布鲁氏菌病LAMP检测方法的建立及双基因共表达分子疫苗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
布鲁氏菌病,简称布病(Brucellosis),是由布鲁氏菌(Brucella spp.)引起的一种的人畜共患传染病。目前,该病已在世界范围内广泛流行,并呈一定上升态势,严重危害畜牧业发展和人类健康。建立方便快捷的布鲁氏菌检测技术,研发安全有效的新一代布病疫苗已成为控制和消灭动物布病的必然趋势。本研究主要内容如下:
     1.选择布鲁氏菌OMP25诊断基因和P39、18KD、L7/L12和BCSP31优势抗原基因,扩增后分别与pMD18-T载体连接,制备了克隆质粒。分析比对GenBank中OMP25基因序列,设计2套特异性引物,通过反应物浓度和反应条件的优化,建立了布鲁氏菌快速检测LAMP方法。该方法能从奶样和血样中检出6个种的布鲁氏菌病原,所能检测出的最低限度为9fg/μl,较PCR方法高出10倍,具有很高的特异性、敏感性和稳定性。对田间样品进行检测发现,LAMP方法与巢式PCR方法符合率达98.95%,可为临床布鲁氏菌的快速检测提供新的技术手段。
     2.借助pQCXIX和pcDNA3.1真核载体,成功构建了P39和18KD双基因共表达核酸质粒pcDNA-P39/18KD。体外转染293AD细胞,经RT-PCR鉴定、间接免疫荧光和Western blot检测,证实P39和18KD目的蛋白可在293AD细胞中有效共表达,反应原性良好。
     3.经测序鉴定成功构建了L7/L12和BCSP31双基因穿梭载体pSh-LL/BP。然后与复制缺陷型Ad5腺病毒于BJ5183工程菌内同源重组,成功筛选到腺病毒重组子质粒pAd-LL/BP。将其转染293AD细胞,成功包装并纯化出共表达重组腺病毒Ad-LL/BP,滴度达10~(9.68)TCID50/mL。连续传代后经PCR检测、电镜观察、IFA、Western blot等实验证实该重组病毒没有发生外源基因缺失,两个目的蛋白获得了稳定共表达,且反应性良好。
     4.以上述构建的共表达DNA疫苗和腺病毒载体疫苗单独和联合免疫BALB/c小鼠,共免疫三次。ELISA检测血清特异性抗体发现,各免疫组均能产生IgG特异性抗体,联合免疫组显著高于单独免疫组,抗体水平最高的为pcDNA-P39/18KD(prime)和Ad-LL/BP(boost)组,最低的为pcDNA-P39/18KD组;除IgA外,IgG、IgG1、IgG2a水平随免疫次数和免疫时间增加逐渐升高,IgG2a较IgG1升高更快(p<0.05)。MTT法检测脾淋巴细胞增殖指数(SI)显示,抗原和ConA刺激均能使各组SI升高,但以ConA略高(p>0.05),组间对比Cp>V3>V4>V1>V2>Cn。FCM脾脏T淋巴细胞亚群分析显示,除CD~(8+)及CD~(4+)/CD~(8+)外,各疫苗免疫组CD3+、CD4+脾脏T淋巴细胞数均显著升高(P<0.05),联合免疫组显著高于其单独免疫组。ELISA检测脾淋巴细胞诱导上清IL-12和IL-10显示,联合免疫组IL-12水平,DNA/Ad和Ad/DNA分别为70.7±8.1pg/mL和64.2±7.5pg/mL,明显高于单独DNA免疫组36.4±4.4pg/mL或重组腺病毒免疫组38.7±5.15pg/mL,但都低于A19弱毒苗免疫组85.3±8.2pg/mL(p<0.05);而各组IL-10水平与阴性对照组相比,均无显著差异(p>0.05)。由此可见,本研究所构建的双基因表达DNA疫苗和腺病毒活载体疫苗均能产生高水平的IgG抗体,能有效诱导以细胞免疫为主的免疫应答反应。首次证实布鲁氏菌DNA和重组腺病毒疫苗联合免疫效果优于单独免疫,以pcDNA-P39/18KD(prime)和Ad-LL/BP(boost)免疫效果最好。
Brucellosis, caused by Brucella spp., is a highly infectious zoonotic disease occurring in humans andvarious species of domesticated and wild animals worldwide. At present, the incidence of human andanimal brucellosis trends to be increasing. It causes a great economic impact on livestock industry andthreats to human health. It is urgent to prevent and control the disease with new diagnostic methods andnew generation vaccines with high efficacy and safety. The main contents of this study are as thefollowing:
     1. Complete coding sequences of Brucella genes OMP25, P39,18KD, L7/L12and BCSP31wereamplified and cloned into pMD18-T vector, and a series of cloning plasmids were verified by sequencesanalysis. Then based on reported OMP25sequence, two sets of four LAMP primers were designed withonline softwares. Through the optimization of the reaction system and conditions, a novel LAMP assaywas established to detect Brucella DNA from six classical species. It was confirmed that the assay wasable to detect a limit9fg/ml Brucella DNA with good sensitivity, which was10times higher than thatof a reference nested PCR. The results in detection of field samples showed that the LAMP assaydeveloped in this study yielded a99.0%concordance rate in comparison with nested PCR. These resultsindicate that the LAMP assay is a potential for the diagnosis of Brucellosis with high convenience,rapidity, sensitivity and specificity.
     2. Using pMD18-T, pQCXIX and pcDNA3.1, we successfully constructed a recombinant DNAvaccine pcDNA-P39/18KD with IRES sequence. The pcDNA-P39/18KD recombinant plasmids weretransfected into293AD cells using lipofectamine. The insertion of two genes was validated by RT-PCR,IFA and Western blot. The co-expression of P39and18KD genes cloned into pcDNA3.1was confirmedand its specific reactivity with antisera was observed.
     3. L7/L12and BCSP31genes were excised from pQCXIX vector with IRES sequence and clonedinto a transfer vector pShuttle-CMV. The recombinant plasmid pSh-LL/BP was constructed and verifiedby sequence analysis. Through homologous recombination between the plasmid pSh-LL/BP andskeleton vector pAdEasy-1in E. coli BJ5183, a recombinant plasmid pAd-LL/BP was obtained. Then293AD cells were successfully transfected and a recombinant adenovirus Ad-LL/BP was packed. Thetiter of the recombinant adenovirus containing L7/L12and BCSP31genes of Brucella spp. was109.68TCID50/mL in293AD monolayer cells. After continuously passaging, maintenance and stableco-expression of the two target genes in the recombinant adenovirus Ad-LL/BP were confirmed by PCR,IFA, Western blot and transmission electron microscope, and the two target proteins showed specificreactivity.
     4. The pcDNA-P39/18KD DNA vaccine and the pAd-LL/BP adenoviral vector vaccine wereevaluated in BALB/c mice by intramuscular injection alone or in combination after proliferated andpurified. Fifty BALB/c mice were divided into ten groups (5mice in each group), and inoculated threetimes at a two-week interval. Blood samples were taken before each injection, and15days after final administration the mice were sacrificed for blood and aplenocytes collection.
     ELISA results showed that the IgG was elicited in serum of all the mice immunized with DNA andrecombinant adenovirus vaccines alone or in combination from the15th-day post first inoculation. Inprime-boost, combination immunization groups showed significantly higher antibody levels than eithervaccine alone. The highest level of specific IgG was observed in the group with pcDNA-P39/18KD(prime) and Ad-LL/BP (boost) regimen, and the lowest in the group with pcDNA-P39/18KDimmunization. Except for IgA, the levels of all IgG, IgG1and IgG2a all rose with the increase ofvaccination times, in which IgG2a levels were great higher than IgG1(p<0.05). MTT results showedthat lympho-spleencytes stimulation index (SI) of the mice in each group immunized with DNA vaccineand recombinant adenovirus vaccine alone or in combination increased after A19antigen or ConAstimulation, but a little higher with ConA stimulation than A19antigen (p>0.05). A SI order in differentgroups was Cp>V3>V4>V1>V2>Cn. Analysis of spleen T lymphocyte subsets by FCM showed that thepercentage of CD~(3+)and CD~(4+)from mice was significantly higher in immunized groups than in negativecontrol groups, and also higher in prime-boost combination immunization groups than each vaccinealone. But there were no remarkable differences in the percentage of CD~(8+)and CD~(4+)/CD~(8+)from mice indifferent immunized groups. ELISA results of the induced IL-12levels from spleen lymphocytesshowed that the expression levels of IL-12were70.7±8.1pg/mL and64.2±7.5pg/mL in DNA/Ad andAd/DNA combination immunization group, respectively, which were significantly higher than36.4±4.4pg/mL and38.7±5.15pg/mL in respective DNA and recombinant adenovirus immunization alone(p<0.05). Conversely, there were no obvious differences in IL-10levels between the immunized groupsand the negative control groups.
     In summary, the DNA and recombinant adenovirus vaccines co-expressing two genes of Brucella spp.constructed in this study were able not only to induce high level IgG specific antibody, but also toinduce both specific humoral immunity and predominant Th1-type cellular immune responses inBALB/c mice. The present study is the first demonstration that Brucella-specific immune responses canbe enhanced more significantly using prime-boost combination immunization than either the DNAvaccine or the recombinant adenovirus vaccine. The immune response induced by thepcDNA-P39/18KD priming and the Ad-LL/BP boosting appeared to be efficient against Brucellosis inmouse.
引文
1.鲍传庆.大肠癌患者自体树突状细胞免疫治疗技术[博士学位论文].苏州:苏州大学,2010.
    2.蔡宝祥.家畜传染病学(第四版).北京:中国农业出版社,2001.
    3.曹小安.流产布鲁氏菌的PCR检测方法的建立及其主要外膜蛋白功能基因的免疫学特性研究[硕士学位论文].兰州:甘肃农业大学,2008.
    4.陈丹,柳晓琳,刘孝刚,等.布鲁氏菌病流行趋势及其防治措施的研究进展.中国地方病防治杂志,2011,26(1):26-28.
    5.陈溥言.兽医传染病学(第五版).北京:中国农业出版社,2006.
    6.陈泽祥,许力干,禤雄标,等.布鲁氏菌病病原快速检测方法的建立.广西农业科学,2009,40(7):915-918.
    7.丁家波,程君生,牟巍,等.布鲁氏菌S2WboA基因缺失株的构建及免疫效果.中国农业科学,2008,41(8):2448-2453.
    8.丁文超,胡健饶,史雨红,等.环介导恒温扩增技术快速检测溶藻弧菌.分子细胞生物学报,2009,42(1):70-76.
    9.黄家禹,宋秀宇.树突状细胞在结核病免疫应答中的作用及机制.国际免疫学杂志,2009,32(3):234-237.
    10.胡森.马耳他布鲁氏菌M5-90bp26基因缺失疫苗株的构建及安全性和免疫原性评估[博士学位论文].哈尔滨:东北农业大学,2009.
    11.郭建强. H5N1亚型流感病毒双基因共表达的DNA疫苗及腺病毒载体疫苗的研究[博士学位论文].北京:中国疾病预防控制中心,2009.
    12.李鹏,罗德炎,高永辉,等.布氏杆菌BCSP31/pVAX1重组表达质粒的构建及其免疫保护效果的研究.中国人兽共患病学报,2006,6:493-497.
    13.匡志鹏,李安娜,罗小玲,等.重组腺病毒载体pAdBM5-GFP-hIL-2的构建及病毒滴度测定.现代肿瘤医学,2009,17(5):814-817.
    14.李玮.结核分枝杆菌MPT64基因重组腺病毒疫苗的免疫原性及其保护效力研究[硕士学位论文].长沙:中南大学,2010.
    15.李坚,李铁锋,王艾琳,等.用PCR法对布鲁氏菌进行筛查及分型鉴定的研究.中国地方病防治杂志,2009,24(4):300-302.
    16.刘秉阳,孙玺,尚德秋,等.布鲁氏菌病学.北京:人民卫生出版社,1989.
    17.罗德炎.布氏杆菌新型疫苗的构建及免疫保护效果的研究[硕士学位论文].重庆:第三军医大学,2005.
    18.吕慧. E型沙眼衣原体MOMP基因重组腺病毒及其转染树突状细胞的免疫效果研究[博士学位论文].济南:山东大学,2007.
    19.毛开荣.动物布鲁氏菌病防治研究进展.中国兽药杂志,2003,37(9):37-40.
    20.裴树俊.第一代腺病毒载体和第三代腺病毒载体免疫反应差异的研究[硕士学位论文].上海:第二军医大学,2009.
    21.邱昌庆,曹小安,杨春华,等.乳牛布鲁氏菌病病原DNA快速检测技术的研究.中国兽医科学,2005,35(2):85-89.
    22.尚德秋.布鲁氏菌感染与免疫研究近况.中国地方病杂志,2003,18(3):154-157.
    23.尚德秋.布氏菌病研究进展.中国地方病防治杂志,2004,19(4):204-211.
    24.史新涛,古少鹏,郑明学,等.布鲁氏菌病的流行及防控研究概况.中国畜牧兽医,2010,37(3):204-206.
    25.石宗舫,刘长明,隋广超,等.羊种布鲁氏菌单克隆抗体研究及应用.生物技术,1991,3:20-25.
    26.舒邓群.核酸佐剂GM-CSF的克隆及其对生长抑素DNA疫苗的免疫增强作用[博士学位论文].南京:南京农业大学,2006.
    27.孙海峰,俞守义,欧程山,等.含结核分枝杆菌Ag85A基因的2型重组腺相关病毒的构建和免疫原性.热带医学杂志,2007,7(3):222-225.
    28.孙树汉.核酸疫苗.上海:第二军医大学出版社,2005.
    29.孙元,刘大飞,王宇飞,等.猪瘟甲病毒复制子载体DNA疫苗与重组腺病毒活载体疫苗联合免疫效果评价.生物工程学报,2009,25(5):679-685.
    30.唐景峰,李晓艳,王兴龙,等.布病胶体金免疫层析检测方法的建立.中国生物制品学杂志,2007,2:119-121.
    31.王明国,赵卫东,哈提拉,等. REV-菌苗对绵羊附睾布鲁氏菌病的免疫预防效果试验.1994,24(7):31-32.
    32.王晓英,黄建.制品生产用及地方疑难布氏菌DNA基因同源性的研究.畜牧兽医学报,1993,24(4):334-340.
    33.徐琳.炭疽杆菌保护性抗原重组腺病毒疫苗的构建及气溶胶免疫探索性研究[硕士学位论文].北京:中国人民解放军军事医学科学院,2006.
    34.杨春华.流产布鲁氏菌OMP25基因的克隆与原核表达及表达产物免疫反应性的测定[硕士学位论文].北京:中国农业科学院,2005.
    35.闫广谋.布鲁氏菌分子标记、毒力缺失疫苗株YZ-2的研究[硕士学位论文].长春:吉林大学,
    2007.
    36.殷震,刘景华.动物病毒学(第二版).北京:科学出版社,1997.
    37.余大海.结核杆菌和布鲁氏杆菌多价DNA疫苗的研究[博士学位论文].北京:北京大学,2008.
    38.甄清.人布鲁氏菌病标准化PCR诊断方法及BP26基因标记疫苗研究[博士学位论文].长春:吉林大学,2009.
    39.张付贤,李晓艳,闫广谋,等.鉴别布鲁菌病自然感染动物与疫苗免疫动物胶体金检测试纸条的研制.中国畜牧兽医,2009,36(7):79-82.
    40.赵永利,王大力,江森林.2005~2006年布氏菌病全国监测报告.中国地方病防治杂志,2008,23(1):38-40.
    41.郑孝辉,胡森,王加兰,等.流产布氏杆菌S19突变株构建及在小鼠感染模型中的免疫保护评估.中国预防兽医学报,2009,11:887-891.
    42.中华人民共和国农业部. NY/T1467-2007.奶牛布鲁氏菌病PCR诊断技术.北京:中国农业出版社,2008.
    43.中华人民共和国国家质量监督检验检疫总局. GB/T18646-2002.动物布鲁氏菌病诊断技术.北京:中国标准出版社,2002.
    44.周继章.鸡源鹦鹉热衣原体主要外膜蛋白(MOMP)基因重组腺病毒活载体疫苗研究[博士学位论文].北京:中国农业科学院,2006.
    45.朱战波,周玉龙,朱洪伟,等.流产布氏杆菌的检测及生物型PCR鉴定.中国病原生物学杂志,2008,3(8):574-576.
    46.左建民,周玲,王琦,等. EBV-LMP2基因密码子优化对其蛋白表达及免疫效果的影响.现代免疫学,2004,24(4):301-304.
    47. Alba R, Bosch A, Chillon M, et al. Gutless adenovirus: last-generation adenovirus for gene therapy.Gene Therapy,2005,12:18-20.
    48. Al Dahouk S, Tomaso H, N ckler K, et al. Laboratory-based diagnosis of brucellosis--a review ofthe literature. Part II: serological tests for brucellosis. Clin Lab,2003,49(11-12):577-589.
    49. Al-Mariri A. Protection of BALB/c mice against Brucella melitensis16M infection induced byvaccination with live Escherchia coli expression Brucella P39protein. Vaccine,2010,28(7):1766-1770.
    50. Al-Mariri A, Tibor A, Mertens P, et al. Induction of immune response in BALB/c mice with a DNAvaccine encoding bacterioferritin or P39of Brucella spp. Infect Immun,2001b,69(10):6264-6270.
    51. Al-Mariri A, Tibor A, Mertens P, et al. Protection of BALB/c mice against Brucella abortus544challenge by vaccination with bacterioferritin or P39recombinant proteins with CpGoligodeoxynucleotides as adjuvant. Infect Immun,2001a,69(8):4816-4822.
    52. Alshaolan M. Brucellosis in chldren: Clinical observation sin115cases. Inter J InfectDise,2002,6(3):182-186.
    53. Alton GG, Forsyth JRL. Brucella. In: Baron S, ed. Medical Microbiology.4th edition. Galveston(TX): University of Texas Medical Branch at Galveston,1996, Chapter28.
    54. Angel A. O ate1, Ramesh Vemulapalli, Edilia Andrews, et al. Vaccination with Live Escherichiacoli Expressing Brucella abortus Cu/Zn Superoxide Dismutase Protects Mice against Virulent B.abortus. Infect. Immun,1999,67(2):986-988.
    55. Ardavin C, Wu L, Li C, et al. Thymic dendritic cells and T cells develop simultaneously within thethymus from a common precursor population. Nature,1993,362:761-763.
    56. Arenas GN, Staskevich AS, Aballay A, et al. Intracellular trafficking of Brucella abortus in J774macrophages. Infect Immun.2000,68(7):4255-4263.
    57. Ariza J, Bosilkovski M., Cascio A, et al. Perspectives for the treatment of brucellosis in the21stcentury: the Ioannina recommendations. PLoS Med,2007,4(12):e317.
    58. Atluri VL, Xavier MN, de Jong MF, et al. Interactions of the human pathogenic Brucella specieswith their hosts. Annu Rev Microbiol,2011,65:523-541.
    59. Bachrach G, Banai M, Bardenstein S, et al. Brucella ribosomal protein L7/L12is a majorcomponent in the antigenicity of brucellin INRA for delayed-type hypersensitivity inbrucella-sensitized guinea pigs. Infect Immun,1994,62(12):5361-5366.
    60. Baldwin CL, Jiang X, Fernandes DM. Macrophage control of Brucella abortus: influence ofcytokines and iron.Trends Microbiol,1993,1(3):99-104.
    61. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature,1998,392:245-252.
    62. Barthel R, Feng J, Piedrahita JA, et al. Stable transfection of the bovine NRAMP1gene into murineRAW264.7cells: effect on Brucella abortus survival. Infect Immun,2001,69(5):3110-3119.
    63. Bellido D, Craig PO, Mozgovoj MV, et al. Brucella spp. lumazine synthase as a bovine rotavirusantigen delivery system. Vaccine,2009,27(1):136-145.
    64. Bikas C, Jelastopulu E, Leotsinidis M, et al. Epidemiology of human brucellosis in a rural area ofnorth-western Peloponnese in Greece. Eur J Epidemiol,2003,18:267-274.
    65. Billard E, Cazevieille C, Dornand J, et al. High susceptibility of human dendritic cells to invasionby the intracellular pathogens Brucella suis, B. abortus, and B. melitensis. Infect Immun,2005,73(12):8418-8424.
    66. Billard E, Dornand J, Gross A. Brucella suis prevents human dendritic cell maturation and antigenpresentation through regulation of tumor necrosis factor alpha secretion. Infect Immun,2007,75(10):4980-4989.
    67. Blajan L, Contribution of the OIE to controlling animal brucellosis on a world-wide scale. OfficeInternational des Epizooties. Dev Biol Stand,1984,56:21-40.
    68. Blasco1JM. Areview of the use of B. melitensis Rev1vaccine in adult sheep and goats. PreventiveVeterinary Medicine,1997,31(3-4):275-283.
    69. Bode C, Zhao G, Steinhagen F, et al. CpG DNA as a vaccine adjuvant. Expert Rev Vaccines.2011,10(4):499-511.
    70. Bosseray N. Immunity to Brucella in mice vaccinated with a fraction (F8) or a killed vaccine (H38)with or without adjuvant. Level and duration of immunity in relation to dose of vaccine, recallinjection and age of mice. Br J Exp Pathol.1978,59(4):354-365.
    71. Bounaadja L, Albert D, Chénais B, et al. Real-time PCR for identification of Brucella spp.: acomparative study of IS711, bcsp31and per target genes. Vet Microbiol,2009,37(1-2):156-64.
    72. Buck JM. Studies of vaccination during calfhood to prevent bovine infectious abortion. J AgricRes,1930,41:667-689.
    73. Busch LA&Parker RL. Brucellosis in the United States. The Journal of Infectious Diseases,1972,125(3):289-294.
    74. Cao Y, Takada E, Hata K, et al. Enhanced T cell-independent antibody responses in c-JunN-terminal kinase2(JNK2)-deficient B cells following stimulation with CpG-1826and anti-IgM.Immunol Lett,2010,132(1-2):38-44.
    75. Celli J, Gorvel JP. Organelle robbery: Brucella interactions with the endoplasmic reticulum. CurrOpin Microbiol,2004,7(1):93-97.
    76. Chen H, Wen B, Deng Y, et al. Enhanced Effect of DNAImmunization plus In Vivo Electroporationwith a Combination of Hepatitis B Virus Core-PreS1and S-PreS1Plasmids. Clin Vaccine Immunol,2011,18(11):1789-1795.
    77. Cherif MS, Shuaibu MN, Kurosaki T, et al. Immunogenicity of novel nanoparticle-coated MSP-1C-terminus malaria DNA vaccine using different routes of administration. Vaccine,2011,29(48):9038-9050.
    78. Chukwu CC. The instability of Brucella abortus strain45/20and a note on significance of using anunstable rough strain in the diagnosis of bovine brucellosis. Int J Zoonoses.1985,12(2):120-125.
    79. Cloeckaert A, Jacques I, Grilló MJ, et al. Development and evaluation as vaccines in mice ofBrucella melitensis Rev.1single and double deletion mutants of the bp26and omp31genes codingfor antigens of diagnostic significance in ovine brucellosis. Vaccine,2004,22(21-22):2827-2835.
    80. Corbel MJ. Brucellosis: an overview. Emerg Infect Dis,1997,3(2):213-221.
    81. Curry PS, Elkin BT, Campbell M, et al. Filter-paper blood samples for ELISA detection of Brucellaantibodies in caribou. J Wildl Dis,2011,47(1):12-20.
    82. Dagleish MP, Barley J, Finlayson J, et al. Brucella ceti associated pathology in the testicle of aharbour porpoise (Phocoena phocoena). J Comp Pathol,2008,139(1):54-59.
    83. David García-Yoldi, Clara M. Marín, María J, et al. Multiplex PCR Assay for the Identification andDifferentiation of all Brucella Species and the Vaccine Strains Brucella abortus S19and RB51andBrucella melitensis Rev1. Clinical Chemistry.2006,52:779-781.
    84. Delgado S, Fernández M, Cármenes P. Evaluation of an enzyme-linked immunosorbent assay forthe detection of sheep infected and vaccinated with Brucella melitensis. J Vet Diagn Invest.1995,7(2):206-209.
    85. Delpino MV, Estein SM, Fossati CA, et al. Vaccination with Brucella recombinant DnaK and SurAproteins induces protection against Brucella abortus infection in BALB/c mice. Vaccine,2007,25(37-38):6721-6729.
    86. DelVecchio VG, Alefantis T, Ugalde RA, et al. Identification of protein candidates for developingbacterial ghost vaccines against Brucella. Methods Biochem Anal,2006,49:363-377.
    87. Deqiu S, Donglou X, Jiming Y. Epidemiology and control of brucellosis in China. Vet Microbiol,2002,90(1-4):165-182.
    88. Donnelly JJ, Wahren B, Liu MA. DNAvaccines: progress and challenges. J Immunol,2005,175(2):633-639.
    89. Dorm BR, Dunn WA Jr, Progulske-Fox A. Bacterial interactions with the autophagic pathway. CellMicrobiol,2002,4(1):1-10.
    90. Drevets DA, Leenen PJ, Greenfield RA. Invasion of the central nervous system by intracellularbacteria. Clin Microbiol Rev,2004,17(2):323-347.
    91. Duan YN, Yi LH, Chen JL, et al. Protective effect of DNA vaccine with the gene encoding55kDaantigen fragment against Pneumocystis carinii in mice. Asian Pac J Trop Med,2011,4(5):353-356.
    92. Edmonds M, Booth N, Hagius S, et al. Attenuation and immunogenicity of a Brucella abortus htrAcycL double mutant in cattle. Vet Microbiol.2000,76(1):81-90.
    93. Edmonds MD, Cloeckaert A, Elzer PH, et al. Brucella species lacking the major outer membraneprotein OMP25are attenuated in mice and protect against Brucella melitensis and Brucella ovis. VetMicrobiol,2002,88(3):205-221.
    94. el Idrissi AH, Benkirane A, el Maadoudi M, et al. Comparison of the efficacy of Brucella abortusstrain RB51and Brucella melitensis Rev.1live vaccines against experimental infection withBrucella melitensis in pregnant ewes. Rev Sci Tech,2001,20(3):741-747.
    95. Elzer PH, Enright FM, McQuiston JR, et al. Evaluation of a rough mutant of Brucella melitensis inpregnant goats. Res Vet Sci,1998,64(3):259-260.
    96. Elzer PH, Smith J, Roffe T, et al. Evaluation of Brucella abortus strain RB51and strain19inpronghorn antelope. Ann N Y Acad Sci,2002,969:102-105.
    97. Endley S, McMurray D, Ficht TA. Interruption of the cydB locus in Brucella abortus attenuatesintracellular survival and virulence in the mouse model of infection. J Bacteriol.2001,183(8):2454-2462.
    98. Ferlazzo G, Klein J, Paliard X, et al. Dendritic cells generated from CD34+progenitor cells with flt3ligand, skit ligand, GM-CSF, IL-4, and TNF-alpha are functional antigen presenting cellsresembling mature monocytederived dendritic cells. J Immunother,2000,23(1):48-58.
    99. Fernandez-Prada CM, Nikolich M, Vemulapalli R, et al. Deletion of wboA enhances activation ofthe lectin pathway of complement in Brucella abortus and Brucella melitensis. Infect Immun,2001,69(7):4407-4416.
    100.Foster G, Osterman BS, Godfroid J, et al. Brucella ceti sp. nov. and Brucella pinnipedialis sp. nov.for Brucella strains with cetaceans and seals as their preferred hosts. Int J Syst Evol Microbiol,2007,57(11):2688-2693.
    101.Gagliardi MC, Teloni R, Giannoni F, et al. Mycobacteria exploit p38signaling to affect CD1expression and lipid antigen presentation by human dendritic cells. Infect Immunol,2009,77(11):4947-4952.
    102.Gao N, Jennings P, Guo Y, et al. Regulatory role of natural killer (NK) cells on antibody responsesto Brucella abortus. Innate Immun.2011,17(2):152-163.
    103.García-Carrillo C. Comparison of B. melitensis Rev.1and B. abortus strain19as a vaccine againstbrucellosis in cattle. Zentralbl Veterinarmed B,1980,27(2):131-138.
    104.García Samartino C, Delpino MV, Pott Godoy C, et al. Brucella abortus induces the secretion ofproinflammatory mediators from glial cells leading to astrocyte apoptosis. Am J Pathol,2010,176(3):1323-1338.
    105.Garg S, Oran AE, Hon H, et al. The hybrid cytomegalovirus enhancer/chicken beta-actin promoteralong with woodchuck hepatitis virus posttranscriptional regulatory element enhances the protectiveefficacy of DNA vaccines. J Immunol,2004,173(1):550-558.
    106.Garin B, Trap D, Gaumont R. Assessment of the EDTA seroagglutination test for diagnosis ofbovine brucellosis. Vet. Rec,1985,117:444-445.
    107.Giri M, Ugen KE, Weiner DB. DNA vaccines against human immunodeficiency virus type1in thepast decade. Clin Microbiol Rev,2004,17(2):370-389.
    108.Goldbaum FA, Leoni J, Fossati CA. Characterization of an18-kilodalton Brucella cytoplasmicprotein which appears to be a serological marker of active infection of both human and bovineburcellosis. J Clin Microbiol,1993,31:2141-2145.
    109.Goldbaum FA, Velikovsky CA, Baldi PC, et al. The18-kDa cytoplasmic protein of Brucellaspecies--an antigen useful for diagnosis--is a lumazine synthase. J Med Microbiol,1999,48(9):833-839.
    110.Goonetilleke NP, McShane H, Hannan CM, et al. Enhanced immunogenicity and protectiveefficacy against Mycobacterium tuberculosis of bacille Calmette-Guérin vaccine using mucosaladministration and boosting with a recombinant modified vaccinia virus Ankara. J Immunol.2003,171(3):1602-1209.
    111.Gorrell MD, Milliken GL, Anderson BJ, et al. An enzyme immunoassay for bovine brucellosisusing a monoclonal antibody specific for field strains of Brucella abortus. Dev Biol Stand,1984,56(2):491-494.
    112.Grilló MJ, Manterola L, de Miguel MJ, et al. Increases of efficacy as vaccine against Brucellaabortus infection in mice by simultaneous inoculation with avirulent smooth bvrS/bvrR and roughwbkA mutants. Vaccine.2006,24(15):2910-2916.
    113.Grilló MJ, Marín CM, Barberán M, et al. Efficacy of bp26and bp26/omp31B. melitensis Rev.1deletion mutants against Brucella ovis in rams. Vaccine,2009,27(2):187-191.
    114.Grimont F, Verger JM, Cornelis P, Molecular typing of Brucella with cloned DNA probes. ResMicrobiol,1992,143(1):55-65.
    115.Gross A, Terraza A, Ouahrani-Bettache S, et al. In vitro Brucella suis infection prevents theprogrammed cell death of human monocytic cells. Infect Immun,2000,68(1):342-351.
    116.Guo J, Yao L, Chen A, et al. Evaluation of the immune response to recombinant DNA vaccine andadenoviral vaccine co-expressing the M1and HA genes of H5N1influenza virus in mice. ShengWu Gong Cheng Xue Bao,2011,27(6):876-883.
    117.Guo-Zhen Lin, Fu-Ying Zheng, Ji-Zhang Zhou, et al. Loop-mediated isothermal amplificationassay targeting the OMP25gene for rapid detection of Brucella spp. Molecular and Cellular Probes,2011,25:126-129.
    118.Gurunathan S, Wu CY., Freidag BL, et al. DNA vaccines: a key for inducing long-term cellularimmunity. Curr. Opin. Immunol,2000,12:442–447.
    119.Gurunathan S, Stobie L, Prussin C, et al. Requirements for the maintenance of Th1immunity invivo following DNA vaccination: a potential immunoregulatory role for CD8+T cells. J Immunol,2000,165(2):915-924.
    120.Guzman-Verri C, Manterola L, Sola-Landa A, et al. The two-component system BvrR/BvrSessential for Brucella abortus virulence regulates the expression of outer membrane proteins withcounterparts in members of the Rhizobiaceae. Proc Natl Acad Sci U S A,2002,99(19):12375-12380.
    121.Haiyuan Yu, Nicholas M. Luscombe, Hao Xin Lu, et al. Annotation transfer between genomes:protein–protein interologs and protein–DNA regulogs. Genome Res,2004,14:1107-1118.
    122.Han JW, Shimada K, Ma-Krupa W, et al. Vessel wall-embedded dendritic cells induce T-cellautoreactivity and initiate vascular inflammation. Circ Res,2008,102:546-553.
    123.Herman L, De Ridder H. Identification of Brucella spp. by using the polymerase chain reaction.Appl Environ Microbiol,1992,58(6):2099-2101.
    124.He TC, Zhou S, Da Costa LT, et al. A simplified system for generating recombinant adenoviruses.Proc. Natl. Acad. Sci. USA,1998,95(5):2509-2514.
    125.He Y, Vemulapalli R, Shurig GG. Recombinant ochrobactrum anthropic expressing Brucellaabortus Cu, Zn superoxide dismutase protects mice against B. abortus infection only afterswitching of immune response to Thl type. Infection and Immunity,2002,70(5):2535-2543.
    126.Hoffmann EM, Houle JJ. Contradictory roles for antibody and complement in the interaction ofBrucella abortus with its host. Crit Rev Microbiol,1995,21(3):153-163.
    127.Hu XD, Chen ST, Li JY, et al. An IL-15adjuvant enhances the efficacy of a combined DNAvaccineagainst Brucella by increasing the CD8+cytotoxic T cell response. Vaccine,2010,28(12):2408-2415.
    128.Imperiale MJ, Kochanek S. Adenovirus vectors: biology, design, and production. Curr TopMicrobiol Immunol,2004,273:335-357.
    129.Inchauspe G, Makimura M, Miyake S, et al. Induction of antibodies against structural proteins ofhepatitis C virus in mice using recombinant adenovirus. Vaccine,1996,14(1):28-36.
    130.Innaba K, Steinxnan RM, Pack MW, et al. Identification of proliferating dendritic cell precursors inmouse blood. J Exp Med,1992,175(5):1157-1167.
    131.IwasakiA. Mucosal dendritic cells.Annu Rev Immunol,2007,25:381-418.
    132.Iyankan L, Singh DK. The effect of Brucella abortus on hydrogen peroxide and nitric oxideproduction by bovine polymorphonuclear cells. Vet Res Commun,200226(2):93-102.
    133.Jeon BY, Eoh H, Ha SJ, et al. Co-Immunization of Plasmid DNA Encoding IL-12and IL-18withBacillus Calmette-Guérin Vaccine against Progressive Tuberculosis. Yonsei Med J,2011,52(6):1008-1015.
    134.Jiang WM, Jiang P, Li YF, et al. Recombinant adenovirus expressing GPS and M fusion proteins ofporcine reproductive and respiratory syndrome virus induce both humoral and cell-mediatedimmune responses in mice. Vet Immunol Immunopathol,2006,113(1-2):169-180.
    135.Kamaraj G, Rajendra L, Shankar CR, et al. Optimization of production of Brucella abortus S19culture in bioreactor using soyabean casein digest medium. New Microbiol,2010,33(4):319-328.
    136.Kariminia A, Kavoossy G, Khatami S, et al. Study of interleukin-10and interleukin-12productionsin response to lipopolysaccharides extracted from two different Brucella strains. Comp ImmunolMicrobiol Infect Dis.2002,25(2):85-93.
    137.Kittelberger R, Bundesen PG, Cloeckaert A, et al. Serological cross-reactivity between Brucellaabortus and Yersinia enterocolitica0:9: IV. Evaluation of the M-and C-epitope antibody responsefor the specific detection of B. abortus infections. Vet. Microbiol,1998,60:45-57.
    138.Koblin BA, Casapia M, Morgan C, et al. Safety and Immunogenicity of an HIV Adenoviral VectorBoost after DNA Plasmid Vaccine Prime by Route of Administration: A Randomized Clinical Trial.PLoS One,2011,6(9): e24517.
    139.K hler S, Layssac M, Naroeni A, et al. Secretion of listeriolysin by Brucella suis inhibits itsintramacrophagic replication. Infect Immun,2001,69(4):2753-2756.
    140.Ko J, Gendron-Fitzpatrick A, Splitter GA. Susceptibility of IFN regulatory factor-1and IFNconsensus sequence binding protein-deficient mice to brucellosis. J Immunol,2002,168(5):2433-2440.
    141.Ko J, Sputter GA. Molecular host-pathogen interaction in brucellosis: current understanding andfuture approaches to vaccine development for mice and humans. Clinical microbiology review,2003,16:65-78.
    142.Królak M, B aszczyk B. Standardization of the complement fixation test (CFT) in brucellosis. II.The antigen. Pol Arch Weter,1986,25(1):17-31.
    143.Kurar E, Sputter GA. Nucleic acid vaccination of Brucella abortus ribosomal L7/12gene elicitsimmune response. Vaccine1997,15(17/18):1851-1857.
    144.Leclercq S, Harms JS, Rosinha GM, et al. Induction of a Thl-type of immune response but notprotective immunity by intramuscular DNA immunization with Brucella abortusGroEL heat-shock gene. J. Med. Microbiol,2002,51:21-26.
    145.Lee SI, Islam MA, Khatun MM, et al. Immunoglobulin profiles in acute Brucellosis experimentallyinduced by Brucella canis in BALB/c mice. Vector Borne Zoonotic Dis,2010,10(9):927-930.
    146.Luo DY, Li P, Xing L, Zhao GY, et al. DNA vaccine encoding L7/L12-P39of Brucella abortusinduces protective immunity in BALB/c mice. Chin Med J (Engl),2006,119(4):331-334.
    147.Lusky M, Grave L, Dieterlé A, et al. Regulation of adenovirus-mediated transgene expression bythe viral E4gene products: requirement for E4ORF3. J Virol,1999,73(10):8308-8319.
    148.Mayer-Scholl A, Draeger A, G llner C, et al. Advancement of a multiplex PCR for thedifferentiation of all currently described Brucella species. J Microbiol Methods.2010,80(1):112-114.
    149.McGiven JA, Tucker JD, Perrett LL, et al. Validation of FPA and cELISA for the detection ofantibodies to Brucella abortus in cattle sera and comparison to SAT, CFT, and iELISA. J ImmunolMethods,2003,278(1-2):171-178.
    150.Mehrizi AA, Zakeri S, Rafati S, et al. Immune responses elicited by co-immunization ofPlasmodium vivax and P. falciparum MSP-1using prime-boost immunization strategies. ParasiteImmunol,2011,33(11):594-608.
    151.Memish ZA, Balkhy HH. Brucellosis and international travel. J Travel Med.200411(1):49-55.
    152.Mingle CK, Manthei CA, Jasmin AM. The stability of reduced virulence exhibited by Brucellaabortus. J.Am. Vet.MED.Assoc,1941,99:203.
    153.Mori Y, Notomi T. Loop-mediated isothermal amplification (LAMP): a rapid, accurate, andcost-effective diagnostic method for infectious diseases. J Infect Chemother,2009,15(2):62-69.
    154.Muindi K, Cernadas M, Watts GF, et al. Activation state and intracellular trafficking contribute tothe repertoire of endogenous glycosphingolipids presented by CD1d. Proc Natl Acad Sci USA,2010,107(7):3052-3057.
    155.Nakashima H, Terabe M, Berzofsky JA, et al. A Novel Combination Immunotherapy for Cancer byIL-13Rα2-Targeted DNA Vaccine and Immunotoxin in Murine Tumor Models. J Immunol,2011,187(10):4935-4946.
    156.Nasr AB, Haithcoat J, Masterson JE, et al. Critical role for serum opsonins and complementreceptors CR3(CD11b/CD18) and CR4(CD11c/CD18) in phagocytosis of Francisella tularensis byhuman dendritic cells (DC): uptake of Francisella leads to activation of immature DC andintracellular survival of the bacteria. J Leukoc Biol,2006,80:774-786.
    157.Navarro E, Escribano J, Fernández J, et al. Comparison of three different PCR methods fordetection of Brucella spp. in human blood samples. FEMS Immunol Med Microbiol,2002,34(2):147-151.
    158.Nielsen KH, Duncan JR, Stemshorn BW. Non-specific reactions to the Brucella abortus SAT.Veterinary Record,1985,116:550.
    159.Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA.Nucleic Acids Res,2000,28:e63.
    160.Ohtsuki R, Kawamoto K, Kato Y, et al. Rapid detection of Brucella spp. by the loop-mediatedisothermal amplification method. J Appl Microbiol,2008,104(6):1815-1823.
    161.Oliveira SC, Splitter GA. CD8+type1CD44hi CD45RBlo T lymphocytes control intracellularBrucella abortus infection as demonstrated in major histocompatibility complex class I-and classII-deficient mice. Eur J Immunol,1995,25(9):2551-2557.
    162.Onate AA, Cespedes S, Cabrera A, et al. DNA Vaccine Encoding Cu, Zn Superoxide Dismutase ofBrucella abortus Induces Protective Immunity in BALB/c Mice. Infect Immun.2003,71(9):4857-4861.
    163.O ate AA, Donoso G, Moraga-Cid G, et al. An RNA vaccine based on recombinant Semliki Forestvirus particles expressing the Cu, Zn superoxide dismutase protein of Brucella abortus inducesprotective immunity in BALB/c mice. Infect Immun.2005,73(6):3294-3300.
    164.Osinubi MO, Wu X, Franka R, et al. Enhancing comparative rabies DNA vaccine effectivenessthrough glycoprotein gene modifications. Vaccine,2009,27(51):7214-7218.
    165. zdemir M, Feyzio lu B, Kurto lu MG, et al. A comparison of immuncapture agglutination andELISA methods in serological diagnosis of brucellosis. Int J Med Sci,2011,8(5):428-432.
    166.Pajuaba AC, Silva DA, Mineo JR. Evaluation of indirect enzyme-linked immunosorbent assays andIgG avidity assays using a protein A-peroxidase conjugate for serological distinction betweenBrucella abortus S19-vaccinated and-infected cows. Clin Vaccine Immunol,2010,17(4):588-95.
    167.Pappas G,Akritidis N, Bosilkovski M, et al. Brucellosis. N Engl J Med,2005,352(22):2325-2336.
    168.Pappas G, Papadimitriou P, Akritidis N, et al. The new global map of human brucellosis. LancetInfect Dis,2006a,6(2):91-99.
    169.Pappas G, Panagopoulou P, Christou L, et al. Brucella as a biological weapon Cell. Mol. Life Sci,2006b,63:2229-2236.
    170.Parks RJ, Chen L, Anton M, et al. A helper-dependent adenovirus vector: removal of helper virusby Cre-mediated excision of the viral packaging signal. Proc Natl Acad Sci USA,1996,93(24):13565-13570.
    171.Penttila T, Tammiruusu A, Liljestrom P, et al. DNAimmunization followed by a viral vector boosterin a Chlamydia pneumoniae mouse model. Vaccine,2004,22(25-26):3386-3394.
    172.Pinzon-Charry A, McPhun V, Kienzle V, et al. Low doses of killed parasite in CpG elicit vigorousCD4+T cell responses against blood-stage malaria in mice. J Clin Invest,2010,120(8):2967-2978.
    173.Rajashekara G, Glasner JD, Glover DA, et al. Comparative whole-genome hybridization revealsgenomic islands in Brucella species. J Bacteriol,2004,186(15):5040-5051.
    174.Rajesh C. Brucellosis outbreak in an organized daifarm Involving cows and in contact humanbeings. Vet Bul I,2003,73(9):1250.
    175.Rayssac A, Neveu C, Pucelle M. IRES-based vector coexpressing FGF2and Cyr61providessynergistic and safe therapeutics of lower limb ischemia. Mol Ther,2009,17(12):2010-2019.
    176.Rijpens NP, Jannes G, Van Asbroeck M, et al. Direct detection of Brucella spp. in raw milk by PCRand reverse hybridization with16S-23S rRNA spacer probes. Appl Environ Microbiol,1996,62(5):1683-1688.
    177.Roberts LO, Belsham GJ. Complementation of defective picornavirus internal ribosome entry site(IRES) elements by the coexpression of fragments of the IRES.Virology,1997,227(1):53-62.
    178.Robinson HL. New hope for an aids vaccine. Nature Revi Immunol,2002,2:239-250.
    179.Romani N, Reider D, Heuer M, et al. Proliferating dendritic cell progenitor in human blood. J ExpMed,1994,180:83-93.
    180.Roop RM2nd, Bellaire BH, Valderas MW, et al. Adaptation of the Brucellae to their intracellularniche. Mol Microbiol,2004,52(3):621-30.
    181.Rossi JJ, June CH, Kohn DB. Genetic therapies against HIV. Nat Biotechnol,2007,25(12):1444-1454.
    182.Ruiz-Mesa JD, Sánchez-Gonzalez J, Reguera JM, et al. Rose Bengal test: diagnostic yield and usefor the rapid diagnosis of human brucellosis in emergency departments in endemic areas. ClinMicrobiol Infect,2005,11(3):221-225.
    183.Schmitz J, Petrasch S, van Lunzen, et al. Optimizing follicular dendritic cells: isolation folliculardendritic cells by discontinuous gradient centrifugations and use of the magnetic cell sorter(MACS). J Immunol Methods,1993,159:189-196.
    184.Scholz HC, Hubalek Z, Nesvadbova J, et al. Isolation of Brucella microti from soil. Emerg InfectDis,2008,14(8):1316-1317.
    185.Scholz HC, Tomaso H, Dahouk SA, et al. Genotyping of Ochrobactrum anthropi by recA-basedcomparative sequence, PCR-RFLP, and16S rRNA gene analysis. FEMS Microbiol Lett,2006,257(1):7-16.
    186.Schurig GG, Roop RM, Bagchi T, et al. Biological properities of RB51; a stable rough strain ofBrucella abortus. Vet. Microbiol,1991,28(2):171-188.
    187.Seong YR, Lee CH, Im DS. Characterization of the structural proteins of hepatitis C virusexpressed by an adenovirus recombinant. Virus Res,1998,55(2):177-185.
    188.Sergio C, Oliveira J, Gary A, et al. Immunization of mice with recombinant L7/L12ribosomalprotein confers protein confers protection against Brucella abortus infection. Vaccine,1996,14(10):959-962.
    189.Shahaza O, Khairani-Bejo S, Zunita Z, et al. In-House Rose Bengal Plate Agglutination Test (RBPT)for a Rapid Diagnosis of Brucellosis in Goats in Malaysia. International Journal of TropicalMedicine,2009,4(3):116-118.
    190.Shedlock DJ, Weiner DB. DNA vaccination: antigen presentation and the induction of immunity. JLeukoc Biol,2000,68(6):793-806.
    191.Shenk T. Adenoviridae and their replication. In: Fields B, Howley P, Knipe D. eds. Virology. NewYork: Raven Press,1996,2111–2148.
    192.Sreevatsan S, Bookout JB, Ringpis F, et al. Amultiplex approach to molecular detection of Brucellaabortus and/or Mycobacterium bovis infection in cattle. J Clin Microbiol,2000,38(7):2602-2610.
    193.Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice IMorphology quantitation tissue distribution. J Exp Med,1973,137:1142-1162.
    194.SunY, Liu DF, Wang YF, et al. Generation and efficacy evaluation of a recombinant adenovirusexpressing the E2protein of classical swine fever virus. Res Vet Sci,2010,88(1):77-82.
    195.Surendran N, Sriranganathan N, Lawler H, et al. Efficacy of vaccination strategies againstintranasal challenge with Brucella abortus in BALB/c mice. Vaccine,2011,29(15):2749-2755.
    196.Suraud V, Jacques I, Olivier M, et al. Acute infection by conjunctival route with Brucella melitensisinduces IgG+cells and IFN-gamma producing cells in peripheral and mucosal lymph nodes insheep. Microbes Infect,2008,10(12-13):1370-1378.
    197.Tabatabai LB, Pugh GW, Modulation of immune responses in Balb/c mice vaccinated with Brucellaabortus Cu-Zn superoxide dismutase synthetic peptide vaccine. Vaccine,1994,12:919-924.
    198.Tang CM, Cohen J, Holden DW. An Aspergillus fumigatus alkaline protease mutant constructed bygene disruption is deficient in extracellular elastase activity. Mol Microbiol.1992,6(12):1663-1671.
    199.Tatum FM, Detilleux PG, Sacks JM, et al. Construction of Cu-Zn superoxide dismutase deletionmutants of Brucella abortus: analysis of survival in vitro in epithelial and phagocytic cells and invivo in mice. Infect Immun,1992,60(7):2863-2869.
    200.Tavakoli S, Sehwerin W, Rohwer A, et al. Phenotype and function of monocyte derived dendriticcells in chronic hepatitis B virus infection. Journal of General Virology,2004,85:2829-2836.
    201.Thekisoe OM, Kuboki N, Nambota A, et al. Species-specific loop-mediated isothermalamplification (LAMP) for diagnosis of trypanosomosis. Acta Trop,2007,102:182-189.
    202.Ulmer JB, Donnelly JJ, Parker SE, et al. Heterologous protection against influenza by injection ofDNA encoding a viral protein. Science,1993,259(5102):1745-1749.
    203.Velikovsky CA, Cassataro J, Giambartolomei GH, et al. A DNA vaccine encoding lumazinesynthase from Brucella abortus induces protective immunity in BALB/c mice. Infect Immun,2002,70(5):2507-2511.
    204.Velikovsky CA, Goldbaum FA, Cassataro J, et al. Brucella lumazine synthase elicits a mixedTh1-Th2immune response and reduces infection in mice challenged with Brucella abortus544independently of the adjuvant formulation used. Infect Immun,2003,71(10):5750-5755.
    205.Vemulapalli R, Contreras A, Sanakkayala N, et al. Enhanced efficacy of recombinant Brucellaabortus RB51vaccines against B. melitensis infection in mice. Vet Microbiol,2004,102(3-4):237-245.
    206.Vemulapalli R, He Y, Buccolo LS, et al. Complementation of Brucella abortus RB51with afunctional wboA gene results in O-antigen synthesis and enhanced vaccine efficacy but no changein rough phenotype and attenuation. Infect. Immun,2000,68(7):3927-3932.
    207.Vemulapalli R, He Y, Cravero S, et al. Overexpression of protective antigen as a novel approach toenhance vaccine efficacy of Brucella abortus strain RBS1. Infect Immun,2000,68:3286-3289.
    208.Verger JM, Grayon M, Zundel E, et al. Comparison of the efficacy of Brucella suis strain2andBrucella menlitensis Rev.l live vaccines against a Brucella menlitensis experimental infection inpregnant ewes. Vaccine,1995,13(2):191-196.
    209.von Bubnoff A. Phase I trial of adenovirus-based prime-boost regimen begins in Boston. IAVI Rep,2010,14(5):18-19.
    210.Vremec D, Shortman K. Dendritic cell subtypes in mouse lymphoid organs: Cross-correlationsurface markers changes with incubation and difference among thymus, spleen, and lymph node. JImmunol,1997,159(2):565-573.
    211.Vremec D. The isolation of mouse dendritic cells from lymphoid tissues and the identification ofdendritic cell subtypes by multiparameter flow cytometry. Methods Mol Bio1,2010,595:205-229.
    212.Wang F, Hu S, Gao Y, et al. Complete genome sequences of Brucella melitensis strains M28andM5-90, with different virulence backgrounds. J Bacteriol,2011,193(11):2904-2905.
    213.Wan Y, Bramson J, Gauldie J. et al. Dendritic cells transduced with an adenoviral vector encoding amodel tumor-associated antigen for tumor vaccination. Hum Gene Ther,1997,8:1355-1363.
    214.Wesley RD, Tang M, Lager KM. Protection of weaned pigs by vaccination with human adenovirus5recombinant viruses expressing the hemagglutinin and the nucleoprotein of H3N2swine influenzavirus. Vaccine,2004,22(25-26):3427-3434.
    215.Wilmott RW, Amin RS, Perez CR, et al. Safety of adenovirus-mediated transfer of the human cysticfibrosis transmembrane conductance regulator cDNA to the lungs of nonhuman primates. HumGene Ther,1996,7(3):301-318.
    216.Winter AJ, Schurig GG, Boyle SM, et al. Protection of BALB/c Mice against homologous andheterologous species of Brucella by rough strain vaccines derived from Brucella melitesis andBrucella suis biovar4. Am.J.Vet.Res,1996,57:677-683.
    217.Wolff JA, Budker V. The mechanism of naked DNA uptake and expression. Adv Genet,2005,54:3-20.
    218.Xu Y-Z. Synthetic chemistry of base-modified DNA. In: Loakes D. ed. Modified Nucleosides,Synthesis and Applications. Kerala: Research Signpost,2002,1-16.
    219.Yang X, Thornburg T, Walters N, et al. DeltaznuADeltapurE Brucella abortus2308mutant as a livevaccine candidate. Vaccine,2010,28(4):1069-1074.
    220.Yang X, Walters N, Robison A, et al. Nasal immunization with recombinant Brucella melitensisbp26and trigger factor with cholera toxin reduces B. melitensis colonization. Vaccine.2007,25(12):2261-2268.
    221.Yu DH, Hu XD, Cai H. A combined DNA vaccine encoding BCSP31, SOD, and L7/L12confershigh protection against Brucella abortus2308by inducing specific CTL responses. DNA Cell Biol,2007,26(6):435-443.
    222.Zagoskina TIu, Markov EIu, Kalinovski AI, et al. Use of specific antibodies, labeled with colloidalgold particles, for the detection of Brucella antigens using dot-immunoassay. Zh MikrobiolEpidemiol Immunobiol,1998,6:64-68.
    223.Zeytino lu A, Turhan A, Altu lu I, et al. Comparison of Brucella immunoglobulin M and G flowassays with serum agglutination and2-mercaptoethanol tests in the diagnosis of brucellosis. ClinChem Lab Med,2006,44(2):180-184.
    224.Zhao Z, Li M, Luo D, et al. Protection of mice from Brucella infection by immunization withattenuated Salmonella enterica serovar typhimurium expressing A L7/L12and BLS fusion antigenof Brucella. Vaccine,2009,27(38):5214-5219.
    225.Zheng FY, Lin GZ, Zhou JZ, et al. A reverse-transcription, loop-mediated isothermal amplificationassay for detection of bovine ephemeral fever virus in the blood of infected cattle. Journal ofVirological Methods,2011,171:306-309.
    226.Zundel E, Verger JM, Grayon M, et al. Conjunctival vaccination of pregnant ewes and goats withBrucella melitensis Rev1vaccine: safety and serological responses. Ann Rech Vet,1992,23(2):177-188.
    227.Zwerdling A, Delpino MV, Barrionuevo P, et al. Brucella lipoproteins mimic dendritic cellmaturation induced by Brucella abortus. Microbes Infect,2008,10(12-13):1346-1354.
    228.Zygmunt MS, Blasco JM, Letesson JJ, et al. DNA polymorphism analysis of Brucellalipopolysaccharide genes reveals marked differences in O-polysaccharide biosynthetic genesbetween smooth and rough Brucella species and novel species-specific markers. BMC Microbiol,2009,9:92.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.