关节软骨组织工程研究:自体生长因子或分化后的胚胎干细胞复合双层胶原支架修复关节软骨缺损
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     关节软骨损伤是骨科临床的常见疾病,而成熟关节软骨的自身修复能力较差,如果不给予治疗,持续发展会导致骨关节炎,给患者带来很大痛苦。传统治疗方法包括清创术、微骨折术、骨软骨移植等,能获得一定疗效但不能维持长期效果和治疗较大缺损。新兴的组织工程方法有可能治疗大面积的软骨缺损。支架和种子细胞是组织工程的两个重要因素,针对当今支架和种子细胞存在的一些局限,本研究设计了新型的具有疏松层和致密层的双层胶原支架并探求利用自体生长因子或胚胎干细胞来源的间充质干细胞修复软骨缺损。本研究分三个阶段:一、支架的研究:探求双层支架如何放置更利于修复软骨;二、支架复合生长因子的研究:探求双层胶原支架复合自体来源的富含血小板血浆是否能协同作用促进软骨的修复;三、支架复合种子细胞的研究:探求双层胶原支架复合胚胎干细胞来源的间充质干细胞修复软骨缺损的效率。
     第一部分双层胶原支架修复关节软骨缺损的研究
     目的:本研究制备具有疏松层和致密层的双层胶原支架修复软骨缺损,并比较支架如何放置更适合软骨的修复。
     方法:11只新西兰大白兔分为两组,A组:致密层向上组,B组:致密层向下组。在双膝髌股关节股骨髁部位做全层软骨缺损(厚度3mm,直径4mm),将支架分别按致密层向上、向下植入缺损处。分别于术后6周和12周处死动物,进行大体观察,组织学观察和力学测试。
     结果:术后6周和12周,与A组比较,B组在软骨缺损修复处有含量较多的透明软骨,有较高的GAG含量,6周后A、B组的组织学评分分别为5.7+/-2.1、4.3+/-1.8,12周后A、B组修复组织的组织学评分分别为10+/-1.4、8.7+/-2.1。12周的力学测试,A组弹性模量值0.169+/-0.057MPa,B组弹性模量值为0.133+/-0.023MPa,B组修复组织的弹性模量明显高于A组(P<0.05)。
     结论:双层胶原支架能修复软骨缺损,其放置方式不同对修复结果产生影响,致密层向下放置的修复效果优于致密层向上的双层胶原支架。
     第二部分双层胶原支架复合自体来源的富含血小板的血浆修复软骨缺损的研究
     目的:微骨折术是一种利用释放骨髓来源的间充质干细胞来修复软骨损伤的一种常用的治疗方法,但是这种方法只能治疗较小的软骨缺损(<2 cm~2)。本研究目的是研究自体来源的富含血小板的血浆(PRP)复合胶原支架是否能协同作用修复较大的软骨缺损。
     方法:38只新西兰大白兔膝关节随机分为3组,A组:对照组,B组:胶原支架组,C组:PRP复合胶原支架组。在双膝髌股关节股骨髁部位做全层软骨缺损(厚度3mm,直径4mm),分别给予未处理、植入胶原支架和植入胶原支架复合PRP。分别于术后6周和12周处死动物,进行大体观察,组织学观察和评分,以及力学测试。
     结果:在术后6周和12周,在这三组之中,C组软骨缺损处有含量最多的透明软骨,C组的GAG含量和组织学评分都高于其它两组,6周时A、B、C组的组织学评分分别为3.0+/-1.41、5.3+/-2.12、8+/-2.12,12周时分别为5.0+/-1.41、10.3+/-2.12、12.7+/-3.51。12周的力学测试表明C组和B组修复组织的弹性模量明显高于A组,B组为0.124+/-0.024MPa,C组为0.140+/-0.037MPa,A组为0.087+/-0.012 MPa(P<0.05)。
     结论:自体来源的PRP复合胶原支架能协同作用,促进透明软骨的生成,促进软骨缺损的修复。本研究结果提示PRP复合胶原支架能修复较大面积的软骨缺损,从而有可能取代部分临床上治疗软骨缺损的自体软骨移植或骨软骨移植。
     第三部分双层胶原支架复合胚胎干细胞来源的间充质干细胞修复软骨缺损的研究
     目的:本研究利用新的种子细胞—胚胎干细胞来源的间充质干细胞(hESC-MSCs)复合双层胶原支架修复软骨缺损的效率。
     方法:16只SD大鼠分为两组,A:胶原支架组;B:胶原支架复合hESC-MSCs组。在双膝髌股关节股骨髁部位做全层软骨缺损(厚度2mm,直径2mm),分别给予植入胶原支架和植入胶原支架复合hESC-MSCs处理。于术后4周和8周处死动物,进行大体观察,组织学观察及力学测试。
     结果:术后4周和8周,B组软骨缺损修复处有含量较多的透明软骨,GAG含量高于A组。4周时A组弹性模量是0.031+/-0.0082MPa,B组是0.0322+/-0.014MPa,8周时A组弹性模量是0.035+/-0.012 MPa,B组是0.040+/-0.014 MPa。
     结论:hESC-MSCs复合双层胶原支架能存活并促进软骨的修复,hESC-MSCs有可能会成为软骨组织工程中新的种子细胞。
Background:
     Articular cartilage injuries are common clinical diseases in orthopedics,but articular cartilage has very limited self-repair capability.Once injuried,if unreated,osteoarthritis will occur in longer time,which causes great pain for patients.Conventional methods for cartilage repair include debridement,microfracture,osteochondral graft and so on.While these methods can not maintain long-term therapeutic effect and can not treat larger cartilage defects.Tissue engineering method can treat larger cartilage defects.But current scaffolds and cells of cartilage tissue engineering are accompanied with disadvantages.To overcome those disadvantages,this study designed a novel bilayer collagen scaffold and explored autologous PRP as well as human embryonic stem cell derived mesenchymal stem cells(hESC-MSCs)to improve cartilage repair.This study included three parts.PartⅠ:To design a bilayer collagen scaffold and investigate their efficiency on cartilage repair;PartⅡ:To determine whether the collagen matrix with autologous platelet rich plasma(PRP)have synergistic effect to repair cartilage defects;PartⅢ:To determine the efficiency of the hESC-MSCs with bilayer collagen scaffold on cartilage repair.
     PartⅠ:Use of bilayer collagen scaffold for articular cartilage defects repair in a rabbit model
     AIM:Bilayer scaffolds have been widely used for researches on cartilage repair.When compared to other kinds of bilayer scaffolds,collagen scaffold will have much perspective of clinical application because of its good biocompatibility of collagen.In this study we investigated the efficiency of this bilayer collagen scaffold and determine which layer should be adjacent to the surface of the subehondral bone
     METHODS:Full-thickness cartilage defects(diameter=4 mm,thickness=3 mm)were made in the patellar grooves of New Zealand White rabbits(n=11).Bilayer collagen scaffold was implanted into the defect.Group A:dense layer was adjacent to the surface of the subchondral bone(n=11);Group B:loose layer was adjacent to the surface of the subchondral bone(n=11). Rabbits were sacrificed at 6 and 12 weeks after operation.The repaired tissues were processed for histology(n=3)at each time point and for mechanical test(n=5)at 12 weeks.
     RESULTHS:The results showed that at both 6 and 12 weeks,group B had more amounts of hyaline cartilage and had more glycosaminoglycans(GAGs)content.At 6 weeks,the histological scores of group A and B were 5.7+/-2.1、4.3+/-1.8 respectively,at 12 weeks,the histological scores of group A and B reached 10+/-1.4、8.7+/-2.1.The modulus of the repaired tissue in group B(0.133+/-0.023MPa)was significantly higher than that in groupA(0.169+/-0.057MPa)at 12 weeks post-surgery(P<0.05).
     CONCLUSIONS:Bilayer collagen scaffold can repair cartilage defects.The dense layer to the bone marrow cavity is superior on cartilage regeneration compared to that of the loose layer.
     PartⅡ:Autologous platelet rich plasma(PRP)with bilayer collagen scaffold repair cartilage defects in a rabbit model
     AIM:Microfracture is a routine therapy to release bone marrow from subchondral bone for in-situ cartilage repair.But it can only treat the small size of cartilage defects(<2 cm~2).The study aims to investigate whether autologous platelet rich plasma(PRP)transplantation in collagen matrix can synergically improve the in-situ bone marrow initiated cartilage repair.
     METHODS:Full-thickness cartilage defects(diameter=4 mm,thickness=3 mm)were made in the patellar grooves of New Zealand White rabbits and treated with bilayer collagen scaffold (group B)and PRP with bilayer collagen scaffold(group C)and untreated(group A), respectively(n=11).The rabbits were sacrificed at 6 and 12 weeks after operation.The repaired tissues were processed for histology(n=3)at each time point and for mechanical test(n=5)at 12 weeks.
     RESULTS:The results showed that at both 6 and 12 weeks,group C had the most amounts of hyaline cartilage,which recovered larger cartilage area of surface at the cartilage defects.Also group C had higher histological scores and more glycosaminoglycans(GAGs)content than those in other two groups(p<0.05).At 6 weeks,the histological scores of group A、B and C were 3.0+/-1.41、5.3+/-2.12、8+/-2.12 respectively,at 12 weeks,the histological scores of group A、B and C reached 5.0+/-1.41、10.3+/-2.12、12.7+/-3.51.The modulus of the repaired tissue in group B(0.124+/-0.024MPa)and group C(0.140+/-0.037 MPa)were significantly higher than that in groupA(0.087+/-0.012 MPa)(p<0.05).
     CONCLUSIONS:Autologous PRP and bilayer collagen matrix synergistically stimulated the formation of cartilage tissues.The findings implicated that the combination of PRP with collagen matrix may repair certain type of cartilage defects larger than 2 cm~2 which currently require the complex autologous chondrocyte implantation(ACI)or osteochondral grafting.
     PartⅢ:Human embryonic stem ceil derived mesenehymal stem ceils(hESC-MSCs)with bilayer collagen scaffold repair cartilage defects in a rat model
     Aim:Chondrocytes and MSCs are often used as seed cells for cartilage tissue engineering.But they are accompanied with some disadvantages such as limited donor sources and lifespan.This study explored the use of hESC-MSCs for cartilage repair.
     METHODS:Full-thickness cartilage defects(diameter=2 mm,thickness=2 mm)were made in the patellar grooves of SD rats and treated with bilayer collagen scaffold(group A)and bilayer collagen scaffold with hESC-MSCs(group B),respectively(n=16).The rats were injected with cyclophosphamide(150mg/kg,ip)for immunosuppression and sacrificed at 4 and 8 weeks after operation.The repaired tissues were processed for histology(n=3)and for mechanical test(n=5)at each time point.
     RESULTS:The results showed that at both 4 and 8 weeks,group B had more amounts of cartilage and more glycosaminoglycans(GAGs)content than group A.The modulus of the repaired tissue in group B was higher than that in group A at 4 weeks(group A,0.031+/-0.0082MPa;group B, 0.0322+/-0.014MPa)and 8 weeks(group A,0.035+/-0.012 MPa;group B,0.040+/-0.014 MPa).
     CONCLUSIONS:hESC-MSCs with bilayer collagen scaffold can improve the cartilage formation of the defects and the hESC-MSCs can be alive,hESC-MSCs can be considered as candidate seed cells for cartilage tissue engineering.
引文
1.O'Driscoll SW.The healing and regeneration of articular cartilage[J].J Bone Joint Surg Am,1998;80(12):1795-1812.
    2.Piasecki DP SiK,Warren T,et al.Intraarticular injuries associated with anterior cruciate ligament tear:findings at ligament re-construction in high school and recreational athletes[J].Am J Sports Med,2003;31:601-605.
    3.Newman AP.Articular cartilage repair[l].Am J Sports Med,1998;26(2):309-324.
    4.DarrylD CW,Colwell Jr.Clinical Objectives for Cartilage Repair[J].Clin Orthop,2001;391:402-405.
    5.DePalma AF,Subin DK.Process of repair of articular cartilage demonstrated by histology and autoradiography with tritated thymidine[J].Clinical Oft hopaedies and Related Research,1966;48:229-242.
    6.Kreuz PC,Steinwaehs MR,et ai.Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger[J]? Arthroscopy,2006;22:1180-1186.
    7.Hunziker EB.Articular cartilage repair:basic science and clinical progress.A review of the current status and prospects[J].Osteoarthritis and Cartilage,2002;10(6):432-463.
    8.Kreuz PC,Steinwachs MR,Erggelet C,et al.Results after microfracture of full-thickness chondral defects in different compartments in the knee[J].Osteoarthritis Cartilage,2006;224:12.
    9.Barber FA CJ.Arthroseopie osteochondral transplantation:histologic results[J].Arthroscopy,2001;17:832-835.
    10.Malinin TI MW,Lo HK,et al.Cryopreservation of articular cartilage.Ultrastuctural observations and long-term results of experimental distal femoral transplantation[J].Clinical Ort hopaedics and Related Research,1994(303):18-32.
    11.Malinin T TH,Buck BE.Transplantation of osteochondral allografts after cold storage[J].J Bone Joint Surg Am,2006;88:762-770.
    12.刘玉杰 关节软骨损伤治疗的最新进展[J].中国矫形外科杂志,2006;14(14):1076-1078.
    13.Matsusue Y,Yamamuro T,Hama H.Arthroseopie multiple osteochondrai transplantation to the chondral defect in the knee associated with anterior cruciate ligament disruption [J]. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 1993;9(3):318-32 ].
    14. van Osch GJ vdVS, Burger EH, et al. Chondrogenic potential of in vitro multiplied rabbit perichondrium cells cultured in alginate beads in defined medium [J]. Tissue Eng, 2000;6:321-330.
    15. SW OD. Technical considerations in periosreal grafting for osteochondral injuries [J]. Clin Sport s Med, 2001;20(2):379-402.
    16. Ruano-Ravina A, Jato Diaz M. Autologous chondrocyte implantation: a systematic review [J]. Osteoartbritis Cartilage ,2006 ;14(1):47-51.
    17. BrittbergM LA, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondroeyte transplantation [J]. N Engl J Med , 1994;331:889-895.
    18. Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years [J]. Eur J Radiol, 2006 ;57(1):16-23.
    19. Bartlett W, Skinner JA, Gooding CR, Carrington RW, Flanagan AM, Briggs TW, et al. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study [J]. J Bone Joint Surg Br, 2005 ;87(5):640-645.
    20. Hambly K, Bobic V, Wondrasch B, Van Assche D, Marlovits S. Autologous chondrocyte implantation postoperative care and rehabilitation: science and practice [J]. Am J Sports Med , 2006 ;34(6):1020-1038.
    21. MarcacciM ZS, Kon E, et al. Arthroscopic autologous chondrocyte t ransplantation: technical note [J]. Knee Surg Sports Traumatol Arthrosc ,2002;10:154-159.
    22. BartlettW FA, Gooding CR, et al. Autologous chondrocyte implantation versus matrix -induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study [J]. J Bone Joint Surg (Br), 2005;87:640-645.
    23. SP CB. Mesenchymal stem cells: Building blocks for molecular medicine in the 21st century [J]. Trends Mol Med, 2001;7(6):259-264.
    24. JU JBY. Autologous mesenchymal progenitor cells in articular cartilage repair [J]. Clin Orthop, 1999;376S:S156-162.
    25. Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees [J]. Osteoarthritis Cartilage, 2002; 10(3):199-206.
    26. Wakitani S, Mitsuoka T, Nakamura N, Toritsuka Y, Nakamura Y, Horibe S. Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports [J]. Cell Transplant, 2004;13(5):595-600.
    27. Kuroda R, Ishida K, Matsumoto T, Akisue T, Fujioka H, Mizuno K, et al. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells [J]. Osteoarthritis Cartilage, 2007;15(2):226-231.
    28. Buma P, Pieper JS, van Tienen T, van Susante JLC, van der Kraan PM, Veerkamp JH, et al. Cross-linked type I and type II collagenous matrices for the repair of full-thickness articular cartilage defects-A study in rabbits [J]. Biomaterials, 2003;24(19):3255-3263.
    29. Wang X, Grogan SP, Rieser F, Winkelmann V, Maquet V, Berge ML, et al. Tissue engineering of biphasic cartilage constructs using various biodegradable scaffolds: an in vitro study [J]. Biomaterials, 2004;25(17):3681-3688.
    30. Ma Z, Gao C, Gong Y, Shen J. Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor [J].Biomaterials,2005; 26(11):1253-1259.
    31. Chen G, Sato T, Tanaka J, Tateishi T. Preparation of a biphasic scaffold for osteochondral tissue engineering [J]. Materials Science and Engineering: C, 2006;26(1):118-123.
    32. Sherwood JK, Riley SL, Palazzolo R, Brown SC, Monkhouse DC, Coates M, et al. A three-dimensional osteochondral composite scaffold for articular cartilage repair [J]. Biomaterials, 2002;23(24):4739-4751.
    33. Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, et al. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells [J]. Biomaterials, 2006;27(36):6123-6137.
    34. Mason JM, Breitbart AS, Barcia M, Porti D, Pergolizzi RG, Grande DA. Cartilage and bone regeneration using gene-enhanced tissue engineering [J]. Clin Orthop Relat Res, 2000(379 Suppl):S171-8.
    35. Gelse K, von der Mark K, Aigner T, Park J, Schneider H. Articular cartilage repair by gene therapy using growth factor-producing mesenchymal cells [J], Arthritis Rheum, 2003; 48(2):430-41.
    36. Kuroda R, Usas A, Kubo S, Corsi K, Peng H, Rose T, et al. Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells [J]. Arthritis Rheum, 2006; 54(2):433-42.
    37. Grande DA, Mason J, Light E, Dines D. Stem cells as platforms for delivery of genes to enhance cartilage repair [J]. J Bone Joint Surg Am, 2003;85-A Suppl 2:111-6.
    38. Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR. Platelet-rich plasma:Growth factor enhancement for bone grafts [J]. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 1998;85(6):638-646.
    39. Sarkar MR, Augat P, Shefelbine SJ, Schorlemmer S, Huber-Lang M, Claes L, et al. Bone formation in a long bone defect model using a platelet-rich plasma-loaded collagen scaffold [J]. Biomaterials,2006;27(9):1817-1823.
    40. Weibrich G, Hansen T, Kleis W, Buch R, Hitzler WE. Effect of platelet concentration in platelet-rich plasma on peri-implant bone regeneration [J]. Bone, 2004;34(4):665-671.
    41. Kitoh H, Kitakoji T, Tsuchiya H, Katoh M, Ishiguro N. Transplantation of culture expanded bone marrow cells and platelet rich plasma in distraction osteogenesis of the long bones [J]. Bone, 2007;40(2):522-528.
    42. Akeda K, An HS, Okuma M, Attawia M, Miyamoto K, Thonar EJMA, et al. Platelet-rich plasma stimulates porcine articular chondrocyte proliferation and matrix biosynthesis [J]. Osteoarthritis and Cartilage, 2006;14(12): 1272-1280.
    43. Magne D, Vinatier C, Julien M, Weiss P, Guicheux J. Mesenchymal stem cell therapy to rebuild cartilage [J]. Trends Mol Med, 2005;11(11):519-26.
    44. Hui JH, Ouyang HW, Hutmacher DW, Goh JC, Lee EH. Mesenchymal stem cells in musculoskeletal tissue engineering: a review of recent advances in National University of Singapore [J]. Ann Acad Med Singapore, 2005;34(2):206-12.
    45. Banfi A, Bianchi G, Notaro R, Luzzatto L, Cancedda R, Quarto R. Replicative aging and gene expression in long-term cultures of human bone marrow stromal cells [J]. Tissue Eng, 2002; 8(6):901-10.
    46. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells [J]. Science, 1999;284(5411):143-7.
    47. McCulloch CA, Strugurescu M, Hughes F, Melcher AH, Aubin JE. Osteogenic progenitor cells in rat bone marrow stromal populations exhibit self-renewal in culture [J]. Blood, 1991; 77(9):1906-11.
    48. Uematsu, K., et al., Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold [J]. Biomaterials,2005;26(20): 4273-9.
    49. Li, S.T., et al., Peripheral nerve repair with collagen conduits [J]. Clin Mater, 1992; 9(3-4): 195-200.
    50. Tanaka, T., et al., Use of a biphasic graft constructed with chondrocytes overlying a beta-tricalcium phosphate block in the treatment of rabbit osteochondral defects [J]. Tissue Eng,2005;11(1-2):331-9.
    51. Shao, X., et al., Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model [J]. Tissue Eng, 2006; 12(6): 1539-51
    52. Wang, X., et al., Tissue engineering of biphasic cartilage constructs using various biodegradable scaffolds: an in vitro study [J]. Biomaterials, 2004;25(17):3681-3688.
    53. Sherwood, J.K., et al., A three-dimensional osteochondral composite scaffold for articular cartilage repair [J]. Biomaterials, 2002;23(24):4739-51
    54. Frisbie DD, Trotter GW, Powers BE, Rodkey WG, Steadman JR, Howard RD, et al. Arthroscopic subchondral bone plate microfracture technique augments healing of large chondral defects in the radial carpal bone and medial femoral condyle of horses [J]. Vet Surg,1999;28(4):242-255.
    55. Solchaga LA, Yoo JU, Lundberg M, Dennis JE, Huibregtse BA, Goldberg VM, et al. Hyaluronan-based polymers in the treatment of osteochondral defects [J]. J Orthop Res, 2000;18(5):773-780.
    56. Breinan HA, Martin SD, Hsu HP, Spector M. Healing of canine articular cartilage defects treated with microfracture, a type-II collagen matrix, or cultured autologous chondrocytes [J]. J Orthop Res, 2000; 18(5):781-789.
    57. Kramer J, Bohrnsen F, Lindner U, Behrens P, Schlenke P, Rohwedel J. In vivo matrix-guided human mesenchymal stem cells [J]. Cell Mol Life Sci, 2006;63(5):616-626.
    58. Richardson SM, Walker RV, Parker S, Rhodes NP, Hunt JA, Freemont AJ, et al. Intervertebral disc cell-mediated mesenchymal stem cell differentiation [J]. Stem Cells, 2006; 24(3):707-716.
    59. Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage [J]. J Bone Joint Surg Am, 1993;75(4):532-553.
    60. Wakitani S, Takaoka K, Hattori T, Miyazawa N, Iwanaga T, Takeda S, et al. Embryonic stem cells injected into the mouse knee joint form teratomas and subsequently destroy the joint [J]. Rheumatology (Oxford), 2003;42(1): 162-5.
    61.Watanabe, N.; Taskai, S.; Morita, N.; Kawata, T.; Hirasawa, Y. New method of distinguishing between intrinsic cells in situ and extrinsic cells supplied by the atuogeneic transplantation, employing transgenic rats [J]. Trans. Orthop. Res. Soc, 1998;23:1035.
    62. Hong Wei Ouyang, James C. H. Goh, Eng Hin Lee.Viability of Allogeneic Bone Marrow Stromal Cells Following Local Delivery Into Patella Tendon in Rabbit Model[J]. Cell Transplantation, 2004;13: 649-657.
    63. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators [J]. J Cell Biochem, 2006;98(5): 1076-84
    64. Devine, S. M.; Bartholomew, A. M.; Mahmud, N.; Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion [J]. Exp. Hematol, 2001;29(2):244-255.
    65. Liechty, K. W.; MacKenzie, T. C.; Shaaban, A. F.; Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep [J]. Nat. Med, 2000;6(11):1282-1286.
    1.Piasecki DP SiK,Warren T,et al.Intraarticular injuries associated with anterior cruciate ligament tear:findings at ligament re-construction in high school and recreational athletes[J].Am J Sports Meal,2003;31:601-605.
    2.DarrylD CW,Colwell J r.Clinical Objectives for Cartilage Repair[J].Clin Orthop,2001;391:402-405.
    3.DePaima AF MC,Subin DK.Process of repair of articular cartilage demonst rated by histology and autoradiography with tritated thymidine[J].Clinical Orthopaedics and Related Research,1966;48:229-242.
    4.Kreuz PC EC,Steinwachs MR,et al.Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger[J]? Arthroscopy,2006;22:1180-1186.
    5.Kreuz PC SM,Erggelet C,et al.Results after microfracture of full-thickness chondral defects in different compartments in the knee[J].Osteoarthritis Cartilage,2006;224:12.
    6.Barber FA CJ.Arthroscopic osteochondral transplantation:histologic results[J].Arthroscopy,2001;17:832-835.
    7.Maiinin TI MW,Lo HK,et al.Cryopreservation of articular cartilage.Ultrastuctural observations and long-term result s of experimental distal femoral transplantation[J].Clinical Ort hopaedics and Related Research,1994;(303):18-32.
    8.Malinin T TH,Buck BE.Transplantation of osteochondral allografts after cold storage[J].J Bone Joint Surg Am,2006;88:762-770.
    9.李海鹏 刘玉杰.关节软骨损伤治疗的最新进展[J].中国矫形外科杂志,2006;14(14):1076-1078.
    10.van Osch GJ vdVS,Burger EH,et al.Chondrogenic potential of in vitro muitip lied rabbit periehondrium cells cultured in alginate beads in defined medium[J].Tissue Eng,2000;6:321-330.
    11.SW OD.Technical considerations in periosreal grafting for osteochondral injuries[J].Clin Sport s Med,2001;20(2):379-402.
    12.Ito Y FJ,SanyalA,et al.Localization of ehondrocyte precursors in periosteum[J].Osteoarthritis Cartilage,2001;(9):215-223.
    13.Hsieh PC TiS,Anderson PC,et al.Repair of full-thickness cartilage defects in rabbit knees with free periosteal graft preincubated with transforming growth factor[J].Orthopedies,2003;26:393-402.
    14.楼跃,潘新华,唐凯,等.自体游离骨膜移植修复关节软骨大面积缺损的实验研究[J].江苏医药,2002;28(8):589-592.
    15.BrittbergM LA,Nilsson A,et al.Treatment of deep cartilage defects in the knee with autologous chondroeyte transplantation[J].N Engl J Med,1994;331:889-895.
    16.Marlovits S,Singer P,Zeller P,Mandl I,Hailer J,Trattnig S.Magnetic resonance observation of cartilage repair tissue(MOCART)for the evaluation of autologous chondrocyte transplantation:determination of interobserver variability and correlation to clinical outcome after 2 years[J].Eur J Radiol,2006;57(1):16-23.
    17.Bartlett W,Skinner JA,Gooding CR,Carrington RW,Flanagan AM,Briggs TW,et al.Autologous chondroeyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee:a prospective,randomised study[J].J Bone Joint Snrg Br,2005;87(5):640-645.
    18.Hambly K,Bobic V,Wondrasch B,Van Assche D,Marlovits S.Autologous chondrocyte implantation postoperative care and rehabilitation:science and practice[J].Am J Sports Meal,2006;34(6):1020-1038.
    19.MarcacciM ZS,Kon E,et al.Arthroscopic autologous chondrocyte transplantation:technical note[J].Knee Surg Sports Traumatol Arthrosc,2002;10:154-159.
    20.BartlettW FA,Gooding CR,et al.Autologous chondrocyte implantation versus matrixinduced autologous chondrocyte implantation for osteochondral defects of the knee:a prospective,randomised study[J].J Bone Joint Surg(Br),2005;87:640-645.
    21.Gross AE.Cartilage resurfacing:filling defects.J Arthroplasty 2003 Apr;18(3 Suppl 1):14-17.
    22.Minas T,Nehrer S.Current concepts in the treatment of articular cartilage defects[J].Orthopedics,1997;20(6):525-538.
    23.Peterson L.Technique of autologous chondrocyte transplantation[J].Techniques in Knee Surgery,2002;1(1):2-12.
    24.Brittberg M,Peterson L,Sjogren-Jansson E,Tallheden T,Lindahl A.Articular cartilage engineering with autologous chondrocyte transplantation.A review of recent developments[J]. J Bone Joint Surg Am, 2003;85-A Suppl 3:109-115.
    25. Clar C, Cummins E, Mclntyre L,Thomas S,Lamb J,Bain L,et al.Clinical and cost-effectiveness of autologous chondrocyte implantation for cartilage defects in knee joints: systematic review and economic evaluation [J]. Health Technol Assess,2005;9(47):iii-iv, ix-x, 1-82.
    26. SP CB. Mesenchymal stem cells:Building blocks for molecular medicine in the 21st century [J]. Trends Mol Med, 2001 ;7(6):259-264.
    27. JU JBY. Autologous mesenchymal progenitor cells in articular cartilage repair [J]. Clin Orthop, 1999;376S:S156-162.
    28. Liu Y, Shu XZ, Prestwich GD. Osteochondral Defect Repair with Autologous Bone Marrow-Derived Mesenchymal Stem Cells in an Injectable, In Situ, Cross-Linked Synthetic Extracellular Matrix [J]. Tissue Eng, 2006;12(12):3405-16.
    29. Guo X, Wang C, Zhang Y, Xia R, Hu M, Duan C, et al. Repair of large articular cartilage defects with implants of autologous mesenchymal stem cells seeded into beta-tricalcium phosphate in a sheep model [J]. Tissue Eng, 2004;10(11-12):1818-1829.
    30. Shao X, Goh JC, Hutmacher DW, Lee EH, Zigang G Repair of Large Articular Osteochondral Defects Using Hybrid Scaffolds and Bone Marrow-Derived Mesenchymal Stem Cells in a Rabbit Model [J]. Tissue Eng, 2006; 12(6): 1539-51.
    31. Fan H, Hu Y, Zhang C, Li X, Lv R, Qin L, et al. Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate hybrid scaffold [J]. Biomaterials, 2006; 27(26):4573-4580.
    32. Uematsu K, Hattori K, Ishimoto Y, Yamauchi J, Habata T, Takakura Y, et al. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold [J]. Biomaterials, 2005; 26(20):4273-4279.
    33. Shao XX, Hutmacher DW, Ho ST, Goh JC, Lee EH. Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits [J]. Biomaterials, 2006;27(7):1071-1080.
    34. Mason JM, Breitbart AS, Barcia M, Porti D, Pergolizzi RG, Grande DA. Cartilage and bone regeneration using gene-enhanced tissue engineering [J]. Clin Orthop Relat Res, 2000;(379 Suppl):S171-178.
    35. Gelse K, von der Mark K, Aigner T, Park J, Schneider H. Articular cartilage repair by gene therapy using growth factor-producing mesenchymal cells [J]. Arthritis Rheum,2003; 48(2):430-441.
    36. Kuroda R, Usas A, Kubo S, Corsi K, Peng H, Rose T, et al. Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells [J]. Arthritis Rheum,2006; 54(2):433-442.
    37. Grande DA, Mason J, Light E, Dines D. Stem cells as platforms for delivery of genes to enhance cartilage repair [J]. J Bone Joint Surg Am, 2003;85-A Suppl 2:111-116.
    38. Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees [J]. Osteoarthritis Cartilage, 2002; 10(3): 199-206.
    39. Wakitani S, Mitsuoka T, Nakamura N, Toritsuka Y, Nakamura Y, Horibe S. Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports [J]. Cell Transplant, 2004;13(5):595-600.
    40. Kuroda R, Ishida K, Matsumoto T, Akisue T, Fujioka H, Mizuno K, et al. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells [J]. Osteoarthritis Cartilage, 2007; 15(2):226-231.
    41. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells [J]. Science, 1999;284(5411):143-147.
    42. Banfi A, Bianchi G, Notaro R, Luzzatto L, Cancedda R, Quarto R. Replicative aging and gene expression in long-term cultures of human bone marrow stromal cells [J]. Tissue Eng,2002;8(6):901-910.
    43. McCulloch CA, Strugurescu M, Hughes F, Melcher AH, Aubin JE. Osteogenic progenitor cells in rat bone marrow stromal populations exhibit self-renewal in culture [J]. BIood,1991;77(9):1906-1911.
    44. Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone [J]. Proc Natl Acad Sci USA, 2002 ;99(13):8932-8937.
    45. Barry FP. Biology and clinical applications of mesenchymal stem cells [J]. Birth Defects Res C Embryo Today, 2003 ;69(3):250-256.
    1. Peterson L, Minas T, Brittberg M, et al. Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years [J]. J Bone Joint Surg (Am), 2003,85-A Suppl 2:17-24.
    2. Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation [J]. N Engl J Med,1994,331:889-895.
    3. Marlovits S, Zeller P, Singer P, et al. Cartilage repair: generations of autologous chondrocyte transplantation [J]. Eur J Radiol,2006,57:24-31.
    4. Minas T, Nehrer S. Current concepts in the treatment of articular cartilage defects [J]. Orthopedics,1997,20:525-538.
    5. Gross AE. Cartilage resurfacing: filling defects [J]. J Arthroplasty, 2003,18:14-17.
    6. Peterson L. Technique of autologous chondrocyte transplantation [J].Techniques in Knee Surgery,2002,1:2-12.
    7. Ferruzzi A, Calderoni P, Grigolo B, et al. Autologous chondrocytes implantation: indications and results in the treatment of articular cartilage lesions of the knee [J]. Chir Organi Mov,2004,89:125-134.
    8. Bartlett W, Gooding CR, Carrington RW, et al. Autologous chondrocyte implantation at the knee using a bilayer collagen membrane with bone graft. A preliminary report [J]. J Bone Joint Surg (Br),2005,87:330-332.
    9. Hambly K, Bobic V, Wondrasch B, et al. Autologous chondrocyte implantation postoperative care and rehabilitation: science and practice [J]. Am J Sports Med,2006,34:1020-1038.
    10. Erggelet C, Browne JE, Fu F, et al. Autologous chondrocyte transplantation for treatment of cartilage defects of the knee joint [J]. Clinical results. Zentralbl Chir,2000,125:516-522.
    11. Minas T. Autologous chondrocyte implantation for focal chondral defects of the knee [J]. Clin Orthop Relat Res, 2001,(391Suppl):S349-361.
    12. Marcacci M, Berruto M, Brocchetta D, et al. Articular cartilage engineering with Hyalograft C: 3-year clinical results [J]. Clin Orthop Relat Res,2005:96-105.
    13. Erggelet C, Steinwachs MR, Reichelt A. The operative treatment of full thickness cartilage defects in the knee joint with autologous chondrocyte transplantation [J].Saudi Med J,2000,21:715-721.
    14. Browne JE, Anderson AF, Arciero R, et al. Clinical outcome of autologous chondrocyte implantation at 5 years in US subjects [J]. Clin Orthop Relat Res,2005,(436):237-245.
    15. Lindahl A, Brittberg M, Peterson L. Health economics benefits following autologous chondrocyte transplantation for patients with focal chondral lesions of the knee [J]. Knee Surg Sports Traumatol Arthrosc,2001,9:358-363.
    16. Peterson L, Minas T, Brittberg M, et al. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee [J]. Clin Orthop Relat Res,2000,(374):212-234.
    17. Peterson L, Brittberg M, Kiviranta I, et al. Autologous chondrocyte transplantation. Biomechanics and long-term durability [J]. Am J Sports Med,2002,30:2-12.
    18. Cherubino P, Grassi FA, Bulgheroni P, et al. Autologous chondrocyte implantation using a bilayer collagen membrane: a preliminary report [J]. J Orthop Surg (Hong Kong), 2003,11:10-15.
    19. LaPrade RF. Autologous chondrocyte implantation was superior to mosaicplasty for repair of articular cartilage defects in the knee at one year [J]. J Bone Joint Surg(Am),2003,85-A:2259.
    20. Bentley G, Biant LC, Carrington RW, et al. A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee [J]. J Bone Joint Surg(Br),2003,85:223-230.
    21. Fu FH, Zurakowski D, Browne JE, et al. Autologous chondrocyte implantation versus debridement for treatment of full-thickness chondral defects of the knee: an observational cohort study with 3-year follow-up [J]. Am J Sports Med,2005,33:1658-1666.
    22. Knutsen G, Engebretsen L, Ludvigsen TC, et al. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial [J].J Bone Joint Surg(Am),2004,86-A:455-464.
    23. Bachmann G, Basad E, Lommel D, et al. MRI in the follow-up of matrix-supported autologous chondrocyte transplantation (MACI) and microfracture[J].Radiologe,2004, 44:773-782.
    24. Temenoff JS, Mikos AG. Review: tissue engineering for regeneration of articular cartilage [J]. Biomaterials,2000,21:431-440.
    25. Bartlett W, Skinner JA, Gooding CR, et al. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study [J]. J Bone Joint Surg(Br),2005,87:640-645.
    26. Wood JJ, Malek MA, Frassica FJ, et al. Autologous cultured chondrocytes: adverse events reported to the United States Food and Drug Administration [J].J Bone Joint Surg(Am),2006,88:503-507.
    27. Brittberg M, Peterson L, Sjogren-Jansson E, et al. Articular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments [J]. J Bone Joint Surg(Am),2003,85-A Suppl 3:109-115.
    28. Clar C, Cummins E, McIntyre L, et al. Clinical and cost-effectiveness of autologous chondrocyte implantation for cartilage defects in knee joints: systematic review and economic evaluation [J]. Health Technol Assess,2005,9:iii-iv, ix-x, 1-82.
    29. Briggs TW, Mahroof S, David LA, et al. Histological evaluation of chondral defects after autologous chondrocyte implantation of the knee [J].J Bone Joint Surg(Br), 2003,85:1077-1083.
    30. Henderson I, Francisco R, Oakes B, et al. Autologous chondrocyte implantation for treatment of focal chondral defects of the knee-a clinical, arthroscopic, MRI and histologic evaluation at 2 years [J]. Knee,2005,12:209-216.
    31. Wakitani S, Imoto K, Yamamoto T, et al. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees [J]. Osteoarthritis Cartilage,2002,10:199-206.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.