智能天线DOA估计技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阵列信号处理是信号处理领域的一个重要分支,在雷达、通信等系统中得到广泛的应用。通过对信号在时间和空间上同时进行采样和处理,可以更加充分地提取信号中的信息,从而更加有效地抑制干扰,提高系统的效率。本文介绍了阵列信号处理基本理论及模型,主要对阵列信号处理的两个重要方面——DOA估计和波束形成技术及其相关技术进行了一些研究。
     1)研究了特征结构波束形成算法,特征结构波束形成法有效地提高了MVDR算法针对指向误差敏感的缺点,但是带来了较大的运算量,而且当约束矢量与信号导向矢量正交时,系统性能将严重下降。本文针对特征结构法以上的缺点,构造了基于指向误差均匀分布模型的平均导向矢量,由于新的约束矢量的作用相当于加宽了波束主瓣的宽度,减少了期望信号落入波束主瓣边缘的概率,因此该算法可以有效地对抗指向性误差。该文还针对不同的阵元数,给出了角度区间的选择准则。计算机的仿真结果证明,基于导向矢量旋转的稳健算法在不明显增加算法运算量的基础上,有效的提高了算法对指向误差的鲁棒性。对自适应波束形成器的设计有一定的指导意义。
     2)在对最小误码率波束形成研究的基础上,提出了最小误码率空时均衡技术的自适应实现。要求一个判决系统的误码率,我们必须首先知道观测信号的概率密度函数,但我们通常无法知道观测信号的概率密度函数。因此,必须首先估计观测信号的概率密度函数。有两种非参数化的概率密度估计方法,一个是Parzen密度估计,即核密度估计,另一个是k-nearest neighbor密度估计法;这两种方法原理非常相似,但却有不同的统计特性。本文采用经典的Parzen窗法或核密度估计法来近似空时均衡器输出信号的概率密度;导出了系统误码率与权值的关系。研究了最小误码率空时均衡逐样本自适应算法,即随机梯度最小误码率法,此方法具有较低的计算量,可与LMS相比拟。仿真结果还表明,最小误码率空时均衡技术具有较强的抗过载与抗强干扰的能力。
     3)研究了信源扩展情况下的两维DOA估计算法。由于信源扩展相当于在接收信号协方差阵的每个元素上附加一乘性噪声,在高斯白噪声的假设下,
Array signal processing and its application has been one of the focuses in signal processing field. By sampling and processing signal both in time domain and in spatial domain, the information of interest contained in the signal can be exploited sufficiently, thereby interference can be suppressed more effectively, and so the capacity of system can be improved by introducing array signal processing algorithms. In this dissertation, the model and theory of array signal processing are studied; DOAs estimation and beamforming technologies and their correlated technology were researched deeply, which are the two main aspects in array signal processing field.
    1. The algorithm based on the eigen-space was investigated, it make the MVDR possess the ability resisting the pointing error, but the computational amount is very large, and the performance of the system will degrade sharply when the constraint vector is orthogonal with the signal steering vector. Aiming at the above deficiency of the eigne-space beamformer, the paper construct an average steering vector assuming that the DOA distribution of the signal is uniform in the specified angular region. The novel constraint steering vector broadens the mainlobe width of the beamformer, reduces the probability that signal is at the edge of the mainlobe, so it can combat the pointing error effectively. The paper also derives the selection criterion of the angular interval as the variance of the element number. The simulation results of the computer show the algorithm proposed by this paper is robust for the pointing error, but it do not increase the computation effort much.
    2. This dissertation investigated beamforming based on the minimum bit error rate and proposed a space-time equalization algorithm based on the minimum bit error rate and the adaptive implement of space-time equalization algorithm based on the minimum bit error rate, In order to determine the bit error rate of a decision system, we must firstly known the probability density function of the observed signal, unfortunately, we can not often obtain it.
引文
[1] 张贤达.通信信号处理.第1版.国防工业出版社.2000
    [2] R. Monzingo, T. Miller. Introduction to adaptive arrays. 1st Ed. Wiley and Sons, 1980: 24-65P
    [3] J.E. Hudson. Adaptive array principles. 1st Ed. Peter Peregrinus Ltd., 1981: 1-95P
    [4] A. Farina. Antenna-based signal processing techniques for radar systems. 1st Ed. Artech House, 1992: 62-156P
    [5] L. C. Liberti, T. S. Rappaport. Smart Antenna for Wireless Communications: IS-95 and Third Generation CDMA Application. 1st Ed. Person Education, 1999: 187-210P
    [6] H. Steyskal. Digital beamforming antennas: an introduction. Microwave Journal. 1987: 1-256P
    [7] H. Steyskal, J. F. Rose. Digital beamforming for radar systems. Microwave Journal. 1989, 28 (1): 121-136P
    [8] R. T. Compton. Adaptive antennas: concept and performanc. 1st Ed. Prentice Hall, Englewood Cliffs, 1988: 20-151P
    [9] B. D. Van Veen, K. M. Buckley. Beamforming: A versatile approach to spatial filtering. IEEE ASSP Magazine (Acoustics, Speech, and Signal Processing). 1988, 5 (2): 4-24P
    [10] W. F. Gabriel. Adaptive arrays-an introduction. Proceedings of the IEEE. 1976, 64 (2): 239-72P
    [11] W. F. Gabriel. Adaptive processing array systems. Proceedings of the IEEE. 1992, 80 (1): 152-162P
    [12] L.C. Godara. Applications of antenna arrays to mobile communications, Part Ⅰ: Performance improvement, feasibility, and system considerations. Proceedings of the IEEE. 1997, 85 (7): 1031-1060P
    [13] L.C. Godara. Application of antenna arrays to mobile communications. Ⅱ. Beam-forming and direction-of-arrival considerations. Proceedings of the??IEEE. 1997, 85 (8): 1195-245P
    [14] S. Haykin, J. P. Reilly, V. Kezys, E. Vertatschitsch. Some aspects of array signal processing. IEE Proceedings F (Radar and Signal Processing). 1992, 139 (1): 1-26P
    [15] H.L.V. Trees. Optimum array processing. 1st Ed. John Wiley and sons Ltd, 2002: 710-916P
    [16] Willie, W. Lu. BroadBand Wireless Mobile 3G and Beyond. 1st Ed. John Wiley and sons Ltd., 2002: 288-300P
    [17] S. Stergios. Advanced signal processing handbook: theory and implementation for radar, sonar, and medical imaging real-time systems. 1st Ed. CRC Press LLC, 2001: 121-245P
    [18] P. S. Naidu. Sensor array signal processing. 1st Ed. CRC Press LLC, 2001: 240-310P
    [19] H. Krim, M. Viberg. Two decades of array signal processing research: the parametric approach. IEEE Signal Processing Magazine. 1996, 13 (4): 67-94P
    [20] S. Bellofiore, C. A. Balanis, J. Foutz, A. S. Spanias. Smart-antenna systems for mobile communication networks. Part 1: Overview and antenna design. IEEE Antennas and Propagation Magazine. 2002, 44 (3): 145-154P
    [21] S. Bellofiore, J. Foutz, C. A. Balanis, A. S. Spanias. Smart-antenna system for mobile communication networks Part 2: Beamforming and network throughput. IEEE Antennas and Propagation Magazine. 2002, 44 (4): 106-114P
    [22] A. J. Paulraj, C. B. Papadias. Space-time processing for wireless communications. IEEE Signal Processing Magazine. 1997, 14 (6): 49-83P
    [23] R. O. Schmidt. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation. 1986, AP-34 (3): 276-80P
    [24] R. Roy, T. Kailath. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech and Signal??Processing. 1989, 37 (7): 984-995P
    [25] G. Bienvenu, L. Kopp. Decreasing high resolution method sensitivity by conventional beamformer preprocessing. San Diego, CA, USA, 1984. IEEE: 33-2P
    [26] C. L. Byrne, A. K. Steel. Sector-focused stability for high resolution array processing. Dallas, TX, USA, 1987. IEEE: 2340-2343P
    [27] H. B. Lee, M. S. Wengrovitz. Resolution threshold of beamspace MUSIC for two closely spaced emitters. IEEE Transactions on Acoustics, Speech, and Signal Processing. 1990, 38 (9): 1545-1559P
    [28] X. XiaoLiang, K. M. Buckley. A comparison of element and beam space spatial-spectrum estimation for multiple source clusters. Albuquerque, New Mexico, USA, 1990. Publ by IEEE, Piscataway, NJ, USA: 2643-2646P
    [29] M. D. Zoltowski, G. M. Kautz, S. D. Silverstein. Multifrequency beamspace Root-MUSIC: an experimental evaluation. San Diego, CA, USA, 1991. Publ by Int Soc for Optical Engineering, Bellingham, WA, USA: 452-463P
    [30] G. Xu, S. D. Silverstein, R. H. Roy, T. Kailath. Parallel implementation and performance analysis of beamspace ESPRIT. Toronto, Ont, Can, 1991. Publ by IEEE, Piscataway, NJ, USA: 1497-1500P
    [31] H. Liu, F. Li. Statistical evaluation of beam-space direction-of-arrival estimators. San Francisco, CA, USA, 1992. IEEE: 389-92P
    [32] S. Anderson. On optimal dimension reduction for sensor array signal processing. Signal Processing. 1993, 30 (2): 245-256P
    [33] S. Anderson, A. Nehorai. Optimal dimension reduction for array processing-generalized. IEEE Transactions on Signal Processing. 1995, 43 (8): 2025-2027P
    [34] 龚耀寰.自适应滤波—时域自适应滤波和智能天线.2003
    [35] D. Liu, L. Tong. An analysis of constant modulus algorithm for array signal processing. Signal Processing. 1999, 73 (1-2): 81-104P
    [36] M. C. Dogan, J. M. Mendel. Applications of cumulants to array processing??-Part Ⅰ: Aperture extension and array calibration. IEEE Transactions on Signal Processing. 1995, 43 (5): 1200-1216P
    [37] M. C. Dogan, J. M. Mendel. Applications of cumulants to array processing part Ⅱ: non-Gaussian noise suppression. IEEE Transactions on Signal Processing. 1995, 43 (7): 1663-1676P
    [38] E. Gonen, J. M. Mendel. Applications of cumulants to array processing-Part Ⅵ: Polarization and direction of arrival estimation with minimally constrained arrays. IEEE Transactions on Signal Processing. 1999, 47 (9): 2589-2592P
    [39] E. Gonen, J. M. Mendel. Applications of cumulants to array processing-Part Ⅲ: Blind beamforming for coherent signals. IEEE Transactions on Signal Processing. 1997, 45 (9): 2252-2264P
    [40] E. Gonen, J. M. Mendel, M. C. Dogan. Applications of cumulants to array processing-Part Ⅳ: Direction finding in coherent signals case. IEEE Transactions on Signal Processing. 1997, 45 (9): 2265-2276P
    [41] T.-H. Liu, J. M. Mendel. Application of cumulants to array signal processing-Part Ⅴ: Sensitivity issues. IEEE Transactions on Signal Processing. 1999, 47 (3): 746-759P
    [42] W. A. Gardner. The spectral correlation theory of cyclostationary time-series. Signal Processing. 1986, 11 (1): 13-36P
    [43] W. A. Gardner, C. M. Spooner. The cumulant theory of cyclostationary time-series. Ⅰ. Foundation. IEEE Transactions on Signal Processing. 1994, 42 (12): 3387-408P
    [44] H. Liu, G. Xu. Closed-form blind symbol estimation in digital communications. IEEE Transactions on Signal Processing. 1995, 43 (11): 2714-2723P
    [45] W. Qiang, W. Kon Max. Blind adaptive beamforming for cyclostationary signals. IEEE Transactions on Signal Processing. 1996, 44 (11): 2757-2767P
    [46] C. M. Spooner, W. A. Gardner. The cumulant theory of cyclostationary??time-series. Ⅱ. Development and applications. IEEE Transactions on Signal Processing. 1994, 42 (12): 3409-29P
    [47] B. G. Agee, S. V. Schell, W. A. Gardner. Spectral self-coherence restoral: a new approach to blind adaptive signal extraction using antenna arrays. Proceedings of the IEEE. 1990, 78 (4): 753-67P
    [48] U. Madhow, M. L. Honig. MMSE interference suppression for direct-sequence spread-spectrum CDMA. IEEE Transactions on Communications. 1994, 42 (12): 3178-3188P
    [49] Z. Xie, R. T. Short, C. K. Rushforth. A family of suboptimum detectors for coherent multiuser communications. IEEE Journal on Selected Areas in Communications. 1990, 8 (4): 683-90P
    [50] N. Wang, W.-P. Zhu, B. Zheng. Blind multiuser detection for DS-CDMA systems: A neural network approach. Proceedings-IEEE International Symposium on Circuits and Systems. 1999, 5: 603-606P
    [51] W. Xiaodong, H. V. Poor. Space-time multiuser detection in multipath CDMA channels. IEEE Transactions on Signal Processing. 1999, 47 (9): 2356-2374P
    [52] Z. Xie, C. K. Rushforth, R. T. Short. Multiuser signal detection using sequential decoding. IEEE Transactions on Communications. 1990, 38 (5): 578-83P
    [53] M. K. Varanasi. Group detection for synchronous Gaussian code-division multiple-access channels. IEEE Transactions on Information Theory. 1995, 41 (4): 1083-1096P
    [54] B. Aazhang, B.-P. Paris, G. C. Orsak. Neural networks for multiuser detection in code-division multiple-access communications. IEEE Transactions on Communications. 1992, 40 (7): 1212-1222P
    [55] J. G. Proakis. Digital Communications. 4th Ed. New York: McGraw-Hill, 2001
    [56] T.C. Chuah, B. S. Sharif, O. R. Hinton. Robust CDMA multiuser detection using a neural-network approach. IEEE Transactions on Neural Networks.??2002, 13 (6): 1532-1539P
    [57] S. Chen, A. K. Samingan, L. Hanzo. Support vector machine multiuser receiver for DS-CDMA signals in multipath channels. IEEE Transactions on Neural Networks. 2001, 12 (3): 604-611P
    [58] S. Abedi, R. Tafazolli. GMD: A new CDMA multiuser detection technique using an evolutionary algorithm. IEE Proceedings: Communications. 2001, 148 (6): 393-399P
    [59] U. Mitra, H. V. Poor. Analysis of an adaptive decorrelating detector for synchronous CDMA channels. IEEE Transactions on Communications. 1996, 44 (2): 257-268P
    [60] M. Honig, U. Madhow, S. Verdu. Blind adaptive multiuser detection. IEEE Transactions on Information Theory. 1995, 41 (4): 944-960P
    [61] X.-D. Zhang, W. Wei. Blind adaptive multiuser detection based on Kalman filtering. IEEE Transactions on Signal Processing. 2002, 50 (1): 87-95P
    [62] S. Kapoor, S. Gollamudi, S. Nagaraj, Y.-F. Huang. Adaptive multiuser detection and beamforming for interference suppression in CDMA mobile radio systems. IEEE Transactions on Vehicular Technology. 1999, 48 (5): 1341-1355P
    [63] D. Reynolds, X. Wang, H. V. Poor. Blind adaptive space-time multiuser detection with multiple transmitter and receiver antennas. IEEE Transactions on Signal Processing. 2002, 50 (6): 1261-1276P
    [64] U. Mitra, H. Vincent Poor. Neural network techniques for adaptive multiuser demodulation. IEEE Journal on Selected Areas in Communications. 1994, 12 (9 pt 1): 1460-1470P
    [65] M. Honig, M. K. Tsatsanis. Adaptive techniques for multiuser CDMA receivers. IEEE Signal Processing Magazine. 2000, 17 (3): 49-61P
    [66] J. Zhang, J. Huai, R. Xiao, B. Li. Resource management in the next-generation DS-CDMA cellular networks. IEEE Wireless Communications. 2004, 11 (4): 52-58P
    [67] R. Lupas, S. Verdu. Near-far resistance of multiuser detectors in??asynchronous channels. IEEE Transactions on Communications. 1990, 38 (4): 496-508P
    [68] P. Patel, J. Holtzman. Analysis of a simple successive interference cancellation scheme in a DS/CDMA system. IEEE Journal on Selected Areas in Communications. 1994, 12 (5): 796-807P
    [69] P. V. Rooyen, M. Lotter, D. V. Wyk. Space-Time Processing for CDMA Mobile Communications. 1st Ed. Kluwer Academic Publishers, 2000
    [70] H. V. Poor, G. W. Wornell. Wireless Communications: Signal Processing Perspectives. 1st Ed. Prentice Hall PTR, 1998
    [71] H. C. Huang, C. Schwartz, S. Verdu. Combined multipath and spatial resolution for multiuser detection: potentials and problems. IEEE International Symposium on Information Theory-Proceedings, Whistler, BC, Can, 1995. IEEE, Piscataway, NJ, USA: 380P
    [72] R. Kohno, N. Ishii, M. Nagatsuka. A spatially and temporally optimal multi-user receiver using an array antenna for DS/CDMA. Proceedings of 6th International Symposium on Personal, Indoor and Mobile Radio Communications, Toronto, Ont., Canada, 1995. IEEE: 950-954P
    [73] S. Y. Miller, S. C. Schwartz. Integrated spatial-temporal detectors for asynchronous Gaussian multiple-access channels. IEEE Transactions on Communications. 1995, 43 (2-4 pt 1): 396-411P
    [74] H. Liu, M. D. Zoltowski. Blind equalization in antenna array CDMA systems. IEEE Transactions on Signal Processing. 1997, 45 (1): 161-172P
    [75] S. M. Alamouti. A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications. 1998, 16 (8): 1451-1458P
    [76] T. S. Rappaport. Wireless Communications: Principles & Practice. 1st Ed. Prentice Hall, 1996
    [77] F. Tong, Y. Akaiwa. Effects of beam tilting on bit-rate selection in mobile multipath channel. Vehicular Technology, IEEE Transactions on. 1997, 46 (2): 257-261P[78] J. C. Liberti, T. S. Rappaport. A geometrically based model for line-of-sight multipath radio channels. 1996.844-848P
    [79] W. C. Jakes. Microwave Mobile Communications. 1st Ed. IEEE Press, 1974
    [80] P. Petrus, J. H. Reed, T. S. Rappaport. Geometrically based statistical channel model for macrocellular mobile environments. 1996.1197-1201P
    [81] L. Jhong, L. Miller. Error Performance Analyses of Differential Phase-Shift-Keyed/Frequency-Hopping Spread-Spectrum Communication System in the Partial-Band Jamming Environments. Communications, IEEE Transactions on[legacy, pre-1988]. 1982, 30 (5): 943-952P
    [82] O. Norklit, J. B. Andersen. Mobile radio environments and adaptive arrays. 1994.725-728 vol.2P
    [83] 方敏.天线阵cdma蜂窝无线通信系统的空时处理.1999,27(9):90-93页
    [84] M.K. Tsatsanis, G. B. Giannakis. Blind estimation of direct sequence spread spectrum signals in multipath. IEEE Transactions on Signal Processing. 1997, 45 (5): 1241-1252P
    [85] L. Jen-Wei, C. Jiunn-Tsair, A. J. Paulraj. A two-stage hybrid approach for CCI/ISI reduction with space-time processing. IEEE Communications Letters. 1997, 1(6): 163-5P
    [86] J. J. Shynk, R. P. Gooch. The constant modulus array for cochannel signal copy and direction finding. IEEE Transactions on Signal Processing. 1996, 44 (3): 652-660P
    [87] C. B. Papadias, A. J. Paulraj. A constant modulus algorithm for multiuser signal separation in presence of delay spread using antenna arrays. IEEE Signal Processing Letters. 1997, 4 (6): 178-81P
    [88] A. J. van der Veen, A. Paulraj. An analytical constant modulus algorithm. IEEE Transactions on Signal Processing. 1996, 44 (5): 1136-55P
    [89] A. J. van der Veen, S. Talwar, A. Paulraj. A subspace approach to blind space-time signal processing for wireless communication systems. IEEE??Transactions on Signal Processing. 1997,45 (1):173-90P
    [90] H. Liu,G Xu. Smart antennas in wireless systems: Uplink multiuser blind channel and sequence detection. IEEE Transactions on Communications.1997,45(2):187-199P
    [91] A. B. Gershman. Robust adaptive beamforming in sensor arrays.AEU-Archiv fur Elektronik und Ubertragungstechnik. 1999, 53(6):305-314P
    [92] D. D. Feldman,L. J. Griffiths. A projection approach for robust adaptive beamforming. IEEE Transactions on Signal Processing. 1994, 42(4):867-876P
    [93] T. P. Jantti. The influence of extended sources on the theoretical performance of the MUSIC and ESPRIT methods: narrow-band sources.ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech and Signal Processing (Cat. No.92CH3103-9), San Francisco, CA, USA,1992. IEEE:429-32P
    [94] D. Asztely,B. Ottersten. The effects of local scattering on direction of arrival estimation with MUSIC and ESPRIT. Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, Seattle, WA, USA, 1998. IEEE:3333-6P
    [95] D. D. Feldman,L. J. Griffiths. A constraint projection approach for robust adaptive beamforming. Proceedings of the 1991 International Conference on Acoustics, Speech, and Signal Processing - ICASSP 91, Toronto, Ont,Can, 1991. Publ by IEEE, Piscataway, NJ, USA:1381-1384P
    [96] L. Chang,C.-C. Yeh. Effect of pointing errors on the performance of the projection beamformer. IEEE Transactions on Antennas and Propagation.1993,41(8):1045-1056P
    [97] M. H. Er,B. C. Ng. A new approach to robust beamforming in the presence of steering vector errors. IEEE Transactions on Signal Processing. 1994,42(7):1826-1829P
    [98] C. C. Ko,H. Liu. Robust algorithm for combating look direction error??problems. IEEE Transactions on Aerospace and Electronic Systems. 1995, 31 (3): 1043-1053P
    [99] J.W. Kim, C. K. Un. An adaptive array robust to beam pointing error. IEEE Transactions on Signal Processing. 1992, 40 (6): 1582-1584P
    [100] A. B. Gershman, U. Nickel, J. F. Boehme. Adaptive beamforming algorithms with robustness against jammer motion. IEEE Transactions on Signal Processing. 1997, 45 (7): 1878-1885P
    [101] 赵永波,刘茂仓,张守宏.一种改进的基于特征空间的自适应波束形成算法.2000,28(6):16-18页
    [102] S. Valaee, B. Champagne, P. Kabal. Parametric localization of distributed sources. IEEE Transactions on Signal Processing. 1995, 43 (9): 2144-2153P
    [103] Y. Meng, P. Stoica, K. M. Wong. Estimation of the directions of arrival of spatially dispersed signals in army processing. IEE Proceedings: Radar, Sonar and Navigation. 1996, 143 (1): 1-9P
    [104] 陶建武.基于均匀圆阵的扩展信号二维方向角估计.2003,11:10-15页
    [105] 唐宗礼,武思军,张曙.基于均匀圆阵的二维DOA估计算法.2005,26(2):46-50页
    [106] 唐宗礼,武思军,张曙.一种基于两点式散射模型的DOA估计算法.2006,27(1):131-135页
    [107] M. S. Bazaraa, H. D. Sherali, C. M. Shetty. Nonlinear Programming: Theory and Algorithms. 1st Ed. New York: Wiley, 1993
    [108] S. Chen, B. Mulgrew, P. M. Grant. A clustering technique for digital communications channel equalization using radial basis function networks. IEEE Transactions on Neural Networks. 1993, 4 (4): 570-590P
    [109] Y. Chen-Chu, J. R. Barry. Adaptive minimum bit-error rate equalization for binary signaling. Communications, IEEE Transactions on. 2000, 48 (7): 1226-1235P
    [110] S. Chen, A. K. Samingan, B. Mulgrew, L. Hanzo. Adaptive minimum-BER linear multiuser detection. 2001.2253-2256P[111] K. Fukunaga. Introduction to Statistical Pattern Recognition. 2nd Ed.Morgan Academic Press, 1990
    [112] W. L. Martinez,A. R. Martinez. Computational Statistics Handbook with MATLAB. 1st Ed. CRC Press, 2002
    [113] B. Mulgrew,S. Chen. Adaptive minimum-BER decision feedback equalisers for binary signalling. Signal Processing. 2001, 81(7):1479-1489P
    [114] C. Sheng,A. K. Samingan,B. Mulgrew,L. Hanzo. Adaptive minimum-BER linear multiuser detection for DS-CDMA signals in multipath channels.Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on]. 2001,49 (6):1240-1247P
    [115] P. Stoica,A. Nehorai. MUSIC, maximum likelihood, and Cramer-Rao bound. Acoustics, Speech, and Signal Processing [see also IEEE Transactions on Signal Processing], IEEE Transactions on. 1989, 37(5):720-741P
    [116] J. J. Fuchs. Estimating the number of sinusoids in additive white noise.Acoustics, Speech, and Signal Processing [see also IEEE Transactions on Signal Processing], IEEE Transactions on. 1988, 36 (12): 1846-1853P
    [117] Y. Chien-Chung. Projection approach to bearing estimations. Acoustics,Speech, and Signal Processing [see also IEEE Transactions on Signal Processing], IEEE Transactions on. 1986, 34 (5):1347-1349P
    [118] D. H. Johnson,D. E. Dudgeon. Array signal processing: concepts andtechniques. 1st Ed. Englewood Cliffs, NJ: Prentice-Hall, 1993
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.