液降膜流动过程的传递现象研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液体降膜流动现象在过程工业中有重要的应用,深入研究降膜流动时的传递现象对于开发新型气液传质与反应设备具有重要意义。
     本文首先对液体降膜流动在过程工业中的应用进行了介绍,对相关的研究进展,包括理论预测,实验测量方面的最新研究成果进行了综述。
     本文第二部分对一种能够强化气液传质过程的液体双面降膜结构进行了实验和理论研究。工作内容包括研制实验设备,测定不同工况下(比如不同液相进口浓度、不同液相流速等)降膜传质效果,对比了不同填料结构的传质效果;建立了描述液体双面降膜流动与传质过程的数学模型,通过模拟计算得到了相关的相速度分布和浓度分布,模拟结果与实验数据吻合较好。
     论文第三部分建立了描述湍流条件下-液两相逆流降膜流动与传质过程的计算传递学模型,并对模型的适用性进行了实验验证,模拟结果和实验结果吻合较好。利用该模型分析了、液相流速变化对传质的影响,在此基础上,又建立了流动与传质过程相互耦合作用的-液逆流降膜解吸传质过程的计算传递学模型,结果表明考虑热质耦合作用的理论模型较传统模型能更好地模拟层流降膜过程的传热、传质现象。
Transport phenomena of falling film flow can be found in many fields of process industry. It is of great importance to investigate the flow patterns and mass transfer efficiency for the design of new type of mass transfer or chemical reaction equipment.
     The background of falling film being applied in process industry and recently published research works, including theoretical prediction and experimental research, is introduced. Reports on Double-Side falling film, falling film under turbulent condition, and coupling mass transfer with heat transfer are also introduced.
     Experimental test and computational simulation were used to investigate the mass transfer efficiency for a Double-Side falling film flow. Experimental rig for testing the mass transfer efficiency of falling film flow was designed and the concentration change of the liquid phase under different operating conditions, such as flow rate of gas and liquid, were measured. Models for simulating mass transfer of the falling film flow were developed to predict the profiles of velocity and concentration in gas and liquid phase. The simulated results fit well with experimental data.
     Theoretical model for simulating the desorption process of iso-propanol solution into nitrogen was proposed. In the model simultaneous transport phenomena of momentum, heat and mass transfer processes was considered. Experimental work was carried out to verify the proposed model. It was found that the simulated results were in good agreement with the experimental data in some cases. The influence of gas and liquid inlet velocities on mass transfer efficiency was predicted by the proposed model. By modifying the model mentioned above, a mass-transfer CFD model was proposed to simulate the coupling effect between heat and mass transfer processes. It was found that heat and mass transfer can be simulated more accurately by the new model than by the traditional one.
引文
[1] Ghorai S, Nigam KDP. CFD modeling of flow profiles and interfacial phenomena in two-phase flow in pipes.Chemical Engineering and Processing 2006; 45:55–65.
    [2] Chang C, Nguyen QD, R?nningsen HP. Isothermal start-up of pipeline transporting waxy crude oil. Journal of Non-Newtonian Fluid Mechanics 1999; 87:127–154.
    [3] Vassallo P. Near wall structure in vertical air-water annular flows. Int. J. Multiphase Flow, 1999, 25:459-476.
    [4] Brauner N, Maron M D. Characteristics of inclined thin films waviness and the associated mass transfer. Int. J. Heat Mass Transfer.,1982,25(1):99-109.
    [5] Aksel N, Schmidtchen M. Analysis of the overall accuracy in LDV measurement of film flow in an inclined channel. Meas. Sci. Thechnol., 1996,7: 1140-1147.
    [6] Mudawar I, Houpt R. A Measurement of mass and momentum transport in wavy-laminar falling liquid films. Int. J. Heat and Mass Transfer, 1993, 36(17): 4151-4162.
    [7] Kawaji, M., Ahmad, W., DeJesus, J. M., Sutharshan, B,. Lorencez, C. and Ohja, M. Flow visualization of two-phase flows using photochromic dye activation method. Nuclear Engng. and Design, 1993,141,343-355.
    [8] Karimi G, Kawaji, M. Flooding in vertical counter-current annlar flow. Nuclear Eng. Des., 2000, 200:95-105.
    [9] Kawaji M. Two-phase flow measurements using a photochromic dye activation technique. Nuclear Eng. Des., 1998, 184: 379-392.
    [10] Philipp Adomeit, Ulrich Renz. Hydrodynamics of three-dimensional waves in laminar falling films. Int. J. Multiphase Flow. 2000,26,1183-1208.
    [11] Onda K, Takeuch H, Okumoto Y. Mass transfer coefficients between gas and liquid phases in packed columns. J. Chem. Eng. Jpn., 1968, 1(1), 56.
    [12] Bravo J L, Fair J R. Generalized correlation for mass transfer in packed distillation columns. Ind. Eng. Chem. Proc. Des. Dev., 1982, 21,162.
    [13] Rocha J A, Bravo J L, Fair J R. Distillation Columns Containing Structured Pacings: A Comprehensive Model for Their Performance. 2. Mass-Transfer Model. Ind. Eng. Chem. Res. , 1996, 35, 1660-1667.
    [14] Bravo J L, Rocha J A, Fair J R. Mass transfer in gauze packings. Hydrocarbon Procs. 1985, 64:91.
    [15] Bravo J L, Rocha J A, Fair J R. A comprehensive model for the performance of columns containing structured packings. Inst. Chem. Eng. Symp. Ser., 1992, 128: A489.
    [16] Rocha J A, Bravo J L, Fair J R. Distillation columns containing structured packings: A comprehensive model for their performance.1:Hydraulic models. Ind. Eng. Chem. Res., 1993, 32: 641.
    [17] Nusselt W, Die oberflaechenkondensateion des Wasserdampfes, VDI Zeitschrift 1916,60:541-546;569-575.
    [18] Kapitza, P.L.. Wave flow of thin layers of a viscous liquid. Zhurnal Eksperimentalnoi I Theoreticheskoi Fiziki ,1949.19, 105–120.
    [19] Brauner, N., Maron, D.M. Modelling of wavy flow in inclined thin films. Chemical Engineering Science, 1983. 38, 775–788.
    [20] Maron, D.M., Brauner, N., Dukler, A.E. Interfacial structure of thin falling films: piecewise modeling of the waves. Physicochemical Hydrodynamics, 1985. 6, 87–113.
    [21] Miller, W.A. Experimental and analytical study of aqueous LiBr falling film absorption. Ph.D Thesis, University of Tennessee, USA. 1992.
    [22] Brauner, N., Maron, D.M. Modelling of wavy flow in inclined thin films. Chemical Engineering Science , 1983.38, 775–788.
    [23] Miller, W.A., Keyhani, M. The correlation of simultaneous heat and mass transfer experimental data for aqueous lithium bromide vertical falling film absorption. Journal of Solar Energy Engineering , 2001.123 (1), 30–42.
    [24] Kheshgi, H.S., Scriven, L.E. Disturbed film flow on a vertical plate.Physics of Fluids , 1987.30 (4), 990–997.
    [25] Ho, L.W., Patera, A.T. A Legendre spectral element method for simulation of unsteady incompressible viscous free-surface flows.Computer Methods in Applied Mechanics and Engineering , 1990. 80, 355–366.
    [26] Malamataris, N.T., Papanastasiou, T.C. Unsteady free surface flows on truncated domains. Industrial and Engineering Chemistry Research , 1990. 30,2211–2219.
    [27] Salamon, T.R., Armstrong, R.C., Brown, R.A. Traveling waves on vertical films: numerical analysis using the finite element methods. Physics of Fluids , 1994. 6, 2202–2220.
    [28] Ramaswamy, B., Chippada, S., Joo, S.W. A full-scale numerical study of interfacial instabilities in thin-film flows. Journal of Fluid Mechanics, 1996.325, 163–194.
    [29] Dukler, A.E., 1972. Characterization, effects and modeling of the wavy gas–liquid interface. Progress in Heat and Mass Transfer, vol. 6. Pergamon Press, New York, pp. 207–234.
    [30] Maron, D.M., Brauner, N., Dukler, A.E. Interfacial structure of thin falling films: piecewise modeling of the waves. Physicochemical Hydrodynamics , 1985. 6, 87–113.
    [31] Jayanti S, Hewitt G F. Hydrodynamics and heat transfer of wavy thin film flow.Int. J. Heat Mass Transfer., 1997, 40: 179-190.
    [32] Miyara A. Numerical simulation of wavy liquid film flowing down on a vertical wall and an inclined wall. Int. J. Therm. Sci., 2000, 39: 1015-1027.
    [33] Brauner N. Modelling of wavy flow in turbulent free falling films. Int J Multiphase Flow 1989;15(4):505-20.
    [34] Grossman G, Heath MT. Simultaneous heat and mass transfer in absorption of gases in turbulent liquid films.International Journal of Heat and Mass Transfer 1984;27(12):2365-76.
    [35] Kholpanov LP, Kenig EY. Coupled mass and heat transfer in a multicomponent turbulent falling liquid film. International Journal of Heat Mass Transfer 1993;36(14):3647-57.
    [36] Wang C Y. Liq uid film flowing slowly down a wavy incline. AIChE J., 1981, 27: 207-212.
    [37] Mickaily E S, Middleman S, Allen M. Viscous flow over periodic surfaces. Chem. Eng. Comm., 1992, 117:401.
    [38] Pozrikidis C. The flow of a liquid film along a periodic wall. J. Fluid Mech., 1988, 188: 275-300.
    [39] Negny S, Meyer M, Prevost M, Simulation of velocity fields in a falling film with a free interface flowing over a wavy surface. Computers Chem. Eng., 1998, 22: S921-S924.
    [40] Benney D J, Long waves on liquid films, J. Math. Phys., 1966,45:150-155.
    [41] Nakaya C, Takaki R, Non-linear stability of liquid flow down an inclined plane, J. Phys.Soc. Japan, 1967,23 (3),638-645.
    [42] Nakaya C, Long waves on a thin fluid layer flowing down an inclined plane, Phys. Fluids, 1975,18:1407-1412.
    [43] Dukler A E. Bergelin O P. Characteristics of flow in falling liquid films. Chem. Eng. Progr., 1952, 48: 557-563.
    [44] Dukler A E. The role of waves in two-phase flow: some new understanding, 1976 Award Lecture. Chem. Eng. Educ., XI, 1977: 108-138.
    [45] Wasden F K, Dukler A E. A Numerical study of mass transfer in free falling wavy films. AICHE J., 1990, 36(9):1379-1390.
    [46] Wasden F K, Dukler A E. Insights into the hydrodynamics of free falling wavy films. AIChE J., 1989, 35(2):187-195.
    [47] Yu L Q, Wasden F K, Dukler A E. Balakotaian V. Nonlinear evolution of waves on falling films at high Reynolds numbers. Phys. Fluids., 1995, 7: 1889-1902.
    [48] Hirt C W, Nichols B D. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. Journal of Computational Physics,1981,39:201-206.
    [49]刘儒勋,王志峰.《数值模拟方法和运动界面追踪》第一版.合肥:中国科学技术大学出版社,2001.
    [50] Rider WJ, Kothe DB. Reconstructing volume tracking. Journal of Computational Physics 1998; 141:112–152.
    [51]谷芳,规整填料局部流动与传质的计算流体力学研究:[博士学位论文],天津,天津大学,2004.
    [52]陈江波,高压下规整填料塔的计算传递及传质性能:[博士学位论文],天津,天津大学,2006.
    [53]张维蔚,计算传递学的研究及其在规整填料塔中的应用:[博士学位论文],天津,天津大学,2007.
    [54] Nakoryakov VE, Grigoreva NI. Combined heat and mass transfer during absorption in drops and films. Journal of Engineering Physics 1977;32(3):243-7.
    [55] Grossman G. Analysis of interdiffusion in film absorption. International Journal of Heat and Mass Transfer 1987;30(1):205-8.
    [56] Andberg JW, Vliet GC. Nonisothermal absorption of gases into falling liquid films. ASME-JSME Thermal Engineering Joint Conference Proceedings 1983;2:423-31.
    [57] Andberg JW, Vliet GC.Design guidelines for water-lithium bromide absorbers. ASHRAE Transactions 1983;89:2.
    [58] McNeely LA. Thermophysical properties of aqueous solutions of lithium bromide. ASHRAE Transactions 1979;85:413-34.
    [59] Kashiwagi T. The activity of surfactant in highperformance absorber and absorption enhancement. Reito, 1985;60(687):72-9.
    [60] Enderby JE. Neutron scattering from ionic solutions. Annual Reviews in Physics and Chemistry 1983;34:155-85.
    [61] Charles H B, King C J, Gas-liquid mass transfer with a tangentially moving interface: Part 1. Theroy, AIChE J., 1967.13(4):628-644.
    [62] Yoshimura, P.N., Nosoko, T., Nagata, T., 1996. Enhancement of mass transfer into a falling laminar liquid film by two-dimensional surface waves—some experimental observations and modeling. Chemical Engineering Science 51 (8), 1231–1240.
    [63] Hanratty, T.J., 1991. Effect of gas flow on physical adsorption. In: Wilhelm, S.C., Gulliver, J.S. (Eds.), Air–Water Mass Transfer. ASCE, New York,pp. 10–33.
    [64] McCready, M.J., Vassihadou, E., Hanratty, T.J., 1986. Computer simulation of turbulent mass transfer at a mobile interface. A.I.Ch.E. Journal 32,1108–1115.
    [65] A.M.Cazabat, F. Heslot, S.M. Troian & P. Carles, Fingering instability of thin spreading films driven by temperature gradients, LETTERS TO NATURE, 1990, 346(824).
    [66] R. Yang and J. H. Chen, A numerical study of the nonabsorbable effects on the falling liquid film absorption,Wgirme- und Stofffiber tragun9 26, 219-223 (1991).
    [67] RU YANG and DERMING JOU, Heat and mass transfer of absorption process for the falling film flow insede a porous medium, Heat and Mass Transfer, 1995, 38(6), 1121-1126.
    [68] Siyoung Jeong, Srinivas Garimella, Falling film and droplet mode heat and mass transfer in a horizontal tube LiBr/water absorber, Heat and Mass Transfer, 2002, 45, 1445-1458.
    [69] Jin-Kyeong Kim, Chan Woo Park, Yong Tae Kang, The effect of micro-scale surface treatment on heat and mass transfer performance for a falling film H2O/LiBr absorber, International Journal of Refrigeration, 2003, 26, 575-585.
    [70] Kazunori Uchiyama, Hirofumi Migita, Ryo Ohmura, Yasuhiko H. Mori, Gas absorption into“string-of-beads”liquid flow with chemical reaction:application to carbon dioxide separation, Heat and Mass Transfer, 2003, 46, 457-468.
    [71]张锋、耿皎、马少玲、张志炳,Marangoni效应对降膜加热流动的影响,化工学报,2005,56(9),1606-1611.
    [72] Gualito J.J., Cerino F.J., Cardenas J.C., et al. Design method for distillation columns filled with metallic ceramic, or plastic structured packings. Ind.Eng.Chem. Res., 1997,36: 1747-1757.
    [73] Rocha J.A., Bravo J.L., and Fair J.R. Distillation columns containing structured packings: A comprehensive model for their performance. 2. mass transfer model. Ind.Eng.Chem.Res., 1996,35: 1660-1667.
    [74]陈亚平,双面膜反转强化吸收过程传热传质,化工学报,2008,59(1),19-24.
    [75] A.Mansour, A.Amahmid, M.Hasnaoui and M.Bourich, SORET EFFECT ON DOUBLE-DIFFUSIVE MULTIPLE SOLUTIONS IN A SQUARE POROUS CAVITY SUBJECT TO CROSS GRADIENTS OF TEMPERATURE AND CONCENTRATION, Heat Mass Transfer. 2004, 31(3), 431-440.
    [76]陈宝明,多孔介质传热传质中耦合扩散效应的研究,工程热物理学报,2004,25.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.