生态友好灌区水资源联合调度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水资源短缺地区井渠结合灌溉要求对水资源进行优化调度,调度中还要考虑到水生态问题。本文对灌区水资源联合调度进行深入研究,通过理论探析,不同尺度水资源问题研究,采用软件和硬件相结合的方法建立了灌区水资源联合调度完整的理论和技术体系,对于华北地区井渠结合灌区的水资源调度的理论和实践具有非常重要的意义。本文主要研究内容与成果如下:
     (1)提出灌区水资源可信调度的概念
     应用计算机领域可信概念及其理论,提出了灌区水资源可信调度的概念,根据宏观和微观相结合等原则,阐述了不同尺度灌区水资源问题研究的内容,研究成果促进了灌区水资源联合调度理论的进一步完善和发展。
     (2)全球尺度小麦主产区灌溉必要性研究
     在空间分辨率为30弧分的全球范围内,运用GEPIC模型估计了全球范围灌溉对增加作物产量的作用。得出全球不同地区小麦产量的高低对灌溉的依赖性。为水利决策部门运用大范围区域上的信息来制定水和粮食政策提供了可靠依据,解决了灌区水资源调度的必要性问题。
     (3)灌区尺度水生态诊断和退化机理初探
     在研究典型灌区生态系统的结构与功能的基础上,根据引黄灌区水循环特点,设计以水文特征、水环境状况、泥沙状况、盐碱化状况等表征灌区水生态健康状况的指标体系。着重分析引黄水文情势,灌区盐碱化变化情况及规律等重要水生态问题。采用Pearson相关分析法,进行灌区生态系统退化机理研究。
     (4)灌区地表水地下水联合调度研究及软件研制
     针对多级配水过程,采用逐级分解协调的方法,进行灌区灌溉水资源调度,得出灌区主要农作物适宜灌水模式和灌溉制度。根据人民胜利渠灌区的基本情况和运行特点,确立了调控地下水水位为解决灌区地下水与地表水联合运用问题的主线。研制集信息采集、数据分析、优化调度和可视化操作于一体的分布式人机交互多水源联合调度智能监控系统。
     (5)水资源承载力模糊综合评价及地下水优化
     以人民胜利渠灌区为例,建立多层次模糊综合评价模型来评价大型灌区水资源承载力。建立灌溉水入渗的土壤水-地下水转换过程及相应的数学模型,进行土壤水分深层渗漏的研究;建立地下水优化管理模型,对地下水进行优化。
     (6)人工湿地去除灌区退水面源污染方法和效率研究
     以实验为基础,进行人工湿地系统总体净化效率、植物优选、运行参数精确调控研究。研究结果表明,人工湿地对面源污染净化效果较好,可大面积推广。
Well-canal Combined Irrigation, which required the joint operation of surface-water andground-water and considered the water ecological problem, is the main irrigation mode in the most ofirrigation areas of North China. With the different characteristics of water resources, surface-water andground-water can be transformed into each other, and these characteristics determine the difficulty ofhigh efficient utilization of water resources in irrigation areas. The deeply studies have been taken onthe joint operation of water resources in irrigation areas. Thorough studying different scales of waterresources and the combination of software and hardware, a completive and comprehensive system oftheory and technology of the joint operation of water resources have been established in irrigation areas,which have very significant meaning of the theory and application of water resources operation inwell-canal combined irrigation areas of North China. The main content and results of this paper are asfollows:
     (1) Raising the concept of credibility operation of water resources in irrigation
     Aiming at the well-canal combined irrigation mode in the most of irrigation areas of North China,applying the theory and concept of credibility in the field of computer science, the concept of credibilityoperation of water resources in irrigation has been raised. According to the principles such as thecombination of macroscopic and microscopic aspects, the issues of water resources research underdifferent scales have been discussed in irrigation areas and the research results promote the furtherimprovement and development of the theory of joint operation of water resources.
     (2)Research on the influence of global-scale irrigation on the wheat yield
     With30arc of spatial resolution in global scale, this paper uses GEPIC model to estimate theeffects produced by global-scale irrigation over the increase of crop yields. According to drought anddifferent irrigation depth with100,200,300,400mm/yr, high-resolution images of wheat yields havebeen made and the results show the dependent of the magnitude of wheat yields on the irrigation indifferent areas over the world, which provides reliable basis for water conservancy policy-makingdepartments using the information in a wide range of areas to make policy about water and food.
     (3) R(3)Preliminary research on water ecological degradation mechanism and diagnosis inirrigation areas scale
     According to the hydrological cycle characteristics of the yellow river irrigation areas, the indexsystem has been designed on the basis of studying the structure and function of typical irrigation areasecosystem, which presents the condition of the water ecological health that includes hydrologicalcharacteristics, water environment situation, sediment condition, salinization condition and so on.Several significant water ecological issues such as hydrological situation and salinization developmentin yellow river irrigation areas are emphatically analyses. Pearson correlation analysis was used whenresearch on degradation mechanism of ecological system in irrigation areas.
     (4)Research on the joint operation of surface-water and ground-water with relevant software development in irrigation areas
     Aimed at the multileveled water distribution, the methods of gradually decomposition andcoordination are used in this paper to dispatch the irrigation water resources according to the waterdistribution from up to down and the optimization from down to up, through which, the appropriateirrigation patterns and systems for the main crops in irrigation areas are obtained. In order to settle theproblem of the joint operation of surface-water and ground-water, the main line of regulationgroundwater level has been established on the basis of the operational characteristics and basic situationof the People’s Victory Canal Irrigation Area. The distributed man-machine interaction intelligentmonitoring system with the multi-water joint operation has been developed, which combined thefunctions of information collection, data analysis, optimal operation and visual operation.
     (5)Fuzzy comprehensive evaluation of water resources carrying capacity and groundwateroptimization
     Take the People’s Victory Canal Irrigation Area and the Baoji Irrigation Area for example, themodel of multi-level fuzzy comprehensive evaluation has been established to evaluate water resourcescarrying capacity in large scale irrigation areas. Water resources carrying capacity has been analysesfrom the field dimension, time dimension and interval dimension. The process of the seepage ofirrigation water from soil water to groundwater and the corresponding mathematical model have beenmade, the soil water deep leaching has been researched, the optimum model of groundwatermanagement has been established so as to optimize groundwater.
     (6)Research on the methods and efficiency of removal non-point source pollution of recession flowwith artificial wetland in irrigation areas
     On the basis of experiment, the research has been made in the general purification efficiency ofartificial wetland system, the purification efficiency with advanced treatment of subsurface flowwetland and the removal effect of siphon experiment with enlargement discharge. Results shows thatusing artificial wetland has a better effect on purification of non-point source pollution, and it can beused in broad application.
引文
[1]白晓慧,王宝贞,余敏等.人工湿地污水处理技术及其发展利用[J].哈尔滨建筑大学学报,1999,32(6):88~92.
    [2]包为民.水文预报[M].北京:中国水利水电出版社.2006:1~8.
    [3]毕经纬,张佳宝,陈效民等.应用HYDRUS~1D模型模拟农田土壤水渗漏及硝态氮淋失特征[J].农村生态环境.2004,20(2):28~32.
    [4]常炳炎,薛松贵,张会言等.黄河流域水资源合理分配和优化调度[M].郑州:黄河水利出版社,1998:45~49.
    [5]陈蓓玉,孟庆莹.水资源管理信息系统设计[J].水问题论坛,1994,(2):25~26.
    [6]陈守煜.工程模糊集理论与应用[M].北京:国防工业出版社,1998:11~15.
    [7]陈守煜.系统模糊决策理论及应用[M].辽宁:大连理工大学出版社,1994:105~109.
    [8]陈文伟.决策支持系统及其开发[M].北京:清华大学出版社,1994:4~59.
    [9]陈西平.计算降雨及农田径流污染负荷的三峡库区模型[J].中国环境科学,1992,12(1):48~52.
    [10]陈亚仙,任晓冬,荣建国等.农业面源污染的危害与防治措施[J].贵州农业科学.2010,38(1):95~98.
    [11]陈亚新,康绍忠.非充分灌溉原理[M].北京:中国水利水电出版社,1995:13~20.
    [12]陈禹六.大系统理论及其应用[M].北京:清华大学出版社,1988:36~57.
    [13]陈玉民,肖俊夫,王宪杰等.非充分灌溉研究进展及展望[J].灌溉排水,2001(2):73~75.
    [14]陈子明,袁锋明,姚造华.北京潮土NO3~N在土体中的移动特点及其淋失动态[J].植物营养与肥料学报.1995,1(2):71~79.
    [15]程吉林,刘胜松,周振红.地面水与地下水联合调度非线性模型的求解方法[J].水利学报,1999(10):53~57.
    [16]崔理华,卢少勇.污水处理的人工湿地构建技术[M].北京:化学工业出版社,2009:5-15.
    [17]崔远来,李远华.作物缺水条件下灌溉供水量最优分配[J].水利学报,1997(3):37~42.
    [18]崔远来.非充分灌溉优化配水技术研究综述[J].灌溉排水,2000(1):66~70.
    [19]戴国瑞,冯尚友,孙培华.水资源科学分配[M].北京:水利水电出版社,1983:23~40.
    [20] D·P·洛克斯.水资源系统规划与分析[M].姚汝祥等译.北京:水利电力出版社,1988:25~58.
    [21]丁瑞勇,朱湖根.缺乏水文地质参数地区地表水、地下水联合调度研究[J].合肥工业大学学报,1998,21(4):105~110.
    [22]丁志雄.灌区(区域)水资源优化利用与专家决策研究[D].郑州:华北水利水学院,1999.
    [23]段学花,王兆印,余国安.以底栖动物为指示物种对长江流域水生态进行评价[J].长江流域资源与环境,2009,18(3):241~247.
    [24]范锡朋.黑河流域“河流—含水层系统”基本特征及其合理开发利用[J].甘肃地质学报.1991(02).
    [25]冯尚友.多目标决策理论、方法与应用[M].武汉:华中理工大学出版社.1990:35~59.
    [26]冯尚友.水资源持续利用与管理导论[M].北京:科学出版社,1999:5~26.
    [27]冯尚友.水资源系统工程[M].武汉:湖北科学技术出版社,1991:5~8.
    [28]付为国,卞新民.镇江内江湿地植物群落演替规律及植被修复策略[D].南京:南京农业大学,2006.
    [29]甘泓,韩素华,王浩.数据驱动的一般水资源系统优化模拟模型[M]//水资源大系统优化规划与优化调度经验汇编.北京:中国科学技术出版社,1995:15~69.
    [30]龚家栋.河西地区水资源开发与环境退化综合治理[J].甘肃环境研究与监测.1996(3):15~18.
    [31]谷东起,赵晓涛,夏东兴等.基于3S技术的朝阳港泻湖湿地景观格局演变研究[J].海洋学报,2005,27(2):91~97.
    [32]顾朝林.北京土地利用/覆盖变化机制研究[J].自然资源学报,1999,14(4):307~312.
    [33]顾基发,魏权龄.多目标决策问题[J].应用数学与计算数学,1980,(1):25~27.
    [34]郭元裕,李寿声.灌排工程最优规划与管理[M].北京:水利电力出版社,1994:15~25
    [35]郭元裕.湖北四湖地区除涝排水系统规划中大系统优化模型和求解方法[J].水利学报.1984,(1):5~9.
    [36]郝芳华,孙峰,张建永.官厅水库流域非点源污染研究进展[J].地学前缘,2002(2):385~386.
    [37]郝芳华,程红光,杨胜天.非点源污染模型—理论方法与应用[M].北京:中国环境科学出版社,2006:1~10.
    [38]贺北方,刘正才.灰色系统理论方法与应用[M].北京:气象出版社,1995:6~10.
    [39]贺北方,于章林,刘正才.多级模糊层次综合评价的数学模型及应用[J].系统工程理论与实践,1989(6):15~18.
    [40]胡毓骐,李英能.华北地区节水型农业技术[M],北京:中国农业科技出版社,1995:181~185.
    [41]胡运权,郭耀煌,运筹学教程[M].北京:清华大学出版社,1998:221-226.
    [42]黄宝全,沈菊艳.Jensen模型在灌区“三种水”联合调度中的应用[J].灌溉排水,1992,11(3):39~43.
    [43]黄满湘,章申,唐以剑等.模拟降雨条件下农田径流中氮的流失过程[J].土壤与环境,2001,10(1):6~10.
    [44]黄清华,张万昌. SWAT分布式水文模型在黑河干流山区流域的改进与应用[J].南京林业大学学报(自然科学版),2004,28(2):22~26.
    [45]黄时达,杨有仪,冷冰等.人工湿地植物处理污水的试验研究[J].四川环境,1995,14(3):5~7.
    [46]黄永基,马滇珍.区域水资源供需分析方法[M].南京:河海大学出版社,1990:45~48.
    [47]黄元仿,李韵珠,陆锦文.田间条件下土壤氮素运移的模拟模型Ι[J].水利学报.1996(6):9~14.
    [48]黄元仿,李韵珠,陆锦文.田间条件下土壤氮素运移的模拟模型Ⅱ[J].水利学报.1996(6):14~23.
    [49]惠二青,刘贯群,邱汉学等.适用于中大尺度流域的非点源污染模型[J].农业环境科学学报,2005,24(3):552~556.
    [50]姜翠玲,崔广柏.湿地对农业非点源污染的去除效应[J].农业环境保护,2004,21(5):471~473.
    [51]姜启源.数学模型[M].北京:高等教育出版社,2002:224-228.
    [52]李贵宝,周怀东,尹澄清.湿地植物及其根孔在非点源污染治理中的展望[J].中国水利,2003,A刊:51~52
    [53]李虎.小清河流域农田非点源氮污染定量评价研究[D].北京:中国农业科学院,2009:14-18.
    [54]李怀恩,刘玉生.流域非点源污染模型的建立与应用实例[J].环境科学学报,1997,17(2):141~147
    [55]李其军,刘培斌.官厅水库流域水生态环境综合治理关键技术研究与示范[M].北京:中国水利水电出版社,2009:20-30.
    [56]李荣均.模糊多准则决策理论与应用[M].北京:科学出版社,2002:120-125.
    [57]李寿声,汤瑞凉.灌溉工程地面水和地下水联合运用[J].华东水利学院学报,1983(4):1~ll.
    [58]李永杰,马孝义,康绍忠.泾惠渠灌区地表与地下水优化调度研究[J].农业工程学报,1999,15(1):124~128.
    [59]李裕元,邵明安.模拟降雨条件下施肥方法对坡面磷素流失的影响[J].应用生态学报,2002,13(11):1421~1424.
    [60]李远华.节水灌溉理论与技术[M].武汉:武汉水利电力大学出版社,1999:50~53.
    [61]梁威,吴振斌,周巧红等.复合垂直流构建湿地基质微生物类群及酶活性的空间分布[J].云南环境科学,2007,21(1):5~8.
    [62]刘超翔,胡洪营,张健等.人工复合生态床处理低浓度农村污水[J].中国给水排水,2002,18(7):1~4.
    [63]刘培斌,丁跃元,张瑜芳.田间一维饱和—非饱和土壤中氮运移与转化的动力学模式研究[J].土壤学报.2000,37(4):490~498.
    [64]刘文兆.水源有限条件下作物合理灌溉定额的确定[J].水利学报,1998(9):75~80.
    [65]刘肇禕,郭元裕.灌排工程系统分析[M].北京:水利水电出版社,1994:145~150.
    [66]鲁学仁.华北暨胶东地区水资源研究[M].北京:中国科学技术出版社,1993:15~19.
    [67]马建琴,陈守煜,邱林等.作物灌溉制度的模糊优化设计[J].华北水利水电学院学报,2000(4):15~18.
    [68]马剑敏,靳萍,吴振斌.沉水植物对重金属的吸收净化和受害机理研究进展[J].植物学通报,2007,24(2):232~234.
    [69]马文正,袁宏源.水资源系统模拟技术[M].北京:水利电力出版社,1987:60~65.
    [70]聂相田,邱林.水资源可持续利用管理不确定性分析方法及应用[M].郑州:黄河水利出版社,1999:182~196.
    [71]庞靖鹏.非点源污染分布式模拟[D].北京:北京师范大学,2007.
    [72]彭超英,朱国洪,尹国等.人工湿地处理污水的研究[J].重庆环境科学,2000,22(6):43~45.
    [73]钱蕴壁,李英能,杨刚等.节水农业新技术研究[M].郑州:黄河水利出版社,2002:272~291.
    [74]钱正英,陈家琦,冯杰.人与黄河和谐发展[J].河海大学学报(自然科学版),2006.34(1):1~5.
    [75]钱正英.中国水利.[M]北京:水利电力出版社,1991:61~65.
    [76]乔平林,张继贤,燕琴等.利用TM6进行土壤水分的监测研究[J].测绘通报,2003,(7):14~18.
    [77]秦福来.基于SWAT模型的非点源污染模拟研究[D].北京:首都师范大学,2006.
    [78]邱林,徐建新,陈南祥等.区域水资源可持续利用管理理论与应用[M].郑州:黄河水利出版社,2003:5~59.
    [79]容致旋.伏尔加河下游有利于生态的春季放水可行性研究[J].水利水电快报,1994(1):12~14.
    [80]山仑,康绍忠,吴普特.中国节水农业[M].北京:中国农业出版社.2004:125~128.
    [81]沈振荣,汪林,于福亮等.节水新概念——真实节水的研究与应用[M],中国水利水电出版社,2000:4~10.
    [82]施鸿宝.专家系统[M].西安:西安交通大学出版社,1990:93~98
    [83]石玉林,卢良恕.中国农业需水与节水高效农业建设(中国可持续发展水资源战略研究报告集第4卷)[M].北京:中国水利水电出版社,2001:126~128.
    [84]史培军,潘耀忠,陈晋等.深圳市土地利用/覆盖变化与生态环境安全分析[J].自然资源学报,1999,14(4):293~299.
    [85]水利部国际合作与科技司.河流生态修复技术现状及展望[J].河流生态修复技术研讨会论文集,中国水利水电出版社.2005.
    [86]水利电力部水文局.中国水资源评价[M].北京:水利电力出版社,1987:12~16.
    [87]宋松柏.内蒙古河套灌区灌排信息管理决策支持系统[J].灌溉排水,2001,(1):69~73.
    [88]孙贵兰.多层次模糊综合评价法在生态农业评价中的应用[J].农村生态环境,1998(1):54~57.
    [89]孙景生,康绍忠.我国水资源利用现状与节水灌溉发展对策[J].农业工程学报,2000(3):1~5.
    [90]万超,张思聪.基于GIS的潘家口水库面源污染负荷计算[J].水力发电学报,2003,(2):62~68.
    [91]汪志农,冯浩.节水灌溉管理决策专家系统[M].郑州:黄河水利出版社,2001:6~16.
    [92]王朝辉,李生秀,王西娜.旱地土壤硝态氮残留淋溶及影响因素研究[J].土壤.2006,38(6):676~681.
    [93]王春泽,乔光建.河北省降水特性与农业需水耦合关系分析[J].南水北调与水利科技.2008,6(6):90~93,96.
    [94]王飞儿,陈英旭.基于CIS的非点源污染模型的类型、组成及其发展方向[J].水土保持科技情报,2003,(3):4~6.
    [95]王浩,王建华,秦大庸等.基于二元水循环模式的水资源评价理论方法[J].水利学报,2006,37(12):1495-1502.
    [96]王欢.香溪河河流生态服务功能评价[J].生态学报,2006,26(9):2971~2978.
    [97]王金平,孙雪峰.作物水分与产量关系的综合模型[J].灌溉排水,2001(6):76~80.
    [98]王培.基于GIS的SWAT模型在农业面源污染模拟中的应用[D].合肥:安徽农业大学,2008.
    [99]王萍.灌区灌溉模式优选及实时灌溉决策支持系统[D].郑州:华北水利水电学院,2002.
    [100]王让会,卢新民,宋郁东等.西部干旱区生态需水的规律及特点-以塔里木河下游绿色走廊为例[J].应用生态学报,2003,14(4):520~524.
    [101]王仕琴.地下水模型MODFLOW与GIS的整合研究[D].北京:中国地质大学(北京),2006.
    [102]王淑英、陈守煜.加权平均的权重优选算法及其应用[J].水利学报,2003.(12):12~15.
    [103]王树谦,陈南祥.水资源评价与管理[M].北京:水利电力出版社,1996:1~4.
    [104]王晓燕,秦福来,欧洋等.基于SWAT模型的流域非点源污染模拟-以密云水库北部流域为例[J].农业环境科学学报,2008,27(3):1098~1105.
    [105]王雅芬.决策支持系统[M].西安:陕西科学技术出版社,1989:87~89.
    [106]王中根,朱新军,夏军等.海河流域分布式SWAT模型的构建[J].地理科学进展,2008,27(4):1~6.
    [107]翁文斌,王浩.宏观经济水资源规划多目标决策分析方法研究与应用[J].水利学报,1995,(2):15~20.
    [108]翁文斌,王浩.宏观经济水资源规划决策分析方法[J].水利规划,1995,(2):20~24.
    [109]翁文斌,王浩.基于宏观经济的区域水资源多目标集成系统[J].水科学进展,1995,(2):25~3~27.
    [110]吴季松.水资源及其管理的研究与应用[M].北京:中国水利水电出版社,2000:40~50.
    [111]吴振斌,梁威,成水平等.植物根区土壤酶活性与污水净化效果极其相关分析[J].环境科学学报,2001,21(5):622~624.
    [112]夏汉平.人工湿地处理污水的机理与效率[J].生态学杂志,2002,21(4):51~59.
    [113]夏军,左其亭,绍民诚.博斯腾湖水资源可持续利用-理论、方法、实践[M].北京:科学出版社,2003:122~125.
    [114]徐德福,李映雪.用于污水处理的人工湿地的基质、植物及其配置[J].湿地科学,2007,5(1):32~38.
    [115]徐建新,冯跃志,黄强等.季节性河道引水灌区优化配水研究[J].灌溉排水,2000(2):22~25.
    [116]徐建新.区域水资源规划及灌区节水灌溉专家系统研制[D].西安:西安理工大学,2000.
    [117]徐丽花,周琪.不同填料人工湿地处理系统的净化能力研究[J].上海环境科学,2002,21(10):603~605.
    [118]许春华,周琪,宋乐平.人工湿地在农业非点源污染控制方面的应用[J].重庆环境科学,2005,23(6):70~72.
    [119]许宜新,王浩,甘泓.华北地区宏观经济水资源规划理论与方法[M].郑州:黄河水利出版社.1997.8~58.
    [120]叶秉如.水资源系统优化规划和调度[M].北京:中国水利水电出版社,2001:1~5.
    [121]尹士君,汤金如.人工湿地中植物净化作用及其影响因素[J].煤炭技术,2006,25(12):115~118.
    [122]俞汇.区域水资源优化配置研究与水资源定价方法探讨[D].郑州:华北水利水电学院,2001.
    [123]袁宏源.地面水与地下水联合利用的数学模型[J].武汉水利电力学院学报,1984(4):18~21.
    [124]詹道江,叶守泽.工程水文学[M].北京:中国水利水电出版社.2000:101~105.
    [125]张东,张万昌.SWAT分布式流域水文物理模型的改进及应用研究[J].地理科学,2005,25(4):434~440.
    [126]张军,周琪,何蓉.表面流人工湿地中氮磷的去除机理[J].生态环境,2004,13(1):98-101.
    [127]张立中.水资源管理[M].北京:中央广播电视大学出版社,2001:1~15.
    [128]张银辉,罗毅.基于分布式水文学模型的内蒙古河套灌区水循环特征研究[J].资源科学,2009,31(5):763~771.
    [129]张永勇,王中根,于磊等.SWAT水质模块的扩展及其在海河流域典型区的应用[J].资源科学,2009,31(1):94~100.
    [130]章申.环境问题的由来、教程机制、我国现状和我国环境科学发展的趋势[J].中国环境科学,1996,16(6):401~105.
    [131]中国国家灌排委员会,中国水利学会农田水利专业委员会.灌溉农业的可持续性-农民对可持续灌溉农业的参与[M].北京:中国水利水电出版社,2001.7,54~62.
    [132] Adcock P W, Ganf G G. Growth characteristics of three macrophyte species growing innatural and constructed wetland system[J].Water Science and Technology,1994,29(4):95~102.
    [133] Ainai Ma.Remote Sensing Information Models (Part2)[M].Publishing House of PekingUniversity,1997:10~15.
    [134] Alvord H H,Kadlec R H.Atrazine fate and transport in the Des Plaines Wetlands[J].Ecol.Model.2006,90:97~107.
    [135] Andre Luize Zambalde, Lidia Micida Segre.Computers on the Farm: Human Resources,Software Development,Software and Hardware Selection[M].Sixth International Conference onComputers in Agriculture,Cancun, Mexico,1996:56~95.
    [136] Ann Y. et al.Influence of chemical amendments on phosphorus immobilization in soils from aconstructed wetland[J].Ecological Engineering,2005,14:157~156.
    [137] Arias C A,Bubba M D,Brix H.Phosphorus removal by sands for use as media in subsurfaceflow constructed reed beds[J].Water Research,2004,35(5):1159~1168.
    [138] Assessment S A S W. Millennium Ecosystem Assessment Sub-Global Component:Purpose, Structure and Protocols[R].2003:15-28.
    [139] Batjes N H.A homogenized soil data file for global environmental research: a subset ofFAO.Working Paper and Preprint95/10b,International Soil Reference and Information Center,Wageningen, the Netherlands,1995.
    [140] Batty L C, Atkin L, Manning D A. Assessment of the ecological potential of mine~watertreatment wetlands using a baseline survey of macroinvertebrate communities[J]. EnvironmentalPollution,2005,138:412~419.
    [141] Bessembinder J J E,Leffelaar P A,Dhindwal A S,et al.Which crop and which drop,and thescope for improvement of water productivity[J].AGR WATER MANAGE,2005,73(2):113.
    [142] Bijan Ghahraman, Ali-Reza Sepaskhah.Optimal allocation of water from a single purposereservoir to an irrigation project with predetermined multiple cropping patterns[J].IrrigationScience,2002,21(3),127~137.
    [143] Blank H.Optimal irrigation decision with limited water water.Ph D. Dissimition,CivilEnginerring Department[M],Colorado State University,1975.45~89.
    [144] Brian L. Becker, David P. Lusch, Jiaguo Qi.Identifying optimal spectral bands from in situmeasurements of Great Lakes coastal wetlands using second-derivative analysis[J].Remote Sensingof Environment,2005,97(2):238~248.
    [145] Brinson M M,Rheinhardt R D.The role of reference wetlands in functional assessment andmitigation [J].Ecological Applications,1996(6):69~76.
    [146] Brinson M M.A hydrogeomorphic classification for wetlands [R].Technical Report WRP-DE-4,U. S. Army Engineers Waterways Experiment Station,Vicksburg,MS,1993.
    [147] Cavero J, Plant R E, Shennan C,et al.Modeling nitrogen cycling in tomato-safflower andtomato-wheat rotations[J].AGR SYST,1999,60(2):123.
    [148] Charles J. V r smarty, Pamela Green, Joseph Salisbury, et al. Global Water Resources:Vulnerability from Climate Change and Population Growth[J].Science,2000,289(5477):284~288.
    [149] Chen Shouyu.Relative Membership Function and New Frame of Fuzzy Sets Theory forPattern Recongnition[J].The Journal of Fuzzy Mathematics,1997,(2):5~9.
    [150] Cheng S,Grosse W,Karrenbrock F,etal.Efficiency of constructed wetland sindecanted monitionof water polluted by heavy metals[J].Ecol Eng,2005,18(3):317~325.
    [151] Chris C.Effect of loading rate planting on treatment of dairy farm wastewaters in constructedwetlands: Removal of nitrogen phos~phorous[J].Water Research,1995,29(1):17~26.
    [152] Costanza R, d Arge R, de Groot R, et al.The value of the world’s ecosystem services andnatural cap ital[J].Nature,1997,386(6630):253~260.
    [153] Daily G C.Nature’s Services: Societal Dependence On Natural Ecosystems.Washington D C:Island Press,1997.
    [154] Daily G C, Soderqvist T, Aniyar S, et al.Ecology-The value of nature and the nature ofvalue[J].Science,2000,289:394-396.
    [155] Davies T H,Cottingha M.Phosphorus removal from wastewater in a constructed wetland [M].BocaRaton,FL:LewisPublisher,1993:315~320.
    [156] Davies T H,Cottingham P D,Bavor H J,Mitchell D S.The use of constructed wetlands fortreating industrial effluent[J].Water Science and Technology,1994,29(4):227~232.
    [157] D ll P, Siebert S. Global modeling of irrigation water requirements[J].WATER RESOUR RES,2002,38(4):1037.
    [158] D ll P, Siebert S.A digital global map of irrigated areas[R].ICID Journal,2000,49(2):55~66.
    [159] Dong mei dui,He yong.Design and Implementation of Intelligent Design Support System forGrain Postproduction[R].Transactions of the CSAE,2001.1,38~43.
    [160] Drizo A,Frost C A,Grace J, et al.Phosphate and ammonium distribution in a pilot-scaleconstructed wetland with horizontal sub~surface flow using shale as a substrate[J].WaterResearch,2007,34(9):2483~2490.
    [161] Drizo A,Frost C A,Smith K A,et al.Phosphate and ammo~nium removal by constructedwetlands with horizontal subsurface flow using shale as a substrate[J].Water Science andTechnology,1997,35(5):95~102.
    [162] Drizo A.Physico-chemical screening of phosphate-removing sub-strates for use in constructedwetland[J]. Environmental Science&Policy,2006,7:329~343.
    [163] Eileen C,Mackay D S.Effects of distribution-based parameter aggregation on a spatiallydistributed agricultural nonpoint source pollution model[J].J. Hydrology,2004,295:211~224.
    [164] EROS Data Center.Global30arc~second digital elevation model.Inhttp://edcwww.cr.usgs.gov, Anonymous ftp access edcftp.cr.usgs.gov,1998
    [165] FAO. Soil units of the soil map of the world[M]. FAO-UNESCO-ISRIC, Rome, Italy,1990.
    [166] FAO.FAOSTAT: FAO statistical databases[M].Food and Agriculture Organization of theUnited Nations, Rome,2006.
    [167] Faurèsa J M, Hoogeveena J, Bruinsmab J. The FAO irrigated area forecast for2030[M].Foodand Agriculture Organization, Rome, Italy,2003.
    [168] Finlayson C M,Davidson N C,Stevenson N J.Wetland inventory,assessment andmonitoring:Practical techniques and identification of major issues [A].Proceedings of Workshop4,2ndInternational Conference on Wetlands and Development, Dakar,Senegal,8.14November,1998[C]. Supervising Scientist Report161,Supervising Scientist,Darwin,2001.
    [169] Gassman P W, Reyes M R,Green C H,et a1.The soil and water assessment tool:historicaldevelopment,applications and future research directions[J].Trails Am Soc Agric Biol Engrs,2007,50(4):1211~1250.
    [170] Gburek W J,Sharpley A N,Heathwaite L,et al. Phosphorus management at the watershedscale:A modification of the phosphorus index[J].J Environ Qual,2000,29:130~144.
    [171] Gburek W J,Sharpley A N.Hydrologic controls phosphorus loss from upland agriculturalwatersheds[J].J Environ Qual,1998,27(2):267~277.
    [172] Green M B,Martin J R.Constructed reed beds clean up storm over flows on small waste watertreatment works[J].Water environed.1996,68(6):1054~1060.
    [173] Grêt~Regamey, Peter Bebi, Ian D. Bishop, et al.Linking GIS~based models to valueecosystem services in an Alpine region Adrienne[J].Journal of Environmental Management,2008,89:1905.
    [174] Griffiths Martin.欧盟水框架指令手册[M].北京:中国水利水电出版社,2008:150-189.
    [175] Haberl R.Constructed wetlands:a chance to solve wastewater problems in developingcountries [J].Wat. Sci. Tech.,1999,40(3):11~17.
    [176] Hammer D A.Construsted wetlands for wastewater treatment[M].Michigan:Lewis Publishersinc.1989:24-36.
    [177] Hanks R,Hill R.Modelling crop response to irrigation to soil, climate and salnity[M].UtahState University.1980:89~102.
    [178] Hraman,N.Sunlkumar.Learning Invariance and Generalization in High~Order NeuralNetwork[J].Applied Optics,1987,(3):4972~4978.
    [179] Huang M, Gallichand J, Zhong L.Water–yield relationships and optimal water managementfor winter wheat in the Loess Plateau of China[J].IRRIGATION SCI,2004,23(2):47–54.
    [180] J R D.Evaluating landscape health:integrating societal goals and biophysicalprocess[J].Journal of environmental management.1998,53:1~15.
    [181] Johnson P R, Laurenson E M, and Howell D T. A design procedure for the conjunctive use ofsurface and groundwater storages[M].Australian water Resource Councile, Tech Paper No3,Canberra Australia,1973:1112-1120.
    [182] K S Schmidt,A K Skidmore. Spectral discrimination of vegetation types in a coastal wetland.[J].Remote Sensing of Environment,2003,85(1):92~108.
    [183] Knisel W.G.CREAMS: A Field-scaled Model for Chemicals,Runoff,and Erosion fromAgricultural Management Systems[R].Proc.13th Conf.Modeling and Simulation.1982:1555~1559.
    [184] Koottatep T,Polprasert C,Koanh N T,et al.Septage dewatering in vertical-flow constructedwetlands located in the tropics[J].Wat.Sci.Tech,2006,44(2~3):181~188.
    [185] Leff B, Ramankutty N, Foley J A.Geographic distribution of major crops across theworld[J].Global Biogeochemical Cycles,2004,18(1):1009~1001.
    [186] Li S R,Ding T,Wang S.Reed beds treatment form unicipalan dindustrial wastewater inBeijing[J].Journal Institution Water Environ Manage,1995,9(6):581~588.
    [187] Liu J, Wiberg D, Zehnder A J B, Yang H. Modelling the role of irrigation in winter wheatyield, crop water productivity, and production in China[J].IRRIGATION SCI,2007a,26(1):21~33.
    [188] Liu J, Williams J R, Zehnder A J B, Yang H.GEPIC-modelling wheat yield and crop waterproductivity with high resolution on a global scale[J].AGR SYST,2007b,94(2)478~493.
    [189] Liu J.Modelling global water and food relations–development and application of a GIS~basedEPIC Model. Diss. ETH No.17069, PhD. Swiss Federal Institute of Technology, Zurich,2007.
    [190] M.Heidari,Ven Te Chow.Discrete Differential Dynamic programming Approach to waterResources Optimization[J].W.R.R,1971,(3):27~35.
    [191] Mcdonald M G, Harbaugh A W.A modular three-dimensional finite~difference ground~waterflow model[M]. U.S. Geological Survey Techniques of Water~Resources Investigations,1998.
    [192] Mcnevin D,Harrison M,King A,et al.Towards an integrated performance model for subsurfaceflow constructed wetlands[J].Environ.Sci.Health,2005,A35(8):1415~1429.
    [193] Mitchell C,Mcnevin D.Alternative analysis of BOD removal in subsurface flow constructedwetlands employing Monod kinetics[J].Water Res.,2001,35(5):1295~1303.
    [194] Mitchell T D, Jones P D.An improved method of constructing a database of monthly climateobservations and associated high~resolution grids[J].INT J CLIMATOL,2005,25(6):693~712.
    [195] Mitsch W J,Home A J,Naim R W. Nitrogen and phosphorous retention in wetlands: ecologicalapproaches to solving excess nutrient problems[J]. Ecol,Eng,2004.14(1~2):1~7.
    [196] Monteith J L.Climate and the efficiency of crop production in Britain[M].PhilosophicalTransactions of The Royal Society B,1977,281:277~294.
    [197] Mufit Ozden.A Binary State Dp Algorithm for Operation problems of Multireservior systems[J].W.R.R.1984,(1):36~38.
    [198] N. S. Raghuwanshi,W. W. Wallender.Forecasting and optimizing furrow irrigationmanagement decision variables[J].Irrigation Science,1999,19,1~6.
    [199] O.T.Sigvaldason.A Simulation Model for Operating a Multipurpose MultireservoirSystem[M].Water Resources Research,1976.25~69.
    [200] Oweis T, Pala M, Ryan J. Stabilizing rainfed wheat yields with supplemental irrigation andnitrogen in a Mediterranean climate[J].AGRON J,1998,90(5):672~681.
    [201] R.Amir,Z.Kally.A Model of the National Water Carrier as a Means of Designing its Operation.Tahal, Water Planning for Israel[J].TelAviv,1963:355.
    [202] R.Bellman, S.Dreyfus.Applied Dynamic programming[M].1962:28~35.
    [203] Rao Netal. Real-time adaptive irrigation scheduling under a limited water supply[J].Agriculture Water Management,1992,(4):12~14.
    [204] Rosegrant M W, Ringler C.Impact on food security and rural development of transferringwater out of agriculture[J].Water Policy,2000,1(6):567~586.
    [205] Rosenzweig C, Iglesias A, Fischer G,et al. Wheat yield functions for analysis of land-usechange in China[J].ENVIRON MODEL ASSESS,1999,4:115~132.
    [206] S. C.Parikh. Linear Dynamic Decomposition Programming of Optimal Long Range Operationof a Mutiple Muti~Purpose Reservoir System[M].Operations Research Center Report, Universityof California, Berkeley,1966.10.
    [207] Sun G,Gray K R,Biddlestone A J,et al.Treatment of agricultural wastewater in a combinedtidalflow-downflow reed beds system[J].Water Science and Technology,1999,40(3):139~146.
    [208] Susanne M. Scheierling,G. E.Cardon,Robert A.Young.Impact of irrigation timing onsimulated water crop production functions[J].Irrigation Science,1997,18(1),27~31.
    [209] USGS. HYDROLK.United States Geological Survey,2000.
    [210] Williams J R, Jones C A, Kiniry J R et al. The EPIC crop growth model[R].Transactions ofthe ASAE,1989,32:497~511.
    [211] Williams J R,Arnold J G, Kiniry J R,et a1.History of model development at Temple[J].TexasHydrol Sci J,2008,53(5):948~960.
    [212] Westman W E.How much are nature's services worth[J].Science,1977,197:960~964.
    [213] Yang H, Wang L, Abbaspour K C,et al. Virtual water trade: an assessment of water useefficiency in the international food trade[J].HYDROL EARTH SYST SC,2006,10:443~454.
    [214] Yin H,Shen W.Using reed beds for winter operation of wetland treatment system forwastewater[J].Wat.Sci.Tech.,1995,32(3):111~117.
    [215] Yu w,Y Y Halmes.Multllevel optimization for conjunctive use of ground and surfacewater[J].Water Res Res,1974,10(4),1677~1684.
    [216] Yu.W,Y.Y.Haimes.Multilevel Optimization for Conjunctive use of Ground and SurfaceWater[J]. Water Resources1974,10(8):29~31
    [217] Zhang H, Oweis T. Water-yield relations and optimal irrigation scheduling of wheat in theMediterranean region[J].AGR WATER MANAGE,1999,38(3)195~211.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.