泥沙淤积对闸门启门力的影响及行走支承和水封摩阻的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国内外一些水工闸门在开启过程中出现的启闭机超载、卡死,甚至闸门破坏等事故,闸门的运行安全越来越被重视,而在设计阶段对闸门启闭力的合理估算是关系到闸门能否正常运行的重要因素。目前我国现行的《水利水电工程钢闸门设计规范》(SL74-95)中,给出了平面闸门和弧形闸门在清水中启门力的计算公式。但在实际工程中,依据规范中的公式计算结果,而选取的启闭机容量出现了很多问题。本文将对这些问题进行深入研究,具体内容如下:
     (1)根据国内几座水库淤沙统计资料的分析结果,提出了将门前淤积的泥沙考虑为由粗细颗粒组成的宾汉体泥沙模型。在此泥沙模型中,粗颗粒之间的碰触和相对滑动提供了摩擦剪切应力,而细颗粒之间的絮凝作用在闸门开启的瞬间提供了极限剪切应力。这两种力共同构成了泥沙临界屈服应力。并应用数学模型对泥沙临界屈服应力的计算方法进行了验证。同时考虑到泥沙对闸门面板的作用方式,提出了两种减轻泥沙淤积影响的水工闸门结构,即:双导轨倾斜平面闸门结构和偏心无铰弧形闸门结构。
     (2)结合Kelvin振子模型、等效阻尼、瞬现温度以及摩擦接触面弹塑性判据,提出了滑动摩擦系数计算方法。应用已有的文献数据对此摩擦系数计算方法进行了验证。然后,将滚轮在轨道上的滚动简化成圆柱体与无限半平面的接触问题,提出了滚轮摩阻力臂计算方法。并应用数学模型对滚轮摩阻力臂计算方法进行了验证。最后,通过改变自润滑轴承中润滑剂的作用方式,提出了两种能够提供“主动润滑”的自润滑轴承结构。
     (3)基于对行走支承中的滚动轴承的能量消耗形式的认识,提出了滚动轴承的摩阻力臂计算方法。并应用已有的文献数据对摩阻力臂计算方法进行了验证。
     (4)将止水橡胶摩擦产生的原因归结为滞后变形、黏着效应以及犁沟效应三种因素作用,提出了滑动摩擦系数计算方法。
     (5)根据水流的伯努利方程和动量方程,分别提出了闸门启闭过程中的下吸力和上托力的计算方法。并应用数学模型对该计算方法进行了验证。
     (6)考虑了门前泥沙的干容重、泥沙的孔隙率、淤积的泥沙性质(如:较细的黏土泥沙,极细泥沙等)、泥沙与闸门的接触面积、泥沙的水平压力、行走支承摩阻力、下吸力以及门顶和梁格中附带泥沙等因素,提出了在有泥沙淤积情况下的平面和弧形闸门启门力计算方法。并应用实测资料对上述计算方法进行了验证。此外,基于Visual Basic程序开发平台,采用数据库、图形处理、文档生成及计算仿真等计算机技术,开发了DP-1.0设计仿真平台。
With home and abroad some hydraulic-gates of opening-process appearing hoistoverload, deadlocking, or even destroy of the accidents, the gate run security is paidmore and more attention. At the design stage of a reasonable estimate of the gateopening and closing force is related to the gate of the normal operation of importantfactors. At present, our current norms " Hydraulic and hydroelectric engineeringspecification for design of steel gate "(SL74-95) gives the plane and radial gate oflifting-force formula in water. However, in actual operation, according to thespecification formula of the calculated results to select hoist capacity, it leads to manyproblems. This paper will be on these issues in-depth study, as follows:
     (1)According to the analysis of several domestic reservoirs of the sedimentstatistics, siltation of sediment in front of the gate will be consideration to the coarseand fine particles sediment Bingham model. In this sediment model, the contact andthe relative sliding among the coarse particles supply frictional shearing stress, andflocculation of the among fine particles supplies the limit of shear stress. in the gatesopening of the moment. These two forces together constitute the sediment criticalyield stress. And it is using a mathematical model to valid the sediment critical yieldstress calculation method. Simutaneously, considering coarse particles mode of actionto the gate panel in the siltation, this paper proposes two reduced-siltation-effect ofhydraulic gate structures, namely: the dual-rail-inclined plane gate structure and theeccentric-hingeless radial gate structure.
     (2) Firstly, combined with Kelvin-oscillator-model, the equivalent-damping,ephemeral-temperature and the elastoplastic criterion of frictional contact surfaces,this paper proposes the coefficient of sliding friction. And it applies the existingliterature data to valid the friction coefficient calculation method. Secondly, the scrollwheel which is in orbit simplifies into a cylinder with infinite half-plane contactproblem. It proposes wheel-frictional-resistance-arm calculation method. And itapplies mathematical model to valid wheel-frictional-resistance-arm calculationmethod. The last one, by changing the mode of action of the lubricant inself-lubricating bearings, this paper proposes two self-lubricating bearing structureswhich are able to provide "active lubrication".
     (3) Based on the understanding of the rolling bearing, in the walking support, ofthe energy consumption of the form, this paper proposes rolling-frictional–resistance -arm calculation method. And it applies existing literature data to valid the frictional-resistance-arm calculation method.
     (4) The sealing rubber friction generation attributes to hysteresis deformation,adhesion effects and furrow effect of three factors. This paper proposed thecalculation method of the coefficient of sliding friction.
     (5)According to Bernoulli and momentum equations of the flow, this paperrespectively gives the calculation method of the under-suction and lifting forces in theopening and closing process. And it applies mathematical model to verify the abovecalculation method.
     (6) On the one hand, considering of the sediment dry bulk density in the frontgate, porosity of the sediment, silt sediment properties (such as: the finer sediment ofclay, fine silt, etc.), the contact area of the sediment and the gate, the sediment thelevel pressure, walking-bearing friction, under-suction and the sediment in the top ofthe door and grillage, etc, the paper proposes the lifting-force calculation method ofthe plane and radial gate in the siltation. And it uses measured-data to verify the abovecalculation method. On the other hand, based on Visual Basic program-development-platform, database, graphics processing, document generation, and simulation ofcomputer technology, this paper develops the DP-1.0design simulation platform.
引文
[1]中华人民共和国水利部.SL74-95水利水电工程钢闸门设计规范[S].北京:中国水利水电出版社,1995.
    [2]李善征,方伟.水库底洞发生泥沙淤堵工程实例分析[J].北京水利,2002(4):29~31.
    [3]韩立,李念祖,张黎明,成万鹏,庄文忠等.石泉水电站中孔平面工作闸门原型观测成果及分析.水利水电技术[J].1985,(1):18~25.
    [4]蔡文刚,马明训,侯建章,杨柏成.西郑闸闸门启闭力原型试验[J].海河水利,1990,(4):10~13.
    [5]李国庆,杨纪伟,杨波,李冰.天桥水电站泄洪洞工作闸门启闭力原型观测成果分析[J].水利水电技术,2005,36(10):1~4.
    [6]向定汉,张宏志,李贵谋,程龙华.江口水电厂进水闸启门力的测试计算与分析[J].中国农村水利水电,2000,(5):23~25.
    [7]李标,郑圣义.流溪河水电站泄洪闸门、启闭机检测及复核计算[J].大坝与安全,2001,(3):45~49.
    [8]何成连,王大实,赵有鑫,宋超格.天津市宁车沽防潮闸闸门启闭力测试及分析[J].水利水电工程设计,2000,19(4):36~38.
    [9]杨立信.俄罗斯几座大坝事故情况简介[J].大坝与安全,2002,(1):36~38.
    [10]Todd,Robort.V.Folsom spillway gate failure and lessons[C].ProceedingsCongress of the Internatonal Associaton of Hydraulic Research,IAHR,1997,D,66~71.
    [11]Frederick A. Locher, Douglas W.Adams, John J. Cassidy, Michael J.Lewis,Hydraulics of a jammed sluice gate[C].Proceedings of the InternationalConference on Hydropower, IAHR,1995,2389~2402.
    [12]韩其为.水库淤积[M].北京:科学出版社,2003.
    [13]韩其为.水库不平衡输沙的初步研究[C].水库泥沙报告汇编,黄河泥沙研究协调小组编印,1973:145~165.
    [14]韩其为,吴卫民.泥沙运动统计理论[M].北京:科学出版社,1984.
    [15]何明民,韩其为.挟沙能力级配及有效床沙级配的概念[M].水利学报,1989,(3):7~26.
    [16]何明民,韩其为.挟沙能力级配及有效床沙级配的确定[M].水利学报,1990,(3):1~12.
    [17]韩其为.非均匀悬移质不平衡输沙的研究[M].科学通报,1997,(17):804~808.
    [18]夏毓常.关于泥沙淤积对闸门启闭力影响的估算方法[J].人民黄河.1980(3):19~22.
    [19]中国水利学会泥沙专业委员会主编.泥沙手册[M].北京:中国环境科学出版社,1992,638~639.
    [20]姜淑慧,苏广新,裴彦青.三门峡水利枢纽11#底孔坝前清淤及斜门提启[J].水利水电工程设计,2006(6):3~5.
    [21]练继建,徐国宾,杨敏,邹少军.青铜峡水库坝前清淤问题研究[C]//黄河小浪底水库泥沙处理关键技术及装备研讨会文集,郑州:黄河水利出版社,2007.6.
    [22]徐国宾,任晓枫.坝前淤泥对闸门启门力影响的模拟相似性及方法[J].水利学报,2000(9):61~64
    [23]张黎明.几种水工闸门启门力摩擦系数原型观测成果分析[J].水力发电,1987,(8):35~40.
    [24]刘细龙,陈福荣.闸门与启闭设备[M].北京:中国水利水电出版社,1999.
    [25]D.Dowson. History of Tribolgy[M]. London: Longman Group Limited,1979.
    [26]E.Rabinowicz. Friction and Wear of Materials (2ndedition)[M].John Wileyand Sons Inc,1995.
    [27]B.N.J.Persson. Sliding Friction: Physical Principles and Applications[M].Springer,2002.
    [28]Tomlinson G A. A molecular theory of friction[J]. Phil Mag Series,1929,7:905-939
    [29]D.F.Moore.The Friction and Lubriction of Elastomers[M]. Oxford:PergamonPress,1972,288.
    [30] I.L.Singer,H.M.Pollock(Eds.).Fundamentals of Friction[M]: Macroscopicand Microscopic Processes. Proceedings of the NATO Advanced StudyInstitute. Kluwer Academic Publishers,1992.
    [31]F.P.Bowden, D.Tabor. The Friction and Lubrication of Solids[M].Oxford:Clarendon Press,2001.
    [32]B.N.J.Persson,E. Tosatti(Eds). Physics of Sliding Friction. Dordrecht[M]:Kluwer Academic Publishers,1996.
    [33]H.Czichos,K.H.Habig.Triboligie-Handbuch[M].Reibung und Verschlei.2.,überarb. und erw. Aufl.,Wiesbaden,Vieweg,2003.Ⅸ,666S.
    [34]K.V.Frolov(Ed.).Modern Tribology[M].Resutlts and Perspectives.Moscow,2008,480S.
    [35]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2008
    [36]Frenkel Y I,Kontorova T. On the Theory of Plastic Deformation andTwinning[J]. Zh Eksp Teor Fiz,1938,8:1340.
    [37]Frank F C,vander M erwe J H. One-dimensional dislocations I Statictheory[J]. Proc R Soc A,1949,198:205-225.
    [38]Braun O M,Kivshar Y S. Nonlinear dynamics of the Frenkel-Kontorovamodel[J]. Phys Rep,1998,306:1-108.
    [39]Czichos H. Tribology a systems approach to the science and technology offriction, lubrication and wear[M]. Holland: Elsevier,1979.
    [40]Bak P. Commensurate phases, incommensurate phases and the devil’sstaircase[J]. Rep Progr Phys,1982,45:587-592.
    [41]Tomanek D,Zhong W,Thomas H. Calculation of an ato-mically modulatedfriction force in atomic-force microscopy[J]. Europhys Lett,1991,15(8):887-892.
    [42]Helman J S,Baltensperger W,Holyst J A. Simple model for dry friction[J].Phys Rev B,1994,49(6):3831-3838.
    [43]Gyalog T,Bammerlin M L R,Meyer E,etal. Mechanism of AtomicFriction[J]. Europhys Lett,1995,31:269-274.
    [44]Sasaki N,Kobayashi K,Tsukada M. Atomic-scale friction image of graphitein atomic-force microscopy[J].Phys Rwv B,1996,54(3):2138-2149
    [45]Ludema K C. Mech an ism2based mod eling of friction and wear[J]. Wear,1996,200(122):127.
    [46]Weiss M,Elmer F J. Dry Friction in the Frenkel-Kontorova-TomlinsonModel:Static Properties[J]. Phys Rev B,1996,53(11):7539-7549.
    [47]Weiss M,Elmer F J. Dry Friction in the F renkel-Kontorova-TomlinsonModel:dynamical properties[J]. Z Phys B,1997,104:55-69.
    [48]Israelachcili J K. Micritribology and microrheology of molecularly thinliquid film[M]//Modern Tribology Handbook,Bhusban B eds,New York:CRC Press LLC,2001:24-66.
    [49]许中明,黄平.摩擦微观能量耗散机理的复合振子模型研究[J].物理学报,2006,55(5):2427-2432.
    [50]关红艳.SrO·6Fe2O3磁性丁腈橡胶的摩擦、磨损机理与热氧老化研究[D].[兰州理工大学博士学位论文].兰州:兰州理工大学,2011.
    [51]何世权.纳米Fe3O4磁性复合丁腈橡胶的摩擦、磨损性能研究[D].[兰州理工大学博士学位论文].兰州:兰州理工大学,2008.
    [52]Roth F L,Driscoll R L,Holt W L.Frictional properties of rubber[J].Journal ofResearch of the National Bureau of Standards,1942,28:439.
    [53]Cooper R P, Ellis B. The effects of run-in on rubber friction[J].Journal ofApplied Polymer Science,1982,27(12):4735~4744.
    [54]钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,2003.
    [55]窦国仁.论泥沙启动流速[J].水利学报,1960,(4):45~60.
    [56]府仁寿,卢永清,陈亚聪.轻质砂的启动流速[J].泥沙研究,1993,(1):84~89.
    [57]付旭东,王广谦.低浓度固液两相流颗粒相本构关系的动力学研究[J].清华大学学报,2002,42(4):560~563.
    [58]韩其为.淤积物干容重的分布及应用[J].泥沙研究,1997,(2):10~16.
    [59]Bagnold R A. An approach to the sediment transport problem form generalphysics[J]U.S.Geol. Survey,Prof.Paper No.1966,442-Ⅰ:37.
    [60]Brownlie W R. Flow depth in sand-bed channels[J]. J.Hydr. Div., ASCE,1983,109(7):959~990.
    [61]Cellino M,Graf W H. Sediment-laden flow in open channel undernon-capacity and capacity conditions[J]. J.Hydraulic Engineering,ASCE,1999,125(5):455~462.
    [62]Einstein H A. Formula for the transportation of bed load[J].Trans, ASCE,1942,107:561~597.
    [63]Einstein H A. The bed load function for sediment transportation in openchannel flows[M]. In:U.S.Dept.Agri.,ed.Tech.Bull.1950,1026,71.
    [64]Einstein H A,El-Samni A. Hydrodynamic Forces on a rough wall[J].Rev.Modern Physice,1949,21(3):520~524.
    [65]王新声.不含细颗粒浑水的流变特性[D].清华大学水利系硕士研究生论文,1981.
    [66]费祥俊.高含沙水流的颗粒组成及流变特性[J].第二届河流泥沙国际学术讨论会论文集,水利电力出版社,1983,:296~308.
    [67]沈寿长,谢慎良.黏性泥石流的结构模式和流变特性[J].铁道部科学研究院西南研究所论文集,第二集,西南交通大学出版社,1991:1~10.
    [68]钱宁,马惠民.浑水的黏性及流型[J].泥沙研究,1958,3(3):52~77.
    [69]钱意颖,杨文海,赵文林等.高含沙均质水流基本特性的试验研究[J].黄河水流委员会水利科学研究所,科学研究论文集,第一集,河南科技出版社,1989:216~230.
    [70]费祥俊.黄河中下游含沙水流黏度的计算模型[J].泥沙研究,1991,(2):1~13.
    [71]费祥俊.高浓度浑水的极限剪切应力[J].泥沙研究,1981,(3):19~28.
    [72]唐存本.含沙水流的宾汉极限应力的计算方法[J].泥沙研究,1981,(2):60~65.
    [73]万兆惠,钱意颖.高含沙水流的室内试验研究[J].人民黄河,1979,(1):53~56.
    [74]张浩,任增海.高含沙水流沉降规律和阻力特性[J].河流泥沙国际学术讨论会论文集,1980:184~194.
    [75]Migniot.C.不同的极细沙(淤泥质)物理性质的研究及其在水动力作用下的性质[M],La Houille Blanche,(7).(丁联臻译,北京电力设计院印,1977.)
    [76]邵学军,王兴奎.河流动力学概论[M].北京:清华大学出版社,2005.
    [77]钱宁.高含沙水流运动[M].北京:清华大学出版社,1986.
    [78]沙玉清.泥沙运动学引论[M].北京:中国工业出版社,1965.
    [79]徐国宾.河工学[J].北京:中国科学技术出版社,2011.
    [80]Hirt C W, Nichols B D. Volume of Fluid (VOF) Method for the Dynamicsof Free Boundaries[J]. Journal of Computational Physics.1981,39(1):201~225.
    [81]李人宪.有限体积法基础[M].北京:国防工业出版社,2008.
    [82]Malvern,L.E.Introduction to the Mechanics of a Continuous Medium[M].Prentice-Hall,Upper Saddle River,NJ,1969.
    [83]Hattel,J.H and Hansen,P.N.A Control Volume-Based Finite DifferenceMethod for Solving the Equilibrium Equation in Terms of Displacements[J].Appl.Math Modeling,1995,19(4):210~243.
    [84]James M.brethour (2003).Incremental Elastic Stress Model[M].FlowScience.Inc,2003.
    [85]Qian Ning.Hyper-Concentrated Sediment Flow[M].Beijing:TSingHuaUniversity Press,1986.
    [86]石雨亮,陆晶,詹义正,石常伟,余金燕.泥沙的水下休止角与干容重计算[J].武汉大学学报,2007,40(3):14~17.
    [87]詹义正,谢葆玲.散体泥沙的水下休止角[J].水电能源科学,1996,14(1):56~59.
    [88]中华人民共和国电力工业部.DL5077-1997水工建筑物荷载设计规范[S].北京:中国电力出版社,1998.
    [89]吴媚玲.水工建筑物[M].北京:清华大学出版社,1991.
    [90]P.A.Kolkman. A Simple Scheme for Calculating the Add Mass of HydraulicGate[J]. Journal of Fluids and Structures,1988,2(4):339~353.
    [91]Ajanta Sachan, Dayakar Penumadu. Effect of Micro-fabric on ShearBehavior of Kaolin Clay[J].Journal of Geotechnical and Engineering,2007,133(3):306~318.
    [92]Salehi M. Sivakugan N. Effects of Lime-Clay Modification on theConsolidation Behavior of the Dredged Mud[J].Journal of Waterway,Port,Coastal and Ocean Engineering,2009,135(6):251~258.
    [93]Qitao Yi,Youngchul Kim,Masafumi Tateda.Sludge Floc Behavior in anElongated Rectangular Settling Tank[J].Journal of EnvironmentalEngineering,2009,135(11):1206~1212.
    [94]范崇仁.水工钢结构设计[M].北京:中国水利水电出版社,1999.
    [95]刘正林.摩擦学原理[M].北京:高等教育出版社,2009.
    [96]方昆凡.公差与配合实用手册[M].机械工业出版社,2006.
    [97]瓦伦丁L.波波夫著.接触力学与摩擦学的原理及其应用[M].李强,雒建斌译.北京:清华大学出版社,2011.
    [98]刘延柱,陈文良,陈立群.振动力学[M].北京:高等教育出版社,1998.
    [99]陆明万,罗学富.弹性理论基础[M].北京:清华大学出版社,2001.
    [100]王敏中,王炜,武际可.弹性力学教程[M].北京:北京大学出版社,2011.
    [101] Eric E. Magel, Joseph Kalousek. The application of contact mechanics torail profiledesign and rail grinding[J].Wear,2002,253(1):308~316.
    [102] C.-Y. Hui and J. M. Baney. Contact Mechanics and Adhesion ofViscoelastic Spheres[J].Langmuir,1998,14(22):6570~6578.
    [103] Gun Young Choi, Soojin Kim, and Abraham Ulman. Adhesion HysteresisStudies of Extracted Poly(dimethylsiloxane) Using Contact Mechanics[J].Langmuir,1997,13(23):6333~6338.
    [104] Kim, K.-S., McMeeking, R.M. and Johnson, K.L.. ADHESION, SLIP,COHESIVE ZONES AND ENERGY FLUXES FOR ELASTIC SPHERESIN CONTACT[J]. Journal of the Mechanics and Physics of Solids,1998,46(2):243~266.
    [105]白润波,曹平周,曹茂森.大型水工钢闸门滚轮与轨道表层热处理指标研究[J].工程力学,2009,26(11):184~189.
    [106]沈玺,方鹏,宋小青.浅谈ANSYS与SolidWorks的数据交换[J].装配制造技术,2006,(5):50~57.
    [107] T.A.Harris, M.N.Kotzalas,著.滚动轴承分析(第一卷)[M].罗继伟,马伟译.北京:机械工业出版社,2009.
    [108] T.A.Harris, M.N.Kotzalas,著.滚动轴承分析(第二卷)[M].罗继伟,马伟译.北京:机械工业出版社,2009.
    [109]摩尔.摩擦学原理及应用[M].黄文治,等,译.北京:机械工业出版社,1992.
    [110]裴有福,金元生,温诗铸.轮轨黏着的影响因素及其控制措施[J].国外铁道车辆,1995(2):5~11.
    [111] Meng Yonggang, Hu Bo, Chang Qiuying. Control of local friction ofmental/ceramic contacts in aqueous solutions with an electrochemicalmethod [J]. Wear,2006,260:305~309.
    [112] Harris, T., Establishment of a new rolling bearing fatigue life calculationmodel, Final report U.S. Navy Contact N00421-97-C-1069,February23,2002.
    [113] Harris, T. and Barnsby,Rn Tribological performance prediction of aircraftgas turbine mainshaft ball bearings, Tribol.Trsns.,41(1),60!68,1998.
    [114] Lundbery, G., Motions in loaded rolling element bearings, SKFunpublished report,1954.
    [115] Jones, A., Ball motion and sliding friction in ball bearings, ASME TransJ.Basic Eng.,81,1959.
    [116] Reynolds, O.,Philos. Trans. R. Soc. London,166,155,1875.
    [117] K.L:.Johnson.Contact mechanics(6thprinting of the1sted.). CambridgeUniversity Press,2001.
    [118] Bohmer. Auswirkung des Werkstoffverhaltens auf die rechnerischErmittelte Belastbarkeit der Schiene.Dusseldorf:VDI-Verlag,2004.
    [119]克拉盖尔斯基N B,等,著.摩擦磨损原理[M].汪一麟,等,译.北京:机械工业出版社,1982.
    [120] K.L.Johnson. The effect of spin upon the rolling motion of an elasticsphere on a plane Transactions ASME,Journal of Applied Mechanics,1958,25:332.
    [121] F.W.Carter. The electric locomotive. Proc. Inst. Civil Engn.,201,221-252,1916, Discussion Pages253-289.
    [122] L.D.Landau, E. M. Lifschitz. Theory of Elasticity(Theoretical Physics,Vol.7),3rdedition,1999,Butterworth-Heinemannn,Oxford,8~9.
    [123] K.L. Contact Mechanics(Ninth Printing). Cambridge University Press,2003.
    [124]杜庆华,余寿文,姚振汉.弹性理论[M].科学出版社,1986.
    [125]王龙甫.弹性理论[M],科学出版社,1984.
    [126]钱伟长,叶开源.弹性力学[M].科学出版社,1980.
    [127] Drutowski, R., Energy losses of balls rolling on plates, Friction and Wear,Elsevier, Amsterdam,1959, pp.16-55.
    [128] Greenwood, J. and Tabor, D., Proc. Phys. Soc. London,71,989,1958.
    [129] Drutowski, R., Linear dependence of rolling friction on stressed volume,Rolling Contact Phenomena, Elsevier, Amsterdam,1962.
    [130] I.E.Dzyaloshinskii, E. M. Lifschitz, L.P. Pitaevskii. General theory of vander Waals forces, Sov. Phys. Us.,1961,4:153~176.
    [131] Kendall. Molecular Adhesion and Its Application. Kluwer AcademicPublishers,2001.
    [132] Maugis. Contact, Adhesion and Rupture of Elastic Solids. Heidelberg:Springer-Verlag Berlin,2000.
    [133]杨鹏,郭庆国.高压闸门伸缩式Ⅲ型止水试验研究[J].陕西水利发电,1993,9(3):35~38.
    [134]刘礼华,欧珠光,陈五一,方寒梅.高压闸门水封的非线性计算理论与应用[M].北京:中国水利水电出版社,2010.
    [135] G. Saccomandi,R.W. Ogden. Mechanics and Thermomechanics ofRubberlike Solids.(CISM International Centre for Mechanical SciencesCourses and Lectures).Wien; Springer-Verlag,2004.
    [136] K.A.Grosch. The relation between the friction and visco-elastic propertiesof rubber. proceedings of the Royal Society of London, Series A,Mathematical and Physical Sciences,1963,274(1356):21~39.
    [137] Alan N. Gent. Engineering with Rubber-How to Design RubberComponents[M]. Carl Hanser Verlag, Munich,2001.
    [138] Ellis B. Run-in effects on rubber friction[J]. Wear,1984,93(1):111~113.
    [139]徐国宾,訾娟,高仕赵.平面闸门启闭过程中的动水垂直力数值模拟研究[J].水电能源科学,2012,(10):132~135.
    [140]赵振兴,何建京.水力学[M].清华大学出版社,2010.
    [141]杨华舒,王洪,施宁,等.西洱河二级大坝泄洪闸门应力检测分析[J].水力发电,2003,29(3):40~43.
    [142]杨华舒,王洪,施宁,等.西洱河四级大坝泄洪闸门应力检测分析[J].云南水力发电,2003(5):47~51.
    [143] LIU Xiaoqing, ZHAO Lanhao, CAO Hui ying. Lifting force acting on agate with high head[J]. Journal of Hydrodynamics,2011,23(3):379~383.
    [144]黄金林.平面闸门底缘型式及选择[J].长春工程学院学报,2004,02:9-~12.
    [145]撒文奇.基于三维设计方法的重力坝CAD_CAE集成设计平台研究与开发[D].天津:天津大学,2010.
    [146] Speziale C G, Gatski T B,Fitzmaurice N. An analysis of RNG basedturbulence models for homogeneous shear flow[J]. Physics of FluidsA,1991,3(9):2278~2281.
    [147] Victor Yakhot, Steven A. Renormalization group analysis of turbulence[J].Journal of Scientific Computing,1986,1(1),3~7.
    [148]张晋西.Visual Basic与AutoCAD二次开发[M].北京:清华大学出版社,2002.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.