喷气纺纱喷嘴内三维旋转气流场及柔性纤维运动的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喷气纺纱以其速度快、产量高、用工少等优越性,被普遍认为是最具发展前景的一种新型纺纱方法,它是通过在两喷嘴内所形成的相互反向旋转的气流对纤维须条施加捻度而成纱的。目前,人们对喷气纺纱的研究主要集中在成纱机理、喷气纱结构、各种参数对喷气纱性能的影响上,且这些研究多是基于纺纱实验的,有较大的局限性。事实上,喷气纱的结构及其特性是由纤维在喷嘴内的运动规律所决定的,然而,在这方面仅有曾泳春对纤维在第一喷嘴内的运动进行了二维数值研究。而喷嘴内的高速旋转气流是高度三维的瞬时流场;再者,据两喷嘴的不同作用,第一、二喷嘴被分别做成圆柱管和渐扩管,因而,两喷嘴内的流动特性是不同的,从而影响了纤维在其内的运动。
     基于上述原因,本文先用数值与实验方法对喷气纺不同喷嘴(包括有开纤管的喷嘴)内的三维旋转流场进行研究,并讨论了各喷嘴的不同参数对流场和纱特性的影响,因而,对这些喷嘴参数进行了优化。在对流场模拟的基础上,将柔性纤维离散成由不计质量的杆所连结的珠链,并认为纤维的质量以及所受力都分布在珠上,而杆只起到传递内力和变形的作用,在考虑纤维的弯曲和扭转变形情况下,建立其动力学方程,对柔性纤维在高速旋转流中的运动进行模拟。
     本文的主要研究内容和结果如下:
     1.三维瞬时旋转气流场的模拟
     对所有喷嘴来说,由于气流的反喷,在喷孔上游壁面附近会形成回流区,而在喷孔的下游会发生涡破裂。在不同喷嘴中,这些回流和涡破裂将经历复杂的变化。在第一喷嘴内,涡破裂是周期性变化的螺旋型破裂,且在整个周期内,涡破裂位置缓慢地向下游移动,而上游回流会向喷嘴入口方向拉伸;在第二喷嘴内涡破裂由最初的泡型破裂发展为锥形破裂,且在锥形破裂的内部螺旋结构也呈现周期性变化,而上游回流的大小随时间的增加先增长后减小;在有开纤管的第一喷嘴内,随时间的增长,初时泡型涡破裂沿流向拉伸增长,进一步地,泡型破裂转变为螺旋破裂,最后,当在喷孔的上游和沟槽台阶后的两回流区不再变化时,螺旋型破裂呈现周期性衰减。
     2.喷嘴压力对旋流场的影响
     对所有喷嘴来说,当喷嘴压力增加时,速度增加,但其增长趋势下降。然而,速度分布规律不随喷嘴压力的变化而变化。然而,随着喷嘴压力的增加,涡破裂的发生位置在第一喷嘴(或有开纤管)内向喷嘴出口方向移动,而在第二喷嘴内向喷孔方向移动。
     3.第一、二喷嘴几何参数对旋流场的影响
     在两喷嘴内,喷孔上游的速度和回流强度都随喷射角的增加而增加;然而,喷孔下游的涡破裂位置在两喷嘴内的移动是相反的,即,在第一喷嘴内向喷嘴出口方向移动,而在第二喷嘴内向喷孔方向移动。当喷孔数或喷孔直径增加时,速度会随之增加但其增长趋势下降;然而,涡破裂的强度和大小在第一喷嘴内减小而在第二喷嘴内却增加。由于捻室管径沿轴向变化不同,喷孔位置对两喷嘴的影响明显不同。对第一喷嘴而言,当喷孔位置变化时,其喷孔附近的速度变化不大;然而,当喷孔位于喷嘴入口附近时,较大的反喷不利于引纱。由于第二喷嘴捻室的扩散,当喷孔位置向下移动时,涡破裂的发生也移向下游。当第一喷嘴的捻室直径增加时,流动变得极为紊乱。然而,在第二喷嘴内,喷嘴出口直径的变化不影响速度分布,然而,随着喷嘴出口直径的增加,速度和涡破裂的强度都减小。
     4.开纤管沟槽参数对旋流场的影响
     对于所有工况,在沟槽和捻室内的气流旋向是相反的。沟槽高度增加时,台阶后面的角回流区的长度增大,沟槽内的初始涡环减小,并在槽底形成一个新的同向旋转涡。当沟槽宽度增加时,喷孔下游的切向速度不变,然而,喷孔下游的涡破裂以及沟槽内的涡环尺度都会稍微增加,然而,角回流区沿流向的尺度减小。随着沟槽长度的增加,角回流区的大小以及沟槽内的负切向速度和涡环大小都不变。沟槽数的变化对喷孔附近的速度分布影响不大,且四矩形沟槽喷嘴会产生较大速度和较强的涡破裂
     5.第一喷嘴内旋流的PIV实验研究
     PIV的流速测量表明,流速矢量以螺旋形沿流向衰减,并在螺旋内部存在低速区,且轴向速度以螺旋的中心为轴呈对称分布。当喷孔数增加时,轴向速度和切向速度总体上呈增加趋势,因而,旋度沿流向的衰减程度减小,且在较小的喷孔数下,流动在喷嘴出口附近变为轴流。当喷孔直径增加时,轴向速度在远离喷嘴出口的区域增大,但沿流向喷孔直径越大,轴速的衰减越快;切向速度随喷孔直径的变化较复杂,其沿流向衰减较慢。因而,随喷孔直径的增加,在喷嘴出口附近的旋动越强。
     6.第二喷嘴内流线角的流动可视化研究
     对所有工况来说,壁面流线角在总体上是沿流向逐渐减小的,这意味着壁面剪切的切向分量的衰减;在喷嘴出口截面上,流线以与管横截面同心的圆向外呈顺时针螺旋状分布,这与第一喷嘴的逆时针旋向是相反的。随喷射角度或喷孔直径的增大,壁面流线角有减小的趋势;但随着喷孔数或喷孔位置的增加,壁面流线角增加,特别是在同样的喷孔总面积下,减小喷孔直径的同时增加喷孔数会使流线角增加。
     7.纤维参数对纤维运动轨迹的影响
     对本文所研究的纤维来说,随着纤维刚度的增加,纤维的头端所形成的螺旋旋转的程度和捻回数都会稍微增加,但总体而言,纤维刚度对其在喷嘴内的运动轨迹影响不大;纤维长度增加,柔性变形程度增加,但其捻回数减少。
     8.纤维释放位置对纤维运动轨迹的影响
     在第一喷嘴中,纤维的释放位置离中心越远,纤维的刚性变形越大,其缠绕作用减弱,从而和近轴心处释放的纤维形成捻差。与之相反,在第二喷嘴中,当纤维的释放位置远离中心时,纤维的柔性增加,包缠螺距很小,从而,能更紧的缠绕芯纤维,使纱获得强力;在近轴心处释放的纤维以刚性杆状在喷嘴内旋转,是无缠绕的。
     9.喷嘴几何参数对纤维运动轨迹的影响
     在第一喷嘴中,随着喷射角或喷孔直径的增加,纤维的柔性变形程度减小,且在较小的喷射角或喷孔直径下,纤维出现有/无自纠缠的卷绕变形,不利于其在第二喷嘴内的解捻,易引起纱条干不匀。然而,在第二喷嘴中,喷射角或喷孔直径越大,纤维的柔性越大,包缠性越好,然而,当喷射角为90°时,在喷孔的远下游,纤维的头端会形成倒弯钩,将影响纱条干均匀度。
Due to advantages in processing speed and cost, air-jet spinning is accepted as one of the most promising technologies. For prevailing Murata jet spinning (MJS) system, the forming yarn is 'twisted' by operating two swirling air currents, in mutually opposite directions in two nozzles. At present, most of the information available in the literature on air-jet spinning, which was based on spinning experiments, was related to the yarn structure, the principle of yarn formation and the effects of various parameters on yarn quality. All these mainly depend on the fiber motion. Only Zeng used numerical method to study fiber motion in two-dimensional airflow field of the first nozzle. However, the swirling flows in the nozzles of air-jet spinning are highly three-dimensional and time dependent in nature. Again, according to the different functions of two nozzles, normally the first and second nozzles are made cylindrical and diverged conical shapes, respectively. It is obvious that the (?)ifferent flow behaviors in the two nozzles will lead to different motion of fiber.
     Based on the above reason, the 3D swirling flows in different nozzles (including the slotting-tube) of air-jet spinning have been studied using experimental and numerical methods in this paper. The effects of the different nozzle parameters on both the flow and yarn properties are also investigated. Hence, these nozzle parameters are optimized. A flexible fiber is modeled as rigid beads connected by mass-less rods. Only the beads generate and are affected by forces. The rods only serve to transmit forces and maintain the configuration of the fiber. The dynamical equations describing bead motion in a fiber are derived, which the fiber could be bent and twisted in the model. The flexible fiber motion in high swirling flow is calculated. The main contents and conclusions are listed below:
     1. Simulation of 3D transient swirling airflow
     For all the nozzles, a recirculation zone near the upstream wall of the injectors is generated due to reverse jet, and the vortex breakdown (VB) in the injector downstream is also observed. These vortices experience complex flow processes. In the first nozzle, periodic change of spiral-type VB can be observed; the recirculation zone near the upstream wall of the injectors increases in size and moves gradually upstream while the VB shifts slowly towards the nozzle outlet during the whole period. A conical breakdown in the second nozzle can form from the bubble breakdown, and its internal spiral structure shows periodical change; the extent of the recirculation zone in upstream of the injectors first increases, and then reduces with time. In the first nozzle with a slotting-tube, an initial bubble-type VB grows and stretches in axial direction as time is increased. Further, it experiences a transition from bubble- to spiral- breakdown. Finally, the spiral breakdown shows periodic decay as the size of two recirculations near the injector upstream wall and the step retains almost constant.
     2. Effect of nozzle pressure on swirling flow
     For all nozzles, the velocity increases and its increasing trend declines as the nozzle pressure increases. However, the rule of the velocity distribution does not change with increasing nozzle pressure. In the first nozzle (with and without the slotting-tube), VB location shifts "slightly downward the nozzle outlet with the increase of nozzle pressure. The reversed results can be obtained for the second nozzle, which VB moves in upstream direction.
     3. Effects geometric parameters of the first and second nozzles on swirling flow
     For the first and second nozzles, in the upstream of the injectors, both velocity and the strength of the recirculation flow increase with increasing the in ection angle. However, as the injection angle increases, the location of VB moves rapidly downward in the first nozzle, while it moves towards the injectors in the second nozzle. With increase in the injector diameter or injector number, the velocities increase and their increasing tendency declines. However, the strength and area of the VB decrease in the first nozzle, yet they increase in the second nozzle. For the first nozzle, the velocity near the injection location does not change significantly as injector position changes, however, as the injector position is closer to the nozzle inlet, larger reverse flow will be not helpful to draw fibers into nozzle Due to the divergence of the pipe, in the second nozzle, VB moves in downstream direction with the increase of the injection position. As the twisting chamber diameter of the first nozzle increases, the flow is more turbulent. For the second nozzle, as the nozzle outlet diameter increases, the rule of the velocity distribution does not change, however, both the velocity and the strength of the VB decrease.
     4. Effects of groove parameters of the slotting-tube on swirling flow
     For all the cases under study, there are air currents in mutually opposite direction in the grooves and the twisting chamber. With the increasing of the groove height, the length of the corner recirculation zone (CRZ) behind the step increases, and the initial vortex ring in the groove decreases and a same direction-rotating vortex forms in the bottom of the groove. As the groove width is increased, the tangential velocities in downstream of the injectors retain constant. However, the extents of both VB in downstream of the injectors and the vortex ring in the groove increase slightly, while the CRZ lengths in stream-wise direction decrease. Some factors, such as the negative tangential velocities in the grooves, the size of the CRZ and the vortex rings in the grooves keep constant with the increase of the groove length. Near the injectors, the effect of the groove number on the velocity distribution is not larger. A nozzle with four grooves will generate a larger velocity and a stronger VB.
     5. PIV study of swirling flow in the first nozzle
     In PIV experiments, the velocity, which shows a complicated helical shape, decays along the flow path. There is a low velocity zone inside the helix structure, and axial velocity distribution is axisymmetric on the centerline of the helix. As the injector number increases, both the axial and tangential velocities increase on the whole, and the degree of the swirl intensity decay with stream-wise direction decreases. For a nozzle with small number of the injectors, the swirling movement is diminished and changed to a uniform flow near the nozzle outlet. The axial velocity in the region far from the nozzle outlet increases with the increasing of the injector diameter. The larger the injector diameters are, the quicker the decay of axial velocities with stream-wise direction. However, with the increase in the injector diameter, the change of the tangential velocity is complex, and the decay of the tangential velocity is slower along the flow path. Hence, as the injector diameter increases, the swirl intensity is higher near the nozzle outlet.
     6. Flow visualization study of the wall swirl angle in the second nozzle
     For all the cases under study, the wall streamline angle decreases gradually with increasing downstream distance, signaling the decay of the tangential component of the wall shear. At the nozzle outlet cross-section, the droplet moved outward from a circle concentric with the nozzle outlet, and its tracks show a clockwise swirl. This is contrary to that of the first nozzle, which the droplets moves in counter-clockwise. With increase in the injection angle or injector diameter, the wall swirl angle decreases. However, as the injector number or the injection position increases, the wall swirl angle increases. As the total area of the injectors keeps constant, the increasing of the injector number, which means to decrease the injector diameter, will causes an increase in the streamline angle.
     7. Effects of fiber parameters on fiber motion
     For all the fiber categories under study, with increase in the fiber flexural rigidity, both the width and turn number of the helices in the leading end of the fiber will increase slightly. However, on the whole, fiber flexural rigidity has effect little on fiber motion in the nozzles. As the fiber length increases, the extent of flexural deformation of the fiber increases, while the number of turns of the winding decreases.
     8. Effects of release positions on fiber motion
     In the first nozzle, the release position of the fiber is far from the cen:er axis of the nozzle, the flexural deformation of the fiber decreases, and the extent of the winding weaken. The twist difference between edge fibers and the core ones will form. In contrast, in the second nozzle, as the release position of the fiber is close to the wall, the flexible deformation of the fiber increase. The screw-pitch of the winding decreases. Hence, the edge fiber will be more tightly wrapped on the yarn core. The fiber, which is released near the axis center, will rotate as a rigid rod, and the winding will do not occur.
     9. Effects of geometric parameters of the nozzles on fiber motion
     In the first nozzle, with the increase in the injection angle or the injector diameter, the extent of the flexible deformation of the fiber decreases. For smaller injection angle or injector diameter, coiled deformation with/without self-entanglement will form. It is bad to untwist by the second nozzle. However, in the second nozzle, the greater the injection angle or the injector diameter is, the bigger the fiber flexibility is, and the better the winding is. As the injection angle is 90°, a leading hook will forms in the far from the injectors, and yarn evenness will decrease.
引文
1. Heuberger O., Ibrahim SM., Field FC. Symposium on yarn formation technologies.Textile Res. J. 1971, 41: 768-773
    
    2. Grosberg P., Oxenham W., Miao M. The insertion of 'twist' into yarns by means of air-jets, part I: an experimental study of air-jet spinning. J. Textile Inst. 1987, 78(3): 189-203
    
    3. Krause HW., Soliman HA. Theoretical study of wrapping twist in single jet false twist spinning. Textile Res. J. 1989, 59: 546-553
    
    4. Krause HW. Staple fiber spinning systems. J. Textile Inst. 1985, 76: 185-195
    
    5. Basu DA. Progress in air-jet spinning. Textile Process. 1999, 29(3): 1- 40
    
    6. Oxenham W. Newer mothods of spinning. Textiles. 1985, 14(3): 58-62
    
    7. Lawrence CA., Baqui MA. Effects of machine variables on the structure and properties of air-jet fasciated yarns. Textile Res. J. 1991,61(3): 123-130
    
    8. How YL., Cheng K., Wong S. Air-jet surface structures. Textile Asia. 1991, 22(11):51-53
    
    9. Miao M. The insertion of twists into yarns by means of jets. Doctoral Thesis, Dept.of Textile Industries, University of Leeds, UK. 1986
    
    10. Baus A. Influence of fibre type on properties of jet-spun yarns, Doctoral Thesis,Dept. of Textile Industries, University of Leeds, UK. 1991
    
    11. Chasmawala RJ., Hansen SM., Jayaraman S. Structure and properties of air-jet spun yarns.Textile Res. J. 1990, 60(2): 61-69
    
    12. Punj SK., Ishtiaque SM., Dhingra LK. Influence of spinning conditions on structure and properties of polyester-viscose blended MJS yarns. Indian J. Fibre Textile Res. 1997, 22(6):73-83
    
    13. Unematsu I. Air-jet spinning system: murata jet spinner expanding the field of yarn application through possible diversification of the spinning technique. Textile Praxis Inst. 1986, 41(10): XIV-XV
    
    14. Punj SK., Debnath S. Radial packing density and mechanical properties of MJS yarns. Textile Asia. 1998, 29(11): 40-45
    15.Punj SK.,Moitra K.Effect of some machine variables on structure and properties of polyester-viscose air-jet spun yarn.Indian J.Fibre Textile Res.1998,23:85-93
    16.Oxenham W.,Basu A.Effect of jet design on the properties of air-jet spun yarns.Textile Res.J.1993,63(11):674-678
    17.于修业,朱军.纯棉喷气纺纱的初步探讨.中国纺织大学学报.1992,18(2):81-88
    18.邢明杰,郁崇文等.喷气纺第二喷嘴结构参数的研究,纺织学报2005,26(6):30-32
    19.Rajamanickam R.,Patel M.,Hansen SM.,Jayaraman S.Interaction of process and material parameters in air-jet spinning.Textile Res.J.1998,68(10):708-714
    20.Bhortakke MK.,Nishimura T.,Matsuo T.The structure of polyester/cotton blended air-jet spun yarn.Textile Res.J.1999,69(2):84-89
    21.Krause HW.,Soliman HA.Theoretical Study of the Strength of Single Jet False Twist Spun Yarn.Textile Res.Ins.1990,60(6):309-318
    22.Rajamanickam R.,Hansen SM.,Jayaraman S.A Computer Simulation Approach for Engineering Air-Jet Spun Yarns.Textile Res.J.1997,67(3):223-230
    23.曾泳春.纤维在喷嘴高速气流场中运动的研究和应用.东华大学博士学位论文.2003
    24.周力行.多相湍流反应流体力学.北京:国防工业出版社.2002
    25.郭烈锦.两相与多相流动力学.西安:西安交通大学出版社,2002
    26.车得福,李会雄.多相流及其应用.西安:西安交通大学出版社,2007
    27.Dong S.,Feng X.,Salcudean M.,Gartshore Ⅰ.Concentration of pulp fibers in 3D turbulent channel flow.Int.J.Multiphase Flow.2003,29:1-21
    28.Jeffery GB.The motion of ellipsoidal particles immersed in a viscous fluid.Proc.Royal Soci.London.Ser.A.1922,102:161-179
    29.Burgers JM.Second report on viscosity and plasticity.Academy of Science,Amsterdam.1938,134
    30.Anczurowski E.,Mason SG.The kinetics of flowing dispersions:Ⅱ.Equilibrium orientations of rods and discs(theoretical).J.Colloid Interface Sci.1967,23(4):522-532
    31.Bird RB.,Curtiss CF.,Armstrong RC.,Hassager O.Dynamics of polymeric liquids,volume 2,kinetic theory.John Wiley & Sons,New York,1987
    32. Nyland GH., Skjetne P.. Mikkelsen A., Elgsaeter A. Brownian dynamics simulation of needle chains.J. Chem. Phys. 1996, 105: 1198-1207
    
    33. Skjetne P., Elgsaeter A. Implementation and performance of the needle chain-algorithm for Brownian dynamics simulation. Comput. Theor. Polymer Sci. 1999, 9: 153-164
    
    34. Mikkelsen A., Knudsen KD., Elgsaeter A. Brownian dynamics simulation of needle-spring chains. Physica A. 1998, 253: 66-76
    
    35. Zhou Q., Akhavan R. A comparison of FENE and FENE-P dumbbell and chain models in turbulent flow. J. Non-Newtonian Fluid Mech. 2003, 109: 115-155
    
    36. Pham TT., Sunthar P., Prakash JR. An alternative to the bead-rod model: Bead-spring chains with successive fine graining. J. Non-Newtonian Fluid Mech. 2008, 149: 9-19
    
    37. Forgacs OL., Mason SG. Particle motions in sheared suspensions: IX. Spin and deformation of threadlike particles. J. Colloid Sci. 1959, 14:457-472
    
    38. Forgacs OL., Mason SG. Particle motion in sheared suspension: X. Orbits of flexible threadlike particles. J.Colloid Sci. 1959,14:473-491
    
    39. Salinas A., Pittman JFT. Bending and breaking fibers in sheared suspensions. Polymer Eng.Sci. 1981,21(1): 23-31
    
    40. Smith AC, Roberts WW. Straightening of crimped and hooked fibers in converging transport ducts: computational modeling. Textile Res. J. 1994,64(6): 335-344
    
    41. Kong LX., Platfoot RA. Comprtational Two-Phase Air/ Fiber Flow Within Transfer Channels of Rotor Spinning Machines. Textile Res. J. 1997, 67(4): 269-278
    
    42. Kong LX., Platfoot RA. Fibre transportation in confined channel with recirculations. Computers and Structures. 2000, 78(1): 237-245
    
    43. Yamamoto S., Matsuoka T. A method for dynamic simulation of rigid and flexible fibers in a flow field. J. Chem. Phys. 1993, 98(1): 644-650
    
    44. Yamamoto S., Matsuoka T. Viscosity of dilute suspensions of rod-like particles: a numerical simulation method. J. Chem. Phys. 1994, 100 (4): 3317-3324
    
    45. Ross RF., Klingenberg DJ. Dynamic simulation of flexible fibers composed of linked rigid bodies. J. Chem. Phys. 1997, 106(7): 2949-2960
    46.Skjetne P.,Ross RF.Klingenberg DJ.Simulation of single fiber dynamics.J.Chem.Phys.1997,107:2108
    47.Fan FG.,Soltani M.,Ahmadi G.,Hart SC.Flow-induced resuspension of rigid-link fibers from surfaces.Aerosol Sci.Technol.1997,27:97-115
    48.Soltani,M.,Ahmadi,G.Direct numerical simulation of curly fibers in turbulent channel flow.Aerosol Sci.Technol.2000,33:392--418
    49.Wherrett G.,Gartshore I.,Salcudean M.,Olson J.A numerical model of fibre motion in shear.Proc.ASME Fluids Eng.Division Summer Meeting,Vancouver,Canada,June 22-26,1997.
    50.Joung CG.,Phan TN.,Fan XJ.Direct simulation of flexible fibers.J.Non-Newtonian Fluid Mech.2001,99:1-36
    51.Ning ZM.,Melrose JR.A numerical model for simulating mechanical behavior of flexible fibers.J.Chem.Phys.1999,111(23):10717- 10726
    52.Qi DW.Direct simulations of flexible cylindrical fiber suspensions in finite Reynolds number flows.J.Chem.Phys.2006,125(11):114901-1-10
    53.Tang WZ.,Advani SG.Dynamic simulation of long flexible fibers in shear flow.CMES.2005,8(2):165-176
    54.Wang G.,Yu W.,Zhou C.Optimization of the rod chain model to simulate the motion of a long flexible fiber in simple shear flows.European J.Mech.B/Fluids.2006,25:337-347
    55.Xiang P.,Kuznetsov AV.Simulation of shape dynamics of a long flexible fiber in a turbulent flow in the hydro-entanglement process.Int.Comm.Heat Mass Transfer.2008,35(5):529-534
    56.Lindstr(o|¨)m SB.,Uesaka T.Simulation of the motion of flexible fibers in viscous fluid flow.Phys.Fluids.2007,19(11):113307-1-16
    57.Arlov AE.,Forgacs OL.,Mason SG.Particle motions in sheared suspensions Ⅳ.General behavior of wood pulp fibers.Svensk Papperstidn.1958,61(3):61-67
    58.Stokie JM,Green SI.Simulating the motion of flexible pulp finer using the immersed boundary method.J.Comput.Phys.1998,147:147-165
    59.Takemura M.,Chiba K.,Nakamura K.Motion of flexible fibers in a newtonian flow,part 2:evolution of the configuration of a single fiber in a simple shear flow.J.Textile Eng.2001,47(3-4):77-91
    60.Zhu LD.,Peskin CS.Drag of a flexible fiber in a 2D moving viscous fluid.Computers &Fluids.2007,36(2):398-406
    61.Stockie JM.Simulating the dynamics of flexible wood pulp fibres in suspension.Proc.16th Annual Int.Symp.High Perform.Computing Systems Appl.16-19 June 2002,145-151
    62.Mayo A.,Peskin C.An implicit numerical method for fluid dynamics problems with immersed elastic boundaries.Contemporary Mathematics.1993,141:261-277.
    63.宫兆新,鲁传敬,黄华.浸入边界法及其应用.力学季刊.2007,28(3):353-362.
    64.Qi DW.A new method for direct simulations of flexible filament suspensions in non-zero Reynolds number flows.Int.J.Numer.Meth.Fluids.2007,54:103-118.
    65.Tornberg AK.,Shelley MJ.Simulating the dynamics and interactions of flexible fibers in Stokes flows.J.Comput.Physics.2004,196(1):8- 40
    66.Dimitropoulos CD.,Dubief Y.,Shaqfeh ESG.,Moin P.Direct numerical simulation of polymer-induced drag reduction in turbulent boundary layer flow of inhomogeneous polymer solutions.J.Fluid Mech.2006,566:153-162
    67.郁崇文,张文庚.喷气纺喷嘴中气流场的分布规律.中国纺织大学学报.1996.22(4):47-57
    1.Gupta AK.,Lilley DG.,Syred N.Swirl Flows.Energy and Engineering Sciences Series.Abacus Press:Tunbridge Wells,U.K.,1984.
    2.Nallasamy M.Turbulence models and their applications to the prediction of internal flows:a review.Computers and Fluids.1987,15(2):151-194.
    3.Sloan DG.,Smith PJ.,Smoot LD.,Modeling of swirl in turbulent flow systems.Prog.Energy Comb.Sci.1986,12(3):163-250
    4.Guo BY.,Langrish TAG.,Fletcher DF.Numerical Simulation of Unsteady Turbulent Flow in Axisymmetric Sudden Expansions ASME J.Fluids Eng.2001,123:574-587
    5.Jochmann P.,Sinigersky A.,Hehle M.,Sch(a|¨)fer O.,Koch R.,Bauer H.J.Numerical simulation of a precessing vortex breakdown.Int.J.Heat Fluid Flow.2006,27:192-203
    6.Spail RE,Ashby BM.A numerical study of vortex breakdown in turbulent swirling flows.ASME J.Fluids Eng.2000;122(1):179-183
    7.Bradshaw P.Effects of streamline curvature on turbulent flows.AGARDograph Report No.169,1973
    8.Khodadadi JM,Vlachos NS.Effect of turbulence model constants on computation of confined swirling flows.AIAA J.1990,28(4):750-752.
    9.Abujelala MT.,Lilley DG.Limitations and empirical extensions of the k-ε model as applied to turbulent confined swirling flow.Chem.Eng.Commun.1984,31:223-236
    10.Chang KC.,Chen CS.Development of a hybrid k-ε turbulence model for swirling recirculating flows under moderate to strong swirl intensities.Int.J.Numer.Meth.Fluids.1993,16(5):421-443.
    11.Kim KY.,Chung MK.New eddy viscosity model for computation of swirling turbulent flows.AIAA J.1987,25(7):1020-1022
    12.Gupta A.,Kumar R.Three-dimensional turbulent swirling fiow in a cylinder:Experiments and computations.Int.J.Heat Fluid Flow.2007,28:249-261
    13.Weber R.,Visser BM.,Boysan F.Assessment of turbulence modeling for engineering prediction of swirling vortices in the near burner zone.Int.J.Heat Fluid Flow 1990,11(3):225-235
    14.Rhode DL.,Stowers ST.Turbulence model assessment for the confined mixing of co-swirling concentric jets.AIAA Paper.1985,1269-1277.
    15.Nikjooy M.,Mongia HC.A second-order modeling study of confined swirling flow.Int.J.Heat Fluid Flow.1991,12(1):12-19.
    16.Fu S.,Huang PG.,Launder BE.,Leschziner MA.A comparison of algebraic and differential second-moment closures for axisymmetric turbulent shear flows with and without swirl.ASME J.Fluids Eng.1988,110(2):216-221.
    17.Jones WP.,Pascau A.Calculation of confined swirling flows with a second moment closure.ASME J.Fluids Eng.1989,111(3):248-255
    18.Hogg S.,Leschziner MA.Computation of highly swirling confined flow with a Reynolds stress turbulence model.AIAA J.1989,27(1):57-63
    19.Sharif MAR,Wong YKE.Evaluation of the performance of three turbulence closure models in the prediction of confined swirling flow.Computers and Fluids.1995,24(1):81-100
    20.Nagendra D.Numerical simulations of an isothermal confined swirling jet in a dump combustor.Retrieved,from the Worm Wide Web:https://engineering.purdue.edu,2001.
    21.So RM.,Ahmed SA.,Mongia HC.An experimental investigation of gas jets in confined swirling air flow.NASA Contractor Report CR-3832 1984
    22.Hu GH.A numerical study f dynamics of a temporally evolving swirling jet.Phys.Fluids.2001,13(4):951-965
    23.Sun DJ.,Hu GH.,Gao Z.,Yin XY.Stability and temporal evolution of a swirling jet with centrifugally unstable azimuthal velocity.Phys.Fluids.2002,14(11):4081- 4084
    24.Freitag M.,Klein M.Direct Numerical Simulation of a Recirculating Swirling Flow.Flow.Turb.Comb.2005,75:51-66
    25.Matsuzaki K.,Haramoto Y.,Munekata M.,Ohba H.A study on swirling flows in a rectangular channel(LDV measurement,flow visualization and large eddy simulation).J.Therm.Sci.2001,10(3):205-210
    26.Mcllwain S.,Pollard A.Large eddy simulation of the effects of mild swirl on the near field of a round free jet.Phys.Fluids.2002,14(2):653-661
    27.Wang P.,Bai XS.,Wessman M.,Klingmann J.Large eddy simulation and experimental studies of a confined turbulent swirling flow.Phys.Fluids.2004,16(9):3306-3324
    28.Wegner B.,Maltsev A.,Schneider C.,Sadiki A.,Dreizler A.,Janicka J.Assessment of unsteady RANS in predicting swirl flow instability based on LES and experiments.Int.J.Heat Fluid Flow.2004,25:528-536
    29.Stein O.,Kempf A.LES of the Sydney swirl flame series:A study of vortex breakdown in isothermal and reacting flows.Proc.Comb.Inst.2007,31:1755-1763
    30.Brewster BS.,Cannon SM.,Farmer JR.,Meng F.Modeling of lean premixed combustion in stationary gas turbines.Prog.Energy Comb.Sci.1999,25:353-385
    31.Shih TH.,Liou WW.,Shabbir A.,Zhu J.A new k-ε eddy viscosity model for high reynolds number turbulent flows.Computers and Fluids.1995,24(3):227-238.
    32.郁崇文,张文赓.喷气纺喷嘴中气流场的分布规律.中国纺织人学学报.1996,22(4):47-57
    33.Launder BE.,Reece GJ.,Rodi W.Progress in the development of a Reynolds-stress turbulence closure.J.Fluid Mech.1975,68(3):537-566
    34.Kim SE.,Choudhury D.A near-wall treatment using wall functions sensitized to pressure gradient.ASME FED Separated and Complex Flows.1995,217:273-279
    35.Leonard BP.A stable and accurate convective modeling procedure based on quadratic upstream interpolation.Comp.Meth.Appl.Mech.Eng.1979,19:59-98.
    36.Brandt A.Algebraic multigrid theory:the symmetric case.Appl.Math.Comp,1986,19:23-56.
    37.Webster R.An algebraic multigrid solver for Navier-Stokes problems.Int.J.Numer.Meth.Fluids.1994,18(6):76 !-780.
    38.St(u|¨)ben K.A review of algebraic multigrid.J Comp.Appl.Mathematics.2001,128:281-309.
    1.Grosberg P.,Oxenham W.,Miao M.The insertion of 'twist' into yarns by means of air-jets,Part 1:an experimental study of air-jet spinning,J.Textile Inst.1987,78(3):189-203
    2.Lawrence CA.,Baqui MA.Effects of machine variables on the structure and properties of air-jet fasciated yarns.Textile Res.J.1991,61(3):123-130
    3.Oxenham W.,Basu A.Effect of jet design on the properties of air-jet spun yarns.Textile Res.J.1993,63:674-678
    4.Basu A.,Oxenham W.Interdependence of fibre type and the design of the nozzle of air-jet spinning machine.Indian J.Fibre Textile Res.1999,24:10-15
    5.Artzt P.,Steinbach G.,Ziegler K.Possibilities of increasing productivity in the air-jet spinning system by optimization of jet design.Melliand Textilberichte Int.Textile Reports.1996,77(1/2):22-24 +E5-6
    6.邢明杰,郁崇文,唐佃花,刘正芹.喷气纺第二喷嘴结构参数的研究.纺织学报.2005,26(6):30-32
    7.郁崇文,喷气纺纱中开纤槽对成纱强力的影响.纺织学报.1997,18(2):11-12,10
    8.李成龙.喷气纺纱机喷嘴的设计.东华大学,硕士学位论文,2004
    9.郁崇文,张文赓.喷气纺喷嘴中气流场的分布规律.中国纺织大学学报.1996,22(4):47-57
    10.Zeng YC.,Yu CW.Numerical simulation of air flow in the nozzle of an air-jet spinning machine.Textile Res.J,2003,73(4):350-356
    11,Gupta AK.,Lilley DG.,Syred N.Swirl flows.Energy And Engineering Sciences Series.Abacus Press:Tunbridge Wells,U.K.,1984
    12.Peckham DH.,Atkinson SA.Preliminary results of low speed wind tunnel test on a Gothic wing of aspect ratio 1.0.British Aeronautical Res.Council,CP 508,1957
    13.Sarpkaya T.On stationary and traveling vortex breakdowns.J.Fluid Mech.1971,45(3):545-559.
    14.Faler JH.,Leibovich S.Disrupted states of vortex flow and vortex breakdown.Phys.Fluids.1977,20:1385-1400
    15.Sarpkaya T.Vortex Breakdown in Swirling Conical Flow.AIAA J.1971,9:1792-1799
    16.Sarpkaya T.Turbulent vortex breakdown.Phys.Fluids.1995,7(10):2301-2303
    17.Sarpkaya T.,Novak F.Turbulent vortex breakdown experiments.IUTAM Symp.Dyn.Slender Vortices,Kluwer Academic Publishers,1998,287-296
    18.Br(u|¨)cker CH.Some Observations of vortex breakdown in a confined flow with solid body rotation.Flow,Turbulence and Combustion.2002,69:63-78
    19.Faler JH,Leibovich S.An experimental map of the internal structure of a vortex breakdown.J.Fluid Mech.1978,86(2):313-335
    20.Bornstein J.,Escudier MP.LDA measurements within a vortex breakdown bubble.Laser anemometry in fluid mechanics,Ladoan-Instituto Superior Tecnico.1984,253-263
    21.Uchida S.,Nakamura Y.,Ohsawa M.Experiments on the axisymmetric vortex breakdown in a swirling air flow.Japan Society for Aeronautical and Space Sci.1985,27(78):206-216
    22.Br(u|¨)cker Ch,Althaus W.Study of vortex breakdown by particle tracking velocimetry.Part 1:bubble-type vortex breakdown.Exp.Fluids.1992,13:339-349
    23.Br(u|¨)cker Ch.Study of vortex breakdown by particle tracking velocimetry.Part 2:spiral-type vortex breakdown.Exp.Fluids.1993,14:133-139
    24.Br(u|¨)cker Ch.,Althaus W.Study of vortex breakdown by particle tracking velocimetry(PTV)Part 3:Time-dependent structure and development of breakdown-modes.Exp.Fluids.1995,18:174-186
    25.Escudier MP.Vortex breakdown:observations and explanations.Prog.Aerospace Sci.1988,25:189-229
    26.Nakamura Y.,Uchida S.Several approaches to the study of vortex breakdown.Vortex control and breakdown behavior,Second Int.Colloquium on Vortical Flows,BBC,1987,115-130
    27.Escudier MP,Zehnder N.Vortex-flow regimes.J.Fluid Mech.1982,115:105-121.
    28.Leibovich S.The structure of vortex breakdown.Annu.Rev.Fluid Mech.1978,10:221-246
    29.Spall RE.,Gatski TB.Numerical calculations of 3D turbulent vortex breakdown.Int.J.Numer.Meth.Fluids.1995,20:307-318
    30.Spall RE.,Ashby BM.A numerical study of vortex breakdown in turbulent swirling flows.J.Fluids Eng.2000,122:179-183
    31.Jochmann P.,Sinigersky A.,Hehle M.,Sch(a|¨)fer O.,Koch R.,Bauer H.J.Numerical simulation of a precessing vortex breakdown.Int.J.Heat and Fluid Flow.2006,27:192-203
    32.Derksen JJ.Simulations of confined turbulent vortex flow.Computers & Fluids.2005,34: 301-318
    33.M(u|¨)ller SB.,Kleiser L.Large-eddy simulation of vortex breakdown in compressible swirling jet flow.Computers & Fluids.2008,37(7):844-856
    34.Rusak Z.,Wang S.Review of theoretical approaches to the vortex breakdown phenomenon.AIAA paper.1996,96-2126
    35.Lucca NO.,Doherty T.Vortex breakdown:a review.Prog.Energy Comb.Sci.2001,27:431-481
    36.Krause HW.Staple fibre spinning systems.J.Textile Inst.1985,76(3):185-195
    37.Chang F,Dhir VK.Turbulent flow field in tangentially injected swirl flows in tubes.Int.J.Heat Fluid Flow.1994,15(5):346-356
    38.Kitoh O.Experimental study of turbulent swirling flow in a straight pipe.J Fluid Mech.1991,225:445-479
    39.Chang KC.,Chen CS.Development of a hybrid k-ε turbulence model for swirling recirculating flows under moderate to strong swirl intensities.Int.J.Numer.Meth.Fluids.1993,16(5):421-443
    40.Punj SK.,Ishtiaque SM.,Dhingra LK.Influence of Spinning Conditions on Structure and Properties of Polyester-Viscose Blended MJS Yarns.Indian J.Fibre Textile Res.1997,22:73-83
    41.Krause H W.Staple Fiber Spinning Systems.J.Textile Inst.1985,76:185-195
    42.Stalder H.New Spinning Methods,Their Application and Possibilities for Development.Int.Textile Bull.Yarn Forming.1988,1/88:27-39
    43.BasuA.Progress in Air-Jet Spinning.Textile Process.1999,29(3):1- 40
    44.Jeon BS.Effect of an Air-Suction Nozzle on Yarn Hairiness and Quality.Textile Res.J.2000,70(11):1019-1024
    1.Nuttall JB.Axial flow in a vortex.Nature.1953,172:582-583
    2.Binnie AM.,Tear JD.Experimental measurement of flow swirling water through a pressure nozzle and open trumpet.Proc.Royal society.1955,235A:78-88
    3.Sparrow EM.,Chaboki A.Swirl-affected turbulent fluid flow and heat in a circular tube.ASME J.Heat Transfer.1984,106:76~-773
    4.Clayton BR.,Morsi YSM.Determination of principal characteristics of turbulent swirling flow along annuli.Part 1:Measurement of time mean parameters.Int.J.Heat Fluid Flow.1984,5:195-203
    5.Aouabed H.,Legentilhomme P.,Legrand J.Wall visualization of swirling decaying flow using a dot-paint method.Exp.Fluids.1995,19:43-50
    6.Kumar R.,Conover T.Flow Visualization Studies of a Swirling Flow in a Cylinder.Exp.Therm.Fluid Sci.1993,7(3):254-262
    7.Binnie AM.Experiments on the slow swirling flow of a viscous liquid through a tube.Quart.J.Mech.Appl.Math.1957,10(3):276-290
    8.Chigier UA.,Chervinsky A.Experimental Investigation of Swirling Vortex Motion in Jet.ASME J.Mech.1967,34(2):443-451
    9.King MK.,Rothfus RR.,Kermode RI..Static pressure and velocity profiles in swirling incompressible tube flow.AIChE J.1969,15(6):837-842
    10.Wolf LJ.,Lavan Z.,Fejer AA.Measurement of the decay of swirl in turbulent flow.J.AIAA.1969,7(3):971-973
    11.Rose GW.A swirling round turbulent jet-mean flow measurements.ASME J.Appl.Mech.1962,29:615-625
    12.Roberts LW.The Prediction of Turbulent Swirling Pipe Flow.Tech.Rep.EF/TN/A/37,1971
    13.Weske RD.,Sturove S.,Ye G.Experimental Study of Turbulent Swirling Flow in Cylindrical Tube.Fluid Mech.SovietRes.1974,3(1):77- 82
    14.Brighton JA.,Jones JB.Fully developed turbulent flow in annuli.J.Basic Eng.1964,86:835-844
    15.Kito O,Kato T.Near wall velocity distribution of turbulent swirling flow in circular pipe.Bull JSME.1985,27:53-56
    16.Chang F.,Dhir VK.Turbulent flow field in tangentially injected swirl flows in tubes.Int.J. Heat Fluid Flow.1994,15(5):346-356
    17.Chang TH.An Experimental investigation of swirl angle in a horizontal round tube by flow visualization method.J Korean Society of Marine Engineers.2003,27(7):879-888.
    18.Kim JK.Investigation of the turbulence characteristics in the swirling flow of a gun-type gas burner with two different hot-wire probes.J Mech.Sci.Tech.2008,22:180-189
    19.Harvey JK.Some observations of the vortex breakdown phenomenon.J Fluid Mech.1962,14:585-92.
    20.Kok JBW.,Rosendai FJJ.,Brouwers JJH.LDA Measurements on Swirling Flows in Tubes.SPIE Laser Anemometry Advances and Applications.1993,2052:721-728
    21.Imao S.,Itoh M.,Harada T.Turbulent characteristics of the flow in an axially rotating pipe.Int.J.Heat Fluid Flow.1996,17:444-451.
    22.Belmabrouk H.,Michard M.Analysis of the swirl effect on turbulent length scales in an ICE cylinder by two-point LDV.In.J.Heat Fluid Flow.2001,22(4):417-423
    23.Gupta AK.,Lilley DG.,Syred N.Swirl flows.Abacus Press.Tunbridge Wells.U.K.1984
    24.Pruvost J.,Legrand J.,Legentilhomme P,Doubliez L.Particle image velocimetry investigation of the flow-field of a 3D turbulent annular swirling decaying flow induced by means of a tangential inlet.Exp.Fluids.2000,29(3):291-301
    25.Chang TH,Kim HY.An investigation of swirling flow in a cylindrical tube.KSME Int.J.2001,15(12):1892-1899
    26.Chang TH.Experimental study on turbulent swirling flow in a cylindrical annuli by using the PIV technique.In.J.Automotive Technology.2004,5(1):17-22.
    27.Mak H.,Balabani S.Near field characteristics of swirling flow past a sudden expansion.Chem.Eng.Sci.2007,62(23):6726-6746
    28.So RMC.,Ahmed SA,Mongia HC.Jet characteristics in confined swirling flow.Exp.Fluids.1985,3:221-230
    29.胡成行.干油迹油流显示技术.第四届全国流动显示会议论文集,桂林.1999,31-36
    30.Settles GS.,Teng HY.Flow visualization methods for separated three-dimensional shock wave/turbulent boundary-layer interactions.AIAA J.1983,21(3):390-397
    31.邢明杰,郁崇文,唐佃花,刘止芹.喷气纺第二喷嘴结构参数的研究.纺织学报.2005,26(6):30-32
    32.李成龙.喷气纺纱机喷嘴的设计.东华大学,硕士学位论文,2004
    1.Forgacs OL.,Robertson AA.,Mason SG.The Hydrodynamic Behaviour of Paper-Making Fibres.Pulp and Paper Magazine of Canada.1958,59(5):117-128
    2.Arlov AE.,Forgacs OL.,Mason SG.Particle motions in sheared suspensions Ⅳ.General behavior of wood pulp fibers.Svensk Papperstidn.1958,61(3):61-67
    3.Forgacs OL.,Mason SG.Particle motions in sheared suspensions:Ⅸ.Spin and deformation of threadlike particles.J.Colloid Sci.1959,14:457-472.
    4.Forgacs OL.,Mason SG.Particle motion in sheared suspension:Ⅹ.Orbits of flexible threadlike particles.J Colloid Sci.1959,14:473-491.
    5.Salinas A.,Pittman JFT.Bending and breaking fibers in sheared suspensions.Poly.Eng.Sci.1981,21(1):23-31.
    6.Yamamoto S.,Matsuoka T.A Method for Dynamic Simulation of Rigid and Flexible Fibers in a Flow Field.J.Chem.Phys.1993,98(1):644-650
    7.Ross RF.,Klingenberg DJ.Dynamic simulation of flexible fibers composed of linked rigid bodies.J.Chem.Phys.1997,106(7):2949-2960
    8.Skjetne P.,Ross RF.,Klingenberg DJ.Simulation of single fiber dynamics.J.Chem.Phys.1997,107(6):2108-2121
    9.Stockie JM.,Green SI.Simulating the motion of flexible pulp fibres using the immersed boundary method.J.Comput.Phys.1998,147:147-165
    10.Takemura M.,Chiba K.,Nakamura K.Motion of Flexible Fibers in a Newtonian Flow,Part 2:Evolution of the Configuration of a Single Fiber in a Simple Shear Flow.J.Textile Eng.2001,47(3-4):77-91
    11.Stockie JM.Simulating the dynamics of flexible wood pulp fibres in suspension.Proc.16th Annual Int.Syrup.High Perfor.Computing Systems Applic.16-19 June 2002,145-151
    12.Tornberg AK.,Shelley MJ.Simulating the dynamics and interactions of flexible fibers in Stokes flows.J.Comput.Phys.2004,196(1):8- 40
    13.Dewei Qi.A new method for direct simulations of flexible filament suspensions in non-zero Reynolds number flows.Int.J.Numer.Meth.Fluids.2007,54:103-118.
    14.Lindstr(o|¨)m SB.,Uesaka T.Simulation of the motion of flexible fibers in viscous fluid flow.Phys.Fluids.2007,19(11):113307-1-16
    15.刘应中,缪国平.高等流体力学.上海:上海交通大学出版社,2000
    16.朱泽飞,林建忠.纤维状粒子悬浮流动力学分析.上海:中国纺织大学出版社,2000
    17.郭烈锦.两相与多相流动力学.西安:西安交通大学出版社,2002
    18.Soltani M.,Ahmadi G.Direct numerical simulation of curly fibers in turbulent channel flow.Aero.Sci.Tech.2000,33:392-418
    19.周锟,林建忠.两相流中圆柱状粒子阻力的研究.力学与实践.2003,25(3):15-17
    20.Schichting H.Boundary layer theory.6th Ed.McGraw-Hill,New York.1968
    21.周力行.燃烧理论和化工流体力学.北京:科学出版社.1986
    22.Broday D.,Fichman M.,Shapiro S.,et al.Motion of diffusion-less pollutant particles in vertical stagnation flows:1.General model and deposition efficiency of spheres,J.Aero.Sci.1997,28:35-52
    23.Pettyjohn ES.,Christiansen EB.Effect of particle shape on free settling rates of isometric particles.Chem.Eng.Prog.1948,44:157-172
    24.Singh AN.,Roychowdhury KC.Study of the effect of the orientation and shape on the settling velocity of non-isometric particles.Chem.Eng.Sci.1969,24:1185-1186
    25.Doi M.Chen D.Simulation of Aggregating Colloids in Shear Flow.J.Chem.Phys.1989,90(10):5271-5279
    26.丁伟东,纺织材料学.中国纺织出版社.第1版,2006
    27.Kong LX.,Platfoot RA.Fibre transportation in confined channel with recirculations.Computers and Structures.2000,78(1-3),237-245.
    28.曾泳春.纤维在喷嘴高速气流场中运动的研究和应用.东华大学博士学位论文.2003
    29.Meredith R.Mechanical Properties of Textile Fibers.Interscience Publishers,NY,1956
    30.Oxenham W.,Basu A.Effect of jet design on the properties of air-jet spun yarns.Textile Re.J.1993,63:674-678
    31.李成龙.喷气纺纱机喷嘴的设计.东华大学,硕士学位论文,2004
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.