概念车身局部参数化建模与CFD仿真一体化研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高轿车车身开发技术的水平对于提高我国汽车产业的整体核心竞争力有很重要的战略意义。本文应用知识工程的理论到车身设计领域,在深入研究汽车造型和空气动力学的CFD分析的基础上,开展了概念车身局部参数化建模与CFD仿真一体化的方法研究,开发出了一系列基于知识工程的面向CFD分析的概念车身局部参数化设计系统。
     本文在综合评述国内外知识工程、参数化设计及CFD仿真模拟领域研究成果的基础上,进行了概念车身局部参数化建模与CFD仿真一体化的理论研究;结合KBE知识工程和CFD分析前的模型清理和建模的特点,首次提出了面向CFD分析的车身局部参数化的概念,分析了参数化车身结构设计特点,系统阐述了知识驱动的车身零部件的设计方法,这些方法是实现车身结构设计的参数化、自动化和知识化的重要基础。
     以轿车底部模型为研究对象,在UG/NX软件平台上开发出实用性较强的知识驱动的“CAS_CFD地板快速设计模块”,通过CFD的模拟和与实际数据的对比,证明该模块在实际使用中具有较强的实用性和准确性。
     以车轮模型为研究对象,在UG/NX平台上开发了知识驱动的“CAS_CFD轮胎快速成型模块”,将通常的CFD分析所用车轮建模标准化,参数化,使得用户只需要输入轮胎的基本参数(如215/55 R17)即可制作出满足CFD分析的轮胎模型,该系统针对CFD工程师在以往简化车轮模型、几何清理,车轮与地面接触部分特殊处理等问题,使轮胎建模流程简化,缩短建模周期。
     以三厢轿车尾翼(后扰流板)为研究对象,参照尾翼对轿车高速时的影响以及CFD分析的规律,将尾翼与车身装配布置的知识经验与UG/NX软件平台相结合,开发出了“CAS_CFD轿车尾翼快速设计模块”,针对造型需要加装尾翼的车身设计方案和CFD工程师快速建模分析的需要,将尾翼的设计和与车身的装配关系参数化、自动化,使其设计、修改与CFD分析周期大大缩短,提高了车身设计的效率和分析的准确性。
     以车身附件后视镜为研究对象,参照人机工程学相关后视镜视界法规及后视镜对外流场的影响因素,将后视镜布置的经验与UG/NX软件平台相结合,开发出了“CAS_CFD后视镜与车身夹角快速计算模块”。该系统结合空气动力学分析,用于计算满足驾驶员视野的左、右后视镜与车身夹角的快速计算,达到降低气动阻力及提高燃油经济性的目的,提高了车身开发效率,产品设计精度和准确性。
Car body development is a complex iteration of“design—evaluate—modify”. The period of car body development is not only determined by the design speed, but also determined by whether the design can do the right choice in the early design to avoid the future modification and decrease the number of design iterations. The second factor will help the car body design enter one-way highway.
     The research works are supported by the Great Industrialization Project of National Automobile Industry (No.2004-2563) of National Development and Reform Commission“CAD/CAE/CAM Software Platform of Car Body Digital Fine Design and Manufacturing”(FGGJ 2040) and the key project of National 985 Innovation Platform“The Key Technology of Digitalization of Car Body Design and Manufacturing”. And the research is also the important part of“KMAS System of Fast Fine Design, Manufacturing and Analysis of Car Body Structure and Parts”which gained 2007 National Sci-Tech Progress Award (II).
     Based on the achievements in knowledge engineering, parameter designing and CFD simulation areas, this thesis focuses the theories on building model with component’s parameters of concept car body and CFD simulating integration. Using the KBE knowledge engineering and model clearing and building before CFD analyzing, a new concept that building model with component’s parameters is developed for CFD analyzing. And the characteristics of car body structure designing with parameters are analyzed. The method of designing components of car body knowledge driven is introduced theoretically. These are keys in designing car body structure parametrically, automatically and theoretically. Using the fast design method based on designing car components with parameters for CFD analysis, the designers can move many future analysis works to the early period of car body design. The pre-analysis will help the designers find the potential problem and issues and avoid those issues emerged in the later period of design. In this period, the expense is very high for correction and modification to the initial design, so the design process will be delayed greatly. Moreover, the key techniques of fast car body part automatic modeling system are also studied in this paper. Those techniques can make the designers escape from some boring modeling processes and adopt them to more valuable innovation.
     Following techniques are applied in the fast design system of car body and parts.
     1、CAS_CFD Floor Forming
     The CFD analysis is necessary for aerodynamic optimization of car body. A floor model must be cleared and built before CFD simulating and analyzing. The step is necessary and time consuming in the processes of CFD analyzing about car body. In traditional simulating methods, the shape and characteristic of the floor are ignored so that the results of aerodynamic lift are unreliable. This thesis develops“CAS_CFD Floor Fast Design Module”in UG/NX platform. Using the module, the designer can design the floor knowledgeably, parametrically and quickly based on the floor’s shape and characteristic. A floor model is built using this module based on a car body CAS model. And the contrast of this model and traditional model is researched in Fluent software. The simulation results show that the model built in“CAS_CFD Floor Fast Design Module”is reliable and efficient.
     2、CAS_CFD Wheel Fast Design Module
     Wheel shaping is one part of body shaping and in same type. Due to its’variable shapes, the workload of clearing and simplifying wheel model counts about 20% in whole. In traditional ways, the engineers usually trade wheels as simple cylinders to reduce workload. And the shape of wheel rim is ignored too. These often amplify error in calculation. The aerodynamic drag force concerning wheel counts about 30% in whole aerodynamic drag force. So an accurate wheel model that provides fundamental characteristics will greatly increase accuracy of CFD calculation. This thesis develops“CAS_CFD Wheel Fast Design Module”in UG/NX platform to reach the goal. Using this module, the designer can knowledgeably, parametrically and quickly build wheel model that provides fundamental and aerodynamic characteristics. The CFD calculations show that the module is reliable for CFD analyzing and increases the efficiency in designing period.
     3、CAS_CFD Spoiler Forming
     The aerodynamic lift is one of the aerodynamic forces that push on car when car is driving. The aerodynamic lift will damage the car’s safety. To reduce the aerodynamic lift, rear spoiler is an efficient way and it meets the different demands of customers’. In designing and refitting period, the CFD calculations will help designer to decide whether or not the rear spoiler is used. Thesis develops“CAS_CFD Wheel Fast Design Module”in UG/NX platform to reach the goal. A rear spoiler of three-box car is researched in this thesis. Depending on the theories of aerodynamic lift under high speed and CFD analysis, the influences of two parameters, the angle of Spoiler and the distance of Spoiler, are analyzed aerodynamically. And by using the knowledge and experience about body assembly in UG/NX platform, the CFD engineer can design rear spoiler and assemble it parametrically and automatically for model fast building and analyzing. The efficiency and accuracy are increased by using this module.
     4、CAS_CFD Angle between Body and Rearview Mirror Fast Design Module
     The optimal angle between body and rearview mirror, without damaging the driver’s view, can reduce the aerodynamic drag and improve car’s aerodynamic and fuel economy. Based on the theory of driver view designing and national standards, this thesis develops“CAS_CFD Angle between Body and Rearview Mirror Fast Design Module”. By using this module, the designer can design the angle between body and rearview mirror knowledgeably, parametrically and quickly to reduce aerodynamic drag concerning the angle. The CFD calculation and analysis results show that the module is usable and efficient in car body part designing period. And it provides a new idea and a new method in applying knowledge engineering and the theories about CFD to car body part assembly.
     This research is basing on the confederate development with UGS PLM Company (USA). Four car-body-part design modules were developed in UGS NX platform. And all those modules are tested and evaluated by some CAS、CAD and CFD customers.
     The responses from customer show that these modules can help user predict some potential design issues, and correct their design to avoid the emergency of critical problem in later design phase. Fast modeling system will help user escape from some boring manual modeling process and pay more attention to the innovation. More over the KBE technique will help the company capture the design experiment and knowledge of designs, and share those experiment and knowledge in the company.
引文
1. 凌丹,黄水灵,CKD 对中国轿车业的影响及措施,汽车工业研究,2004, 8:36-38。
    2. 孙永伶. 轿车外流场的数值模拟. 同济大学硕士论文. 2001.1
    3. 丁祎,基于 KBE 及 DFM 的概念车身设计方法的研究及专用软件的开发. 吉林大学博士论文. 2004.12
    4. 李春梅. KBE 技术在 UG 中的应用. 中国模具论坛. 2004.6Tibbs HBC. Industrial ecology: an environmental agenda for industry [M]. Arthur D. Little, Inc. 1991.
    5. 刘波. 知识驱动的车身结构设计方法研究及软件系统关键技术开发. 吉林大学博士学位论文. 2007. P16
    6. T.Breiting, E.Jehle, H.Reister,V.Schwarz, Development and Evaluation of a Numerical Simulation Strategy Designed to Support the Eary Stages of the Aerodynamic Development Process,SAE Technical Paper . 2002.01.0571, pp.3-4
    7. Levine R.,AI and expert systerm,CA:McGraw-Hill,1990.
    8. J.A.Penoyer, J.A.Penoyer, G.Burnet, D.J.Fawcet, etc. Knowledge based product life cycle systems: principles of integration of KBE and C3P, Computer-Aided Design, 2000, 32:311-320.
    9. Lomangino Pet al.Pedal: A Knowledge-Based Design Assistance for Automotive Pedal Packaging. ASME. 1998
    10. 裘真. 基于知识的轿车车身内部布置 CAD 系统的开发与应用初探. 吉林工业大学硕士论文.
    11. Consoli F, Allen D, Boustead I, et al. Guidelines for life –cycle assessment: a ‘code of practice’ [M]. Brussels: SETAC, 1993.
    12. 唐建春. 基于知识的车门附件布置设计系统的开发. 吉林大学硕士学位论文. 2002
    13. 程莉. 基于知识的车门附件布置设计系统的集成与应用. 吉林大学硕士学位论文. 2004
    14. 刘春,彭颖红,冲模设计 KBE 技术研究,新技术新工艺,2001,1:31-32。傅立敏. 汽车空气动力学数值计算. 北京: 北京理工大学出版社. 2001.1
    15. 王镝,基于知识的车门布置设计 CAD 系统的初探,吉林工业大学硕士学位论文,1999
    16. Axon L, Garry K, Howell J. An evaluation of CFD for modeling the flow around stationary and rotating wheels[J]. SAE Technical Paper 980032, 1998.
    17. 于德江, 杜平安, 岳萍. 基于 KBE 的智能 CAD 方法研究. 机械设计与制造. 第 9 期. 2007.9. P178
    18. Qijun Xia, Ming Rao. Dynamic case-based reasoning for process operation support system.Engineering application of artificial intelligence. 1999(12): 343-36
    19. 丁良旭,客车总体设计 KBE 系统研究,重庆大学博士学位论文,2004
    20. 王镝,基于知识的车门布置设计 CAD 系统的初探,吉林工业大学硕士学位论文,1999
    21. A Heinz, 777 Rule Based Design: Integrated Fuselage System, Proceeding of International ICAD Users Group, 1996.
    22. M.Blair, S.Hill, T.Weisshaar, Rapid modelling with innovative structural concepts, American Institute of Aeronautics and Astronautics, AIAA-98-1755.
    23. M.Blair, A.Hartong, Multidisciplinary design tools for affordability, American Institute of Aeronautics and Astronautics, AIAA-2000-1378.
    24. 彭昆,雷雨成,基于 UG 平台的汽车总体设计专家系统的开发,上海汽车,1999,11:3-5。
    25. 祁宏钟、雷雨成、孟黎明等,基于 UGⅡ软件的汽车悬架设计开发系统,黄计算机应用与软件,2003,20(7):30-32。
    26. 丁良旭,徐宗俊,郭钢,基于知识工程的客车造型参数化设计研究,汽车技术,2002,11:14-16。
    27. 赵震,面向创新设计理论体系的智能冲压工艺设计 KBE 技术研究,上海交通大学博士论文,2002。
    28. 娄臻亮,刘来英,蒋宏范等,注塑模模架设计 KBE 系统及其智能关键技术,上海交通大学学报,2002,36(4):487-490。
    29. 阮雪榆,赵震,模具的数字化制造技术,中国机械工程,2002,13(22):1891-1893。
    30. 辛勇,黄英勇,赵震,阮雪榆,基于组件对象模型的冲压产品特征识别技术,上海交通大学学报,2003,37(12):1878-1882。
    31. 陈军,石晓祥,赵震,阮雪榆,汽车覆盖件冲压工艺设计 KBE 系统中的知识表示技术,金属成形工艺,2003,21(1):35-37。
    32. 郭春生,汽车大型覆盖件模具,北京:国防工业出版社, 1993:12-15。
    33. 马玉祥,武波,专家系统,电子科技大学出版社,1994。
    34. George Schultz, Chrysler leverages engineering experience with CAD, Managing Automation, 1994, 9(3):42-45.
    35. Liou, Shuh yuan, Knowledge Based Engineering Applications at Ford Motor Company, SAE Professional Development Special Conference-Knowledge Based Engineering, Dearborn, MI, 1997.
    36. James Link, Ken Helberg, Karim Nasr, Design and Development of a Cylindrical HVAC Case, SAE. Technical Paper 2004-01-1385.
    37. Karl M. Willg. On Information, knowledge, understanding, and discontinuity: The need for crisp definitions. Knowledge research institute, Inc. Working Paper 1999.
    38. OECD 著,杨宏进,薛澜译,以知识为基础的经济,北京:机械工业出版社, 1997。
    39. P. Sainter, K. Oldham, A. Larkin, etc., Product knowledge management within knowledge-based engineering systems, Proceedings of DETC’00, ASME 2000 Design Engineering Technical Conference and Computers and information in Engineering Conference, Maryland, 2000, DETC00/DAC-14501.
    40. 彭岳华,徐海峰,雷雨成,基于知识工程的变速箱设计专家系统,机械设计,2003,20(3):50-52。
    41. P. Sainter, K. Oldham, A. Larkin, etc., Product knowledge management within knowledge-based engineering systems, Proceedings of DETC’00, ASME 2000 Design Engineering Technical Conference and Computers and information in Engineering Conference, Maryland, 2000, DETC00/DAC-14501.
    42. 吴宪,基于虚拟设计环境的轿车悬架系统设计平台的研究,同济大学博士后出站报告,2001。The Knowledge Engineering and Management Centre at Coventry University, UK, http://www.kbe.coventry.ac.uk/fqa.html.
    43. MOKA-A Methodology and tools Oriented to Knowledge-based engineering Applications. K. Oldham, S. Kneebone, M. Callot, A. Murton, and R. Brimble. in N. Martensson, R. Mackay and S. Bjorgvinsson, Changing the ways we work. Advances in design and manufacturing, Volume 8. Proceedings of the conference on integration in manufacturing, Goteborg. Sweden. October 1998: 198-207.
    44. MOKA Consortium, MOKA-Methodology & software tools Oriented to knowledge based engineering Applications, CEC ESPRIT proposal EP25418, 1997.
    45. Craig B Chapman, Martyn Pinfold, The application of a knowledge based engineering approach to the rapid design and analysis of an automotive structure, work report, Warwick Manufacturing Group, 2001.
    46. Guihua Li. KBE case studies to illustrate benefits in repetitive and complex engineering programs, Hong Kong: Knowledge based engineering symposium, 2000: 24-42.
    47. J. A. Penoyer, G. Burnett, D. J. Fawcett, S.-Y.Loiu, Knowledge based product life cycle systems: principles of integration of KBE and C3P.
    48. Peng Yinghong, Zhao Zhen, Ruan Xueyu, Application of KBE technology in Die & Mold Design, In: Proceedings of the 1st International Conference on Die and Mold Technology, Beijing, 2000, 80-86.
    49. Peng Yinghong, Zhao Zhen, Ruan Xueyu, KBE technology in Engineering Design, In: Proceedings of International Conference on Engineering and Technological Sciences 2000, Song Jian, Yao Fushen (Eds.), Beijing, 2000, 94-100.
    50. 周雄辉,彭颖红,现代模具设计制造理论与技术,上海:上海交通大学出版社,2000。
    51. 石晓祥,汽车覆盖件工艺智能设计系统关键技术研究,上海交通大学博士学位论文,2001。
    52. 傅立敏. 降低国产轿车阻力的风洞试验研究. 空气动力学学报. 1998.6
    53. U. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy, Advances in knowledge discovery and data mining, Cambridge: MIT Press, 1996.
    54. M. M. Owrang O, F. H. Grupe, Database tools to acquire knowledge for rule-based expert systems, Information and Software Technology, 1997, 39: 607-616.
    55. R. Agrawai, T. Imielinski, Database mining: a performance perspective, IEEE Transactions on Knowledge and Data engineering, 5(6): 914-925.
    56. 郭竹亭,汽车车身设计,长春:吉林科学技术出版社, 1992。
    57. Z. Pawlak, Rough sets, International J. of Computer and Sciences, 1982, 11(5), 341-356.
    58. 娄臻亮,基于模糊的知识系统及其在模具设计中的应用,上海交通大学博士学位论文,1998。
    59. Wong S K M, Ziarko W, On optional decision rules in decision tables, Bulletin of Polish Academy of Sciences, 1985, 33:693-696.
    60. Qiang Sh, Alexios Ch, A modular approach to generating fuzzy rules with reduced attributes for the monitoring of complex systems, Engineering Application of Artificial Intelligence, 2000, 13:263-278.
    61. 赵林亮,王光兴,关系知识表达模式及在智能管理系统中的应用,东北大学学报,1998, 19(3): 272-274。
    62. 傅立敏. 汽车空气动力学数值计算. 北京: 北京理工大学出版社. 2001.1
    63. 陆汝铃,世纪之交的知识工程与知识科学,北京:清华大学出版社, 2001。
    64. Qijun Xia, Ming Rao. Dynamic case-based reasoning for process operation support system. Engineering application of artificial intelligence, 1999(12):343-361.
    65. Brigitte, Bartsch-Sporl. Towards the integration of case-based, schema-based and model-based reasoning for supporting complex design tasks. IEEE conference on AI for applications, 1994, 10: 532-547.
    66. J. Angele, D. Fensel, D. Landes, etc., Development knowledge-based systems with MIKE, Automated Software Engineering, 1998,5:389-418.
    67. R. E. Young, A. Greef, P. O'Grandy, SPARK: an artificial intelligence constraint network system for concurrent engineering, In: Gero,J.(eds.),Proceedings of Artificial Intelligence in Design'91, 1991, UK,79-94.
    68. Dominique Deneux, Xiaohui Wang, A knowledge model for functional re-design, Engineering Application of Artificial Intelligence, 2000, 13:85-98.
    69. R. Studer, V. Richard Benjamins, Dieter Fensel, Knowledge Engineering: Principles and methods, Data & Knowledge Engineering, 1998,25:161-197.
    70. John K. C. Kinston, Designing knowledge based systems: the Common KADS design model, Knowledge-based Systems, 1998, 11:311-319.
    71. Ram D. Sriram, Intelligent systems for engineering - a knowledge-based approach, Springer-Verlag, 1997.
    72. J. Angele, D. Fensel, D. Landes, etc., Model-based and incremental knowledge engineering: the MIKE approach, In J. Cuena (Eds.), Knowledge Oriented Software Design, IFIP Transactions A-27, Netherlands, 1993.
    73. P. D. Karp, K. Myers, and T. Gruber, the Generic Frame Protocol, In: Proceedings of the 1995 International Joint Conference on Artificial Intelligence, 1995, 768-774.
    74. T. D. Stevenson, A project development strategy, In: Proceedings of the European CAD User Group Meeting, UK, 1998.
    75. 谷正气,轿车车身,人民交通出版社,2002。
    76. 周受钦,谢友拍,基于 STEP 标准的产品功能信息建模,计算机工程与应用,2000,36(8):35-38。
    77. 周受钦,支持产品设计的分布式集成信息系统结构与实现研究,西安交通大学博士学位论文,2001。
    78. P. Sainter, K. Oldham, S. Kneebone, The need for product knowledge reuse and sharing within knowledge-based engineering system, In: Proceedings of the ASME Design Automation Conference, USA, 1998, DETGDAC-5569.
    79. 顾建新,祁国宁,知识集成初探计算机集成制造系统, 2000, 6(1): 8-13。
    80. 胡晓惠,从定性到定量综合集成研讨会,计算机世界报,1997, (18)。
    81. Nonaka & Konno, The concept of "Ba": Building a foundation for knowledge creation, California management review, 1998, 40(3).
    82. Yogesh Malhotra, Knowledge management in inquiring organizations, http://www.brint.com/km/km/htm.
    83. Ikujiro Nonaka, A dynamic theory of organizational knowledge creation, Organization xcience, 1994, 5(1):14-37.
    84. 殷国富,机械智能 CAD 的结构模型和发展趋势,计算机科学, 1994, (3): 53-56。Honnery, D., and Moriarty, P., Future Vehicles: An Introduction, 2004, International Journal of Vehicle Design, Vol. 35, NO.1/2:1-8.
    85. Veloso, F., and Fuchs, E., The future of the Asian Auto Industry: Regional Integration, Alternative Designs, and Chinese Leadership, 2004, International Journal of Vehicle Design, Vol.35, NO.1/2:111-136.
    86. Malen, D. and Kikuchi, N., Automotive Body Structure – A GM Sponsored Course in University of Michigan, 2000, ME 599 Course Pack, University of Michigan.
    87. Bouchard, C., Aoussat, A., Modellisation of the Car Design Process, 2003, International Journal of Vehicle Design, Vol.31 No.1:1-10.
    88. Detwiler, D., Computer-aided Structural Optimization of Automotive Body Structure, 1996, SAE Paper 960523.
    89. Wong, J.Y., Computer-aided Methods for Design Evaluation of Tracked Vehicles and Their Application to Product Development, 1999, International Journal of Vehicle Design, Vol.22 No. 1/2:73-92.
    90. Schiele, P., Durach, S., New Approaches in the Software Development for Automotive System, 2002, International Journal of Vehicle Design, Vol.28, No. 1/2/3:241-257.
    91. Szefi R.J., Reduction of Vehicle Leadtime by Body Engineering, 1997, SAE Paper 97058.
    92. Masanori Takamatsu, M., Fujita, H., Inoue, H., and Kijima, M., Development of Lighter-Weight, Higher-Stiffness Body for New Rx-7, 1992, SAE Paper 920244.
    93. Bakhtiary, N., A New Approach for Sizing, Shape and Topology Optimization, 1996, SAE Paper 960814.
    94. Yang, R.J., Chuang, C.H., Che, X.D., Soto, C., New Applications of Topology Optimisation in Automotive Industry, 2000, International Journal of Vehicle Design, Vol.23, No. 1/2:1-15.
    95. Kodiyalam, S. and Sobieszczanski-Sobieski, J., Multidisciplinary Design Optimisation - Some Formal Method, Framework Requirments, and Application to Vehicle Design, 2001, International Journal of Vehicle Design, Vol.25, No. 1/2:3-22.
    96. Liu,B., Jin,C.-N., Ding,Y., Wang,H.-Y., Shi,Y. and Hu,P., Study on the UGS/NX-basedDesign and Package System of Vehicle Body-side, Journal of Jilin University, 2006, V36, SUPPL1, P 33-38.
    97. 靳春宁,胡平,陶海龙等,基于知识工程及面向制造设计的车身部件设计方法和技术,吉林大学学报:工学版,2006,36(4):548-553。
    98. 乐玉汉,轿车车身设计,北京:高等教育出版社,2000。
    99. Gordan Noll, Bill Champion, Hinge-Fuel Tank Fill Door Modeling Best Practice, 2004, UGS Corp.unpublished reference material.
    100. Peter Hodges, Issues in Automotive Product Platform Strategies, 2004, SAE paper 2004-01-1657.
    101. Simpson, T.W., Maier, J.R.A., and Mistree, F., Product Platform Design: Method and Application, 2001, Res Eng Design 13:2-22.
    102. 俞海舟,汽车平台战略浅析,上海汽车,2004(3):10-12。
    103. 王殿武、李宇彤、李卓森,关于平台战略若干问题的思考,汽车工业研究, 2006(8):38-39。
    104. Bhise, V., Kridli, G., Mamoola, H., Devaraj,S., Pillai, A., and Shulze, R., Development of a Parametric Model for Advanced Vehicle Design, 2004, Paper No. 2004-01-0381.
    105. Nishio, S., and Isgarashi, M., Investigation of Car Body Structural Optimization Method, Vehicle Design, 1990.1, Vol.19, 14-15.
    106. Unigraphicis Solutions Inc(美),UG/OPEN API 编程基础,董正卫等译,清华大学出版社,2002。
    107. 吴亚良,现代轿车车身设计,上海科学技术出版社,1992。
    108. 黄天泽,黄金陵,汽车车身结构与设计,机械工业出版社,1992。
    109. Chang, H.Y., and Song, J.O., Glass Drop Design for Automobile Windows-Design of Glass Contour, Shape, Drop Motion, and Motion Guildance Systems, 1995, SAE Paper 951110.
    110. Liu, B., Jin, C.-N., Ding, Y., Wang, H.-Y., Shi, Y. and Hu, P. (2006). Study on the UG/NX-based Design and Package System of Vehicle Body-side, Journal of Jilin University (Engineering and Technology Edition), 36, Suppl. 1, 33-38.
    111. Liu, B., Jin, C.-N., Hu, P., Key Techniques in Development of Vehicle Glass Drop Design System,International Journal of Automotive Technology,E2006074 (06-0072), (SCI, accepted Feb. 2007).
    112. Liu, B., Shi,Y., Zhao, D.-X., Ding, Y., Lu, J. and Hu, P., Optimization Scheme and Software Design for Vehicle Glass Drop Tool, 1st International Conference on Enhancement and Promotion of Computational Methods in Engineering Science and Mechanics(CMESM2006), August 2006, P191-196, Changchun, Jilin, China.
    113. 郎代兵编著,UG NX 汽车自动化设计,北京:清华大学出版社,2006.6。
    114. Pinfold, M., and Champman, C., the Application of KBE Techniques to the FE Model Creation of an Automotive Body Structure, 2001, Computers in Industry 44(2001) 1-10.
    115. Robertson, T., Prasad, B. and Duggirala, R., A Knowledge Based Engineering Method toIntegrate Metal Formaing Process Design and Simulation, in: P. Books, B. Prasad (Eds.), Proceedings of the 1994 ASME Database Sysposium, Engineering Data Management: Integrating the Engineering Enterprise, ASME, 1994:41-50.
    116. Julian E Gómez, Knowledge Navigation for Virtual Vehicles, SAE. Technical Paper 2004-01-312, 1-7.
    117. Durmus Karayel, Sinan Serdar Ozkan and Fahri Vatansever, A Plot Study on Intelligent Knowledge – Based System in the Computer Aided Machine Design, SAE. Technical Paper 2004-01-1250, 1-8.
    118. A. C. McNicol, H. Figueroa-Rosas, C. J. Brace, M.C. Ward, P. Watson and R. V. Ceen, Cold Start Emissions Optimisation Using an Expert Knowledge Based CalibrationMethodology, SAE. Technical Paper 2004-01-0139, 1-14.
    119. M. C. Bates, M. R. Heikal, a Knowledge-Based Model for Multi-Valve Diesel Engine Inlet Port Design, SAE. Technical Paper 2002-01-1747, 1-13.
    120. James Link, Ken Helberg and Karim Nasr, Design and Development of a Cylindrical HVAC Case, SAE. Technical Paper 2004-01-1385, 1-8.
    121. Richard D. Hale and Kurt Schueler, Knowledge-Based Software Systems for Composite Design, Analysis and Manufacturing, SAE. Technical Paper 2002-01-1536, 1-15.
    122. Martin Marshall, Andrew Paulls, Martin Raines, Peter Robinson, Ken Swift and Lou Gill, Knowledge Based Systems in Stress Concentration Analysis, SAE. Technical Paper 2002-01-1532, 1-7.
    123. Sven K. Esche, Ismail Fidan, Constantin Chassapis and Souran Manoochehri, Knowledge-Based Part and Process Design for Metal Forging,SAE. Technical Paper 1999-01-0054, 1-10.
    124. [美]Unigraphics Solutions Inc.编著,洪如瑾译,UG WAVE 产品设计技术培训教程,北京:清华大学出版社,2002.6。
    125. 董正卫,田立中,付宜利,UG/Open API 编程基础,北京:清华大学出版社,2002.8。
    126. 姜华,基于 KBE 的交叉臂式车门玻璃升降器参数化建模技术及软件开发,吉林大学硕士学位论文,2005 年 5 月。
    127. 王慧勇,基于 KBE 的汽车玻璃升降器参数化设计若干关键技术研究,吉林大学硕士学位论文,2003 年 5 月。
    128. [美]Unigraphics Solutions Inc.编著,王刚等译,UG 知识熔接技术培训教程,北京:清华大学出版社,2002.6。
    129. Michael J. Flannagan, Michael Sivak and Eric C. Traube, Quantifying the Direct Field of View when Using Driver-Side Rearview Mirrors, SAE. Technical Paper 1999-01-0656, Society of Automotive Engineers, Warrendale PA, 1-2.
    130. Michael J. Flannagan, Current Status and Future Prospects for Nonplanar Rearview Mirrors, Technical Paper 2000-01-0324, Society of Automotive Engineers, Warrendale PA,1-2.
    131. Michael J. Flannagan, Michael Sivak, Shinichi Kojima and Eric C. Traube, A Field Study of Distance Perception with Large-Radius Convex Rearview Mirrors, SAE. TechnicalPaper 980916, Society of Automotive Engineers, Warrendale PA, 1-7.
    132. Carol A. C. Flannagan and Michael J. Flannagan, Acceptance of Nonplannar Rearview Mirrors by U.S. Driver, SAE. Technical Paper 980919, Society of Automotive Engineers, Warrendale PA, 1-4.
    133. Paul Lemay and Alex Vincent, School Bus Visibility:Driver’s Field of View and Performance of Mirror Systems on a Conventional Long-Nosed School Bus, SAE. Technical Paper 980923, Society of Automotive Engineers, Warrendale PA, 1-5.
    134. Nico J. Delleman and Andrea J.S. Hin, Postural Behaviour in Static Gazing Upwards and Downwards, SAE. Technical Paper 2000-01-2173, Society of Automotive Engineers, Warrendale PA, 1-4.
    135. Josef Loczi, Application of the 3-D CAD Manikin RAMSIS to Heavy Duty Truck Design at Freightliner Corporation, SAE. Technical Paper 2000-01-2165, Society of Automotive Engineers, Warrendale PA, 3-4.
    136. Society of Automotive Engineers, Recommended Practice J903, Passenger Car Windshield Wiper System, Automotive Engineering Handbook, Society of Automotive Engineers, Warrendale PA, 2-10.
    137. Society of Automotive Engineers, Recommended Practice J942, Passenger Car Windshield Wiper System, Automotive Engineering Handbook, Society of Automotive Engineers, Warrendale PA, 1-6.
    138. Society of Automotive Engineers, Recommended Practice J198, Windshield Wiper Systems-Trucks, Buses and Multipurpose Vehicles, Automotive Engineering Handbook, Society of Automotive Engineers, Warrendale PA, 1-6.
    139. Society of Automotive Engineers, Recommended Practice J1944, Truck and Bus Multipurpose Vehicle Windshield Washer System, Society of Automotive Engineers, Warrendale PA, 1-3.
    140. Society of Automotive Engineers, Recommended Practice J834a, Passenger Car Rear Vision, Society of Automotive Engineers, Warrendale PA, 1-4.
    141. Society of Automotive Engineers, Recommended Practice J1050, AUG94 Describing and measuring the driver’s field of view, Society of Automotive Engineers, Warrendale PA, 11-22.
    142. Josef Loczi, Ergonomics Program at Freightliner, SAE. Technical Paper 2000-01-3402, Society of Automotive Engineers, Warrendale PA, 3.
    143. 陈东平,车身参数化分析模型的构造研究及应用,吉林大学硕士论文,2002.2
    144.陈吉清,兰凤崇,J. Lin,客车概念设计阶段的车身结构优化设计分析,机械设计与研究,2004.4
    145.傅立敏, 胡兴军, 张世村. 不同几何参数车轮的汽车流场数值模拟研究. 汽车工程. 2006 年(第 28 卷)第 5 期. P452-459
    146. GB 11562,汽车驾驶员前方视野要求及测量方法,中华人民共和国国家标准,95-102。
    147. 黄金陵,汪成应,汽车视野设计 CAD 系统开发及应用,汽车工程,1997,1:21-23。
    148. 葛安林,任金东,黄金陵,龚梦泽,汽车视野设计原理和方法研究,机械工程学报,2002,38(4):148-151。
    149. 任金东,葛安林,黄金陵,龚梦泽,基于 CATIA 平台的汽车视野设计系统研究与实现,汽车工程,2002,24(1)。
    150. 任金东,范子杰,黄金陵,基于知识的汽车后视野分析系统,汽车工程,2006,28(2):159-162。
    151. Society of Automotive Engineers (1997), Recommended Practice J941, Automotive Engineering Handbook, Society of Automotive Engineers, Warrendale PA, 3-17.
    152. 汽车工程手册——试验篇,人民交通出版社,2001
    153. Lan Fengchong, Chen Jiqing, Lin Jianguo, Research on parameterized modeling and application for car, Computer Integrated Manufacturing System, 2005, 2,vol11.
    154. Manabe, K. et al. Artificial intelligence identification of process parameters and adaptive control system for deep-drawing process, Journal of Material Processing Technology, Vol.80, 1998:421.
    155. Siegert, K. et al. Closed loop control of the friction force deep drawing process, Journal of Material Processing Technology, Vol.71, 1997:126.
    156. Shim, et al. Optimum blank shape design by sensitivity analysis, Journal of Materials Processing Technology, Vol.34, No.2, 1997:191.
    157. 孙凌玉, 陈全世,人机工程学在轿车车身安全性设计中的应用[J ] 中国公路学报, 2001, (2) : 10721101
    158. 孙家广,杨长贵,计算机图形学,清华大学出版社,1995。
    159. 兰风崇,陈吉清,林建国, 轿车参数化设计模型的构造和应用研究, 计算机集成制造系统,2005,2.
    160. Vivek Bhise, Ghassan Kridli and Huzefa Mamoola, Development of a parametric Model for Advanced Vehicle Design, SAE2004-01-0381.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.