. Computer-Aided Design,1993,25(6):377–386
    [132] Songlin Ding,D. C.H.Yang,Zhonglin Han. Flow line machining of turbine blades. Proceedings of the 2004 International Conference on intelligent Mechatronics and Automation,Chengdu,China, 2004:140~145
    [133]谢叻,胡建华,周来水,等.裁剪NURBS组合曲面精加工方法.中国机械工程,1999,10(7):742~745
    [134] D. C. H.Yang, J. J. Chuang, T. H. OuLee. Boundary-conformed toolpath generation for trimmed free-form surfaces. Computer-Aided Design,2003,138(1-3):127~139
    [135] D. C. H. Yang, J. J. Chuang, Z. Han, et al. Boundary-conformed toolpath generation for trimmed free-form surfaces via Coons reparametrization. Journal of Materials Processing Technology,2003,138(1):138~144
    [136]蔡永林.任意曲面三元叶轮多坐标数控加工关键技术的研究[博士学位论文].西安,西安交通大学,2002
    [137]杨长祺.复杂曲面多轴加工的高精度、高效率数控编程系统研究[博士学位论文].重庆,重庆大学,2005
    [138]张得礼,周来水.数控加工运动的平滑处理.航空学报,2006,27(1):125~130
    [139] E. Y. Heo,D. W. Kim,B.-H.Kim. Efficient rough-cut plan for machining an impeller with a 5-axis NC machine. International Journal of Computer Integrated Manufacturing,2008,21(8):971~983
    [140]曹利新,马晓嘉.五坐标加工整体叶轮粗加工刀位规划.大连理工大学学报,2008,48(1):68~73
    [141]于源,貟敏,王小椿.整体叶轮五轴粗加工多级刀位规划的计算方法.西安交通大学学报,2002,36(1):39~42
    [142]吴广宽,席光.自由曲面三元叶轮5轴数控粗加工刀位生成算法.西安交通大学学报,2005,39(7):731~734
    [143]胡创国,张定华,任军学,等.开式整体叶轮通道插铣粗加工技术的研究.中国机械工程,2007,18(2):153~155
    [144]王增强,单晨伟,任军学,等.开式整体叶轮四坐标插铣开槽粗加工刀位轨迹规划.航空制造技术,2007,(2):94~97
    [145]李亢,郭连水.透平机叶轮叶片五轴数控粗加工优化方法的研究.航空学报,2006,27(3):505~508
    [146]张定华.多轴NC编程系统的理论、方法和接口研究[博士学位论文].西安,西北工业大学,1989
    [147]姜虹,于源.五轴数控加工叶轮轮毂曲面刀位轨迹的规划.机械传动,2006,30(6):81~84
    [148]叶佩青,陈涛,汪劲松.复杂曲面五坐标数控加工刀具轨迹的规划算法[J].机械科学与技术,2004,23(8):883~886
    [149]第三机械工业部三零一研究所.叶片测量文集.北京:第三机械工业部,1981
    [150]常书易.叶片测量技术.北京:国防工业出版社,1984
    [151]席平,孙肖霞.基于CAD模型的涡轮叶片误差检测系统.北京航空航天大学学报,2008,34(10):1159~1162
    [152]陈福兴.基于UG叶片型面测量分析技术的研究[硕士学位论文].无锡,江南大学,2006
    [153]康敏,徐家文.用三坐标测量机检测整体叶轮叶片型面误差.工具技术,2002,36(8):55~57
    [154]杨策,胡辽平,马朝臣,等.叶片弯曲程度对离心压气机性能的影响.北京理工大学学报,2004,24(12):1062~1065
    [155]盛骤.概率论与数理统计.北京,高等教育出版社,2001
    [156]刘智敏.误差分析理论.北京:原子能出版社,1988
    [157]朱炜.小样本下正态分布可靠度评估方法.质量与可靠性,2006,(6):
    [158]马智博,朱建士,徐迺新.有关正态分布的小样本可靠性评估.核科学与工程,2003,23(4): 332~336
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.