阵列孔径对宽带信号DOA估计影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波达方向估计是阵列信号处理的重要内容之一,随着通信技术和数字信号的发展,使得它在许多领域具有广泛而重要的应用价值。为了提高算法的性能,前人提出很多算法的改进。但是这些改进都会提高算法的复杂度,导致计算量增大。因此本文主要分析阵列孔径对定位算法性能的影响,以及两种通过增大阵列孔径提高算法性能的方法,具体工作如下:
     首先,研究了阵列模型及各种结构下的阵列接收的信号模型。讨论了多重信号子空间(MUSIC)算法,分析了阵列孔径对定位算法性能的影响。得出不需要对算法进行改进只需增大阵列孔径就可以提高算法性能的结果。
     其次,针对增加阵元个数给定位算法带来过大运算量的问题,使用了一种基于波束域高分辨定位的方法。该方法将信号的处理由阵元域转换到波束域,降低了协方差矩阵的维数,进而减少运算量。通过仿真分析可知与阵元域高分辨定位方法相比,该方法计算简单,运算量小,而且算法性能更好。
     最后,针对阵元间距超过信号波长一半时算法失效的问题,提出了一种适合宽带信号的聚焦频率选择方法。该方法不仅能够通过增大阵列孔径来提高DOA估计算法的精度而且还消除了阵元间距对DOA估计算法的限制,在没有增加算法运算量的同时充分利用了宽带信号的频率范围。
     通过Matlab仿真验证了算法的可行性。
Direction-of-Arrival is one of the most important contents of array signal processing. With the development of communication technology, it has been applied widely in many different fields. In order to improve the performance of algorithm, a lot of reformations have been proposed. However, all these reformations will increase the complexity of algorithm and the amount of calculation. Therefore this article will mainly analyze the influence of array aperture on the performance of localized algorithm and two kinds of methods by which algorithm performance can be improved through the way of augmenting array aperture. The specific work is as follows:
     Firstly, array model and signal models of receiving arrays under all kinds of structures is discussed. The Multiple Signal Subspace (MUSIC) algorithm is considered. The influence of array aperture on the performance of localized algorithm is analyzed. The conclusion is that the algorithm performance can be improved by only augmenting array aperture without reforming algorithm itself.
     Secondly, to deal with the problem of too much amount of calculation caused by adding array elements, the location method based on beam space high resolution will transfer the algorithm process from array element space to beam space. The dimension of the covariance matrix is lowered and the amount of calculation is reduced. Through analysis we know that compared with array region high resolution, this method has simpler and less amount of calculation as well as better algorithm performance.
     At last, to deal with the problem that algorithm fails when space between array elements is longer than half signal wavelength; a method of Focus Frequency Selection which is suitable for broadband signal is raised. This method can not only improve the precision of DOA estimation algorithm through augmenting array aperture but also eliminate the restriction of DOA estimation algorithm caused by array space and make the most use of broadband frequency without adding any amount of algorithm calculation.
     The feasibility of the algorithm has been verified by Matlab Simulations.
引文
1.张贤达.现代信号处理.北京:清华大学出版社, 2002:28-33 132-140 251-258
    2.何振亚.自适应信号处理.北京:科学出版社, 2002:134-149
    3.陈利虎,张尔扬.基于数字信道化和空时频分析的多网台调频信号DOA估计.通信学报, 2009,30(10):68-74
    4.李仁和.基于小波分析与MUSIC法的联合算法对信号DOA的估计.通信技术, 2008,41(9):47-52
    5.张旻,李鹏飞.基于分层神经网络的宽频段DOA估计方法.电子与信息学报, 2009,31(9):2118-2122
    6. W. Hahn, S. Tretter. Optimum Processing for Delay Vector Estimation in Passive Signal Array. IEEE Transactions on Information Theory. 1973,19(1):608-614
    7. W. Hahn. Optimum Signal Processing for Passive Sonar Range and Bearing Estimation. Journal of Acoustical Society of America. 1975,58(1):1210-1217
    8. M. Wax, T. Kailath. Optimum Localization of Multiple Sources by Passive Array. IEEE Transactions on Acoustics, Speech and Signal Process. 1983,31(5):1208-1214
    9. W. Howells. Intermediate Frequency Side-Lobe Canceller. United States Patent Office. 1965,45(3):206-212
    10. B. Widrow, P. E. Mantey, L. J. Grifiths. Adaptive Antenna System.Proceedings of the IEEE. 1967,55(8):2144-2159
    11. J. Capon. High-resolution Frequency-Wavenumber Spectrum Analysis. Proceedings of the IEEE. 1969,57:1408-1418
    12. O. L. Frost. An Algorithm for Linearly Constrained Adaptive Processing. Proceedings of the IEEE. 1972,60(8):926-935
    13. L. S. Reed, J. D. Mallett, L. E. Brennan. Rapid Convergence Rate in Adaptive Arrays. IEEE Transactions. On Aerospace and Electronic systems. 1974,10(6):854-863
    14. S. P. Applebaum .Adaptive Array. IEEE Transactions on Antennas and Propagation. 1976,24(2):585-598
    15. L. J. Grifiths, C. W. Jim. An Alternative Approach to Linearly Constrained Adaptive Beamforming. IEEE Transactions on Antennas and Propagation. 1982,30(l):27-34
    16. E. K. Hung, R. M. Tumer. A Fast Beamfoming Algorithm for Large Arrays. IEEE Transactions on Aerospace and Electronic Systems. 1983,19(4):598-607
    17. J. Li, P. Stoica, Z. Wang. On Robust Capon Beamforming and Diagonal Loading. IEEE Transactions on Signal Processing. 2003,51(2):1702-1715
    18.潘汉怀,吕明.近场麦克风阵列波束形成方法研究. [电子科技大学硕士学位论文]. 2007:26-29
    19.阎振华,黄建国,张群飞.波束域MUSIC算法的多处理器实时处理.计算机工程与应用. 2007,43(9):104-106
    20. R. O. Schmidt. Multiple Emitter Location and Signal Parameter Estimation. IEEE Transactions. 1986,34(5):276-280
    21. D. Rao. Performance Analysis of Root-MUSIC. IEEE Transactions on ASSP. 1989, 37(12):1939-1949
    22. R. Roy, T. Kailath. ESPRIT-estimation of Signal Parameters Via Rotational Invariance Techniques. IEEE Transactions on Acoustics, Speech and Signal Processing. l989, 37(7):984-995
    23.张大海,杨坤德.基于协方差矩阵加权的任意阵列恒定束宽波束形成方法.声学技术, 2008,27(3):439-445
    24. A. Pezeshki, B. D. Van Veen. Eigenvalue Beamforming Using a Multirank MVDR Beamformer and Subspace Selection. IEEE Signal Processing Society. 2008, 56(5):1954-1967
    25. A. C. Gurbuz, J. H. McClellan. A Compressive Beamforming Method. IEEE Transactions on Acoustics, Speech and Signal Processing. 2008:2617-2620
    26. M. Wax, S. Tie-Jun, T. Kailath. Spatio-temporal Spectral Analysis by Eigenstructure Methods. IEEE Transactions on Acoustics, Speech and Signal Processing, l984, 32(4):817-827
    27.王姝,何子述.宽带信号DOA估计和DBF技术算法研究, [电子科技大学硕士学位论文]. 2005:24-26
    28.于红旗,徐欣,黄知涛.一种新的宽带DOA估计方法.信号处理, 2009,25(1):118-121
    29. H. Wang, M. Kaveh. Coherent Signal-Subspace Processing for the Detection and Estimation of Angles of Arrvial of Multiple Wide-Band Sources. IEEE Transactions on Acoustics, Speech and Signal Processing. 1985,33(4):823-831
    30. S. Valaee, E. Kabal. Wideband Array Processing Using a Two-Sided Correlation Transformation. IEEE Transactions on Signal Processing. 1995,43(1):160-172
    31. H. Hung, M. Kaveh. Focusing Matrices for Coherent Signal Subspace Processing. IEEE Transactions. 1988,36(8):1272-1281
    32. M. A. Doron, A. J. Weiss. On Focussing Matrices for Wide-Band Array Processing. IEEE Transactions on Signal Processing. 1992,40(6):1295-1302
    33. S. Valaee, B. Champagne, P. Kabal. Localization of Wideband Signals Using Least- Squares and Total Least-Squares Approaches. IEEE Transactions. 1999, 47(5):1213-1222
    34. G. Bienvenu, L. Kopp. Decreasing High Resolution Method Sensitivity by Conventional Beamformer Preprocessing. IEEE Transactions on Acoustics, Speech and Signal Processing. 1984,9(5):714-717
    35. M. D. Zoltowski, M. Kantz, S. D. Silverstein. Beamspace Root-MUSIC. IEEE Transactions on Signal Processing. 1993,41(11):344-364
    36. H. Wang, M. Kaveh. Sensitivity and Performance Analysis of Coherent Signal Subspace Processing for Multiple Wideband Sources. IEEE International Conference on Acoustics, Speech and Signal Processing. 1985,85(1):1325-1329
    37. H. Wang, M. Kaveh. On the Performance of Signal-Subspace Processing--Part II: Coherent Wide-Band Systems. IEEE Transactions on Acoustics, Speech and Signal Processing. l987,35(11):1583-1591
    38.韩卫杰,陈向东.改进MUSIC算法在DOA估计中的研究. [西南交通大学硕士学位论文]. 2006:12-19
    39.李石岗,丛玉良,张旭利.宽带信号DOA估计的一种快速算法.吉林大学学报, 2009,27(1):1-5
    40.肖国有,屠庆平.声信号处理及应用.西安:西北工业大学出版社, 1994:107-139
    41. Y. S. Yoon, L. M. Kaplan, J. H. MeClellan. TOPS: New DOA Estimator for Wideband Signals. IEEE Transactions on Signal Processing. 2006,54(6):1977-1989
    42. Y. Guo, H. Wang, B. Luo. Analysis of DOA Estimation Spatial Resolution Using MUSIC Algorithm. Proceedings of SPIE. 2005, 15985(1):59852S1-59852S4.
    43. B. Porat, B. Friedlander. Analysis of the Asymptotic Relative Efficiency of the MUSIC Algorithm. IEEE Transactions on Acoustics, Speech and Signal Process. 1988, 36(4):532-544
    44. P. Stocia, A. Nehorai. MUSIC Maximum Likelihood and Cramer-Rao Bound. IEEE Transactions on Acoust, Speech and Signal Processing. 1989,37(5):720-741
    45. J. E. Hudson. Adaptive Array Principles. Stevenage,U K:Peregrinus,1981:52-58
    46.周林,赵拥军.一种新的均匀圆阵宽带波束域高分辨测向算法.信号处理, 2009,25(3):394-397
    47.汤琦,黄建国,杨旭东.自适应波束域高分辨方位估计新方法.系统仿真学报. 2007,19(7):1583-1585
    48.林飞龙,冯大政.自适应阵列波束形成算法研究. [西安电子科技大学硕士学位论文]. 2007:46-50
    49. S. Sivanand, J. Yang, M. Kaveh. Focusing Filters for Wideband Direction Finding. IEEE Transactions. 1991,39(2):437-445
    50. M. Wax, S. Tie-Jun, T. Kailafh. Spatio-tempoml Spectral Analysis by Eigenstructure Methods. IEEE Transactions on Acoustics, Speech, and Signal Processing. 1984,32 (4):817-827
    51.张刚兵,刘渝.基于子频带分解的宽带信号干涉法测向算法.系统工程与电子技术, 2009,31(3):523-526
    52.周陬,王宏远.循环MUSIC算法的误差分析及改进.华中科技大学学报, 2007,35(7):22-26
    53.陈洪光,余圣发,沈振康.基于一致聚焦的宽带信号波达方向估计.通信学报, 2006,27(1):64-67
    54.薄保林,廖桂生.宽带阵列信号DOA估计算法研究, [西安电子科技大学硕士学位论文]. 2007:21-23
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.