高灵敏SERS基底的制备及其在芽孢杆菌检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展灵敏的、选择性的快速检测细菌芽孢的方法对于医疗诊断和人类健康治疗来说显得越来越重要。近年来,表面增强拉曼散射(SERS)技术因其具有的高灵敏度、高分辨率以及快速响应而在生物分子检测应用中吸引了众多研究工作者的兴趣。构建SERS基底的一个关键性的挑战是基底不仅需具备生物兼容性,而且还要能有力地实现理想的检测灵敏度和选择性。在本文中,我们设计了一种新型的基于金纳米粒子的SERS基底,并证明了其对细菌芽孢中释放出来的生物标志物的检测可以获得高灵敏度和低检测限。我们将在以下几个密切相关的领域中讨论主要的研究发现。
     金纳米粒子/聚乙烯吡咯烷酮/金基底(AuNPs/PVP/Au)的制备及其SERS效应将被首次讨论(第2章)。关于Au NPs的粒径与SERS基底的增强效应两者间相互关系的研究工作表明:60nm金粒子制备的基底获得的SERS增强效应最大,增强因子可达~106。这一类型基底具备的强SERS效应来源于Au NPs-Au NPs及AuNPs-金基底间的相互作用所产生的双重耦合效应,我们还通过控制纳米粒子的尺寸范围(50-70nm)对其进行了优化。
     该AuNPs/PVP/Au基底经实验证明可以实现高灵敏检测吡啶2,6-二羧酸(简称DPA,为细菌芽孢中的生物标志物)(第3章)。在考察DPA浓度与SERS特征峰之强度两者关系的工作中我们观察到了两个线性范围,“低浓度区域”(<0.01ppm)及“高浓度区域”(>1ppm),并且在这二者之间还存在着一个“过渡区域”。在SERS检测DPA的研究中,能在这样一个低浓度区观察到线性关系实属首例。实验结果证明利用60nm的AuNPs制备的基底可以获得0.1ppb的检测限,据我们所知该极限值为在此类SERS基底检测DPA的报道中最低值,低浓度的DPA在AuNPs/PVP/Au基底上获得的极大K值(1.7×107M-1)也可以证明这一发现。为了洞察DPA浓度与SERS强度间的相关性,我们依据“单分子层和多分子层吸附等温线”对DPA在SERS基底上的吸附特征进行了分析。我们认为实验中所观察到的介于低和高浓度区域之间的“过渡”对应于吸附等温线从单分子层吸附到多分子层吸附的“转变”,而且该“过渡区域”的实验数据与我们估算出来的满一个单分子层覆盖所需DPA的最低浓度理论值(-0.01ppm)十分吻合。
     为了确定这一新型SERS基底的光谱鉴别和定量能力,也为了解生物标志物DPA在纳米粒子修饰的基底上是否可能发生表面反应,我们认为有必要考察生物标志物和其脱羧反应的可能性产物一吡啶(Py)的竞争吸附体系(第4章)。在实验数据分析中我们发现:DPA和Py两者虽然在它们的环呼吸振动模式相关的SERS光谱范围内(900-1100cm-1)显示出一些相似性,但是二者在AuNPs/PVP/Au基底上的独立吸附和竞争吸附的特征波谱中都表现出了明显差别。在实验检测的浓度范围内,Py在基底上获得的吸附平衡常数(~8×105)比DPA的(~1×105)大得多,原因是Py在Au表面上的绑定能力比DPA的强。实验结果不但为我们提供了本SERS检测条件下生物标志物在基于金纳米粒子的基底上物种形成的准确信息,而且也验证了此类基底在有表面反应存在或无表面反应存在的条件下实现高灵敏、高选择性检测细菌标志物的可行性。
     通过分析pH和阴离子对样品溶液SERS强度的影响从而系统地研究了影响SERS检测AuNPs/PVP/Au基底上DPA的因素(第5章)。实验结果表明:SERS的强度会随着pH值的下降而上升,我们认为此现象反映了DPA在SERS基底上存在着吸附模式的“质子化—脱质子化”间的平衡。溶液中存在的不同阴离子也对SERS强度有着一定的影响,反映了不同阴离子在SERS基底上绑定能力的差异。
     我们将上述SERS基底作为光谱探针检测枯草芽孢杆菌的芽孢,以达到进一步检验该基底性能的目的,实验结果证明:其对细菌芽孢中释放出来的标志物钙化DPA (CaDPA)也具有高灵敏性(第6章)。利用硝酸从芽孢中萃取出的CaDPA在SERS检测中获得了一系列特征光谱,并且得到了1.5×109spores/L(即:2.5x10-14M)的检测限(LOD)。将Au纳米粒子构建的SERS基底和报道中的Ag纳米粒子基底相比较不难发现:二者获得的LOD值非常接近,但是前者的表面吸附平衡常数比后者的小了1~2个数量级。上述这一系列的发现均证明了Au纳米粒子制备的SERS基底是可以直接作为高分辨率、高灵敏的生物兼容性探针而应用于细菌芽孢的检测。
     此外,为了建立在不同条件下对细菌芽孢的SERS险测,我们又考察了芽孢的储备时间和检测环境对SERS检测的影响(第7章)。实验中以AuNPs/PVP/Au基底为探针检测到了芽孢在特定条件下“自释放”出的CaDPA,这一发现与文献报道中关于芽孢在控制温度和湿度的条件下可以追踪到CaDPA的释放是一致的。在关于激光功率对SERS强度的影响这一研究中发现:后者随着前者的增大而上升。这一发现证明:相比其他物种在不同激光功率下表现的不稳定性,从芽孢中释放出来的DPA/CaDPA在本实验条件的激光照射下是稳定的。
     综上所述,本工作中构建的AuNPs/PVP/Au基底可以被确认为是检测枯草芽孢杆菌中生物标志物的高灵敏SERS基底,以此为基础则可进一步拓展和优化其在检测各种不同细菌芽孢方面的应用。
The development of sensitive, selective, and rapid methods for the detection of bacterial spores is increasingly important for medical diagnostics and human health care. The high sensitivity, high resolution, rapid response time of surface-enhanced Raman scattering (SERS) techniques have recently attracted a great deal of interest in biomolecular detection. A key challenge is the ability to establish the SERS substrate which is not only biocompitable but also robust for achieving the desired detection sensitivity and selectivity. In this dissertation work, a new type of gold nanoparticle-based substrate has been demonstrated for the detection of biomarkers released from bacterial spores with high sensitivity and low detection limit. Major findings are discussed in following closely-related aspects.
     The preparation of gold-nanoparticle/polyvinylpyrrolidone/gold-substrate (AuNPs/PVP/Au) and its SERS effect are first described (Chapter2). The study of the correlation between the gold nanoparticle size and the SERS intensity has demonstrated that the SERS intensity is maximized with the size of60nm, displaying an enhancement factor of~106. The strong SERS effect of this type of substrate exploits both particle-particle and particle-substrate plasmonic coupling effects, which is optimized by manipulating the diameter of the nanoparticles in the range of50-70nm.
     The AuNPs/PVP/Au substrate has been demonstrated to be viable for highly sensitive detection of dipicolinic acid (DPA), a biomarker from bacterial spores (Chapter3). The correlation between the SERS intensity of the diagnostic bands and the DPA concentration (0.1ppb-100ppm) is shown to exhibit two linear regions, i.e., the low-(<0.01ppm) and high-concentration (>1ppm) regions, with an intermediate region in between. The presence of a linear relationship in the low-concentration region has been observed for the first time in SERS detection of DPA. A detection limit of0.1ppb is obtained from the substrates with60-nm sized Au NPs, which is to our knowledge the lowest detection limit reported for DPA using this type of SERS substrate. This finding is consistent with the large adsorption equilibrium constant for the low-concentration region (1.7×107M-1). The adsorption characteristics of DPA on the SERS substrates has been analyzed in terms of monolayer and multilayer adsorption isotherms to gain insights into the correlation between the SERS intensity and the DPA concentration. The observed transition from the low-to high-concentration linear regions is shown to correspond to the transition from a monolayer to multilayer adsorption isotherm, which is in a good agreement with the estimated minimum DPA concentration for a monolayer coverage (~0.01ppm).
     To further establish the spectroscopic identification and quantification capabilities of the new SERS substrate, possible reactivities of the biomarkers on the nanoparticle-based substrate have been examined by analyzing the SERS characteristics for the competitive adsorption of the biomarker DPA and pyridine (Py) which is a possible decarboxylation product of DPA (Chapter4). The analysis focuses on the diagnostic region of900-1100cm-1associated with the ring-breathing modes of the two molecules. While the SERS spectra in this region appeared to display some similarities between DPA and Py, distinctive differences in the detailed band characteristics were revealed for both individual and competitive adsorptions on the AuNPs/Au substrates. The fact that the equilibrium constant for the adsorption of Py on the substrate (-8×105M-1) is larger than that for DPA (~1×105M-1) in the measured concentration region is attributed to a stronger binding of Py to Au surface than that for DPA. The results have provided not only accurate speciation of the biomarker molecules on the gold nanoparticle based substrates under the SERS measurement conditions, but also has implications for expanding the application of the nanoparticle substrates for highly sensitive and selective detection of bacterial biomarkers under various reactive or non-reactive conditions.
     Factors influencing the SERS detection of DPA on the AuNPs/PVP/Au substrate have also been systematically examined by studying pH and anion effects of the sample solution on the SERS intensity (Chapter5). The results have revealed a clear increase of SERS intensity with the decrease of pH, which is believed to reflect the protonation-deprotonation equilibrium of DPA on its adsorption modes on the SERS substrate. The presence of different anions in the solution has also been found to exhibit some influences on the SERS intensity, which is believed to reflect the difference in binding strength among the different anions upon adsorption on the SERS substrate.
     The capability of the SERS substrate has further been investigated as a spectroscopic probe for the detection of Bacillus subtilis spores, demonstrating high sensitivity to the detection of biomarker calcium dipicolinate (CaDPA) released from the bacterial spores (Chapter6). The SERS bands of CaDPA released from the spores by extraction using nitric acid provide the diagnostic signal for the detection, exhibiting a limit of detection (LOD) of1.5×109spores/L (or2.5×10-14M). The LOD for the Au NP based substrates is quite comparable with that reported for Ag nanoparticle based substrates for the detection of spores, though the surface adsorption equilibrium constant is found to be smaller by a factor of1-2orders of magnitude than the Ag nanoparticle based substrates. These findings have demonstrated the viability of the gold nanoparticle-based SERS substrates for direct use with high resolution and sensitivity as a biocompatible probe for the detection of bacteria spores.
     In an effort to establish the SERS detection of bacterial spores under various conditions, the effects of storage time of the bacterial spores and the detection environment on the SERS detection have also been investigated (Chapter7). The results have revealed that the spores could undergo "self-releasing" of CaDPA under certain conditions, a finding consistent with literature report on monitoring of CaDPA release from spores under controlled temperature and wet conditions. The examination of the effect of laser power on the SERS intensity revealed a systematic increase with the power. In contrast to the chemical instability of other chemicals under different laser powers, this finding has demonstrated the stability of the DPA/CaDPA released from the bacterial spores against the irradiation of laser power under our experimental conditions.
     In summary, the AuNPs/PVP/Au substrates developed in this work has been concluded to function as a highly-sensitive SERS substrate for the detection of biomarkers released from Bacillus subtilis spores, which upon further optimization could find widespread applications for the detection of a variety of different bacterial spores.
引文
[1]Raman C V, Krishman K S. A new type of secondary radiation. Nature,1928, 121(3048):501-502
    [2]Smekal A. Zur Quantentheorie der dispersion. Naturwissenschaften,1923, 11(43):873-875
    [3]潘家来.激光拉曼光谱在有机化学上的应用[M].北京:化学工业出版社1986:64-72
    [4]Kneipp K, Kneipp H, Itzkan I, et al. Ultrasensitive chemical analysis by Raman spectroscopy. Chemical Reviews,1999,99(10):2957-2976
    [5]Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science,1997,275(5303):1102-1106
    [6]李书锋.表面增强拉曼光谱的理论机制模型分析[N].安庆师范学院学报,2008,14(1):24-26
    [7]郑顺旋.激光拉曼光谱[M].上海:科学技术出版社,1983:253-254
    [8]田中群.表面增强拉曼光谱学中的纳米科学问题[J].中国基础科学,2001,3,4-10
    [9]Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of pyridzne adsorbed at a silver electrode. Chemical Physics Letters,1974,26(2):163-166
    [10]Jeanmaire D L, Van Duyne R P. Surface Raman spectroelectrochemistry part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry,1977,84(1):1-20
    [11]Albrecht M G, Creighton J A. Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the American Chemical Society,1977,99(15): 5215-5217
    [12]Moskovits M. Surface-enhanced spectroscopy. Reviews of Modern Physics, 1985,57(3):783-836
    [13]Aroca R F. Surface-enhanced vibrational spectroscopy. Chichester:John Wiley and Sons,2006
    [14]Kambhampati P, Child C M, Campion A J, et al. On the chemical mechanism of surface enhanced Raman scattering:experiment and theory. Journal of Chemical Physics,1998,108(12):5013-5026
    [15]Weaver M J, Zou S, Chan H Y H. The new interfacial ubiquity of surface-enhanced Raman spectroscopy. Analytical Chemistry,2000,72(1): 38A-47A
    [16]Tuan Vo-Dinh. Surface-enhanced Raman spectroscopy using metallic nanostructures. Trends in analytical chemistry,1998,17(8):557-582
    [17]Garrell R L. SERS surface enhanced Raman spectroscopy. Analytical Chemistry, 1989,61.401A-411A
    [18]Schatz G C, Van Duyne R P. Electromagnetic mechanism of surface-enhanced spectroscopy. Handbook of Vibrational Spectroscopy, New York:John Wiley & Sons,2002,1:759-774
    [19]Schatz G C. Electrodynarmics of nonspherical noble metal nanoparticles and nanoparticle aggregates. Journal of Molecular structure (Theochem),2001, 573(1-3):73-80
    [20]Jensen T, Kelly L, Schatz G C, et al. Electrodynamics of noble metal nanoparticles and nanoparticle clusters. Journal of Cluster Science,1999,10(2): 295-317
    [21]Creighton J A, Clark R, Hestere R. In Spectroscopy of surface. London:John Willey & Sons,1988,37
    [22]Kneipp K, Kneipp H, Itzkan I, et al. Surface-enhanced Raman scattering and biophysics. Journal of Physics Condensed Matter,2002,14(18):R597-R624
    [23]Kovacs G J, Loutfy R O, Vincett P S. Distance dependence of SERS enhancement factor from langmuir-blodgett monolayers on metal island films: evidence for the electromagnetic mechanism. Langmuir,1986,2(6):689-694
    [24]Bao L, Mahurin S M, Dai S. Controlled layer-by-layer formation of ultrathin TiO2 on silver island films via a surface sol-gel method for surface-enhanced Raman scattering Measurement.2004, Analytical Chemistry,76(15):4531-4536
    [25]Lal S, Grady N K, Halas N J, et al. Profiling the near field of a plasmonic nanoparticle with Raman-based molecular rulers. Nano Letters,2006,6(10): 2338-2343
    [26]Lombardi J R, Birke R L, Xu J J, et al. Charge-transfer theory of surface enhanced Raman spectroscopy: herzberg-teller contributions. Journal of Chemical Physics,1986,84(4):4174-4180
    [27]Otto A. What is observed in single molecule spectroscopy, and why? Journal of Raman Spectroscopy,2002,33(8):593-598
    [28]Rubim J C, Sala O. The contribution of charge transfer excitation to the SERS effect on copper electrodes. Journal of Molecular Structure,1986,145(1-2): 157-172
    [29]Otto A, Billmann J, Pettenkofer C, et al. The "adatom model" of SERS (surface enhanced Raman scattering):the present status. Surface Science,1984,138(2-3): 319-338
    [30]Le-Ru E C, Etchegoin P G. Principles of surface enhanced Raman spectroscopy and related plasmonic effects.1 edition, Amsterdam:Elsevier Science,2009
    [31]Natan M J. Concluding remarks surface enhanced raman scattering. Faraday Discuss,2006,132(309):321-328
    [32]LeRu E C, Etchegoin P G. Comment on chemical contribution to surface enhanced Raman scattering. Physical Review Letters,2006,97(19):199701
    [33]Campion A, Ivanecky J E, Foster M, et al. On the mechanism of chemical enhancement in surface-enhanced Raman scattering. Journal of the American Chemical Society,1995,117(47):11807-11808
    [34]Tian Z Q, Ren B, Wu D Y. Surface-enhanced Raman scattering:from noble to transition metals and from rough surfaces to ordered nanostructures. Journal of Physical Chemistry B,2002,106(37):9463-9483
    [35]Huang T K, Chen Y C, Chiu H T, et al. Growth of high-aspect-ratio gold nanowires on silicon by surfactant-assisted galvanic reductions. Langmuir,2008, 24(11):5647-5649
    [36]Arya K. Scattering T-matrix theory in wave-vector space for surface-enhanced Raman cattering in clusters of nanoscale spherical metal particles. Physical Review B,2006,74(19):195438
    [37]Ringler M, Schwemer A, Feldmann J, et al. Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Physical Review Letters,2008,100(20):203002
    [38]Kahraman M, Tokman N, Culha M. Silver nanoparticle thin films with nanocavities for surface-enhanced Raman cattering. ChemPhysChem,2008,9(6): 902-910
    [39]Gunawidjaja R, Peleshanko S, Tsukruk V V, et al. Bimetallic nanocobs: decorating silver nanowires with gold nanoparticles. Advanced Materials,2008, 20(8):1544-1549
    [40]Lal S, Grady N K, Halas N J, et al. Tailoring plasmonic substrates for surface enhanced spectroscopies. Chemical Society Reviews,2008,37(5):898-911
    [41]Oldenburg S J, Jackson J B, Halas N J, et al. Infrared extinction properties of gold nanoshells. Apply Physics Letter,1999,75(19):2897-2899
    [42]Tong L, Zhu T, Liu Z. Atomic force microscope manipulation of gold nanoparticles for controlled Raman enhancement. Apply Physics Letter,2008, 92(2):23109
    [43]Njoki P N, Lim S, Zhong C J, et al. Size correlation of optical and spectroscopic properties for gold nanoparticles. The Journal of Physical Chemistry C,2007, 111(40):14664-14669
    [44]Lezec H J, Degiron A, Ebbesen T W, et al. Beaming light from a subwavelength aperture. Science,2002,297(5582):820-822
    [45]Howle C R, Homer C J, Reid J P, et al. Probing the evaporation of ternary ethanol-methanol-water droplets by cavity enhanced Raman scattering. Physical Chemistry Chemical Physics,2007,9(39):5344-5352
    [46]Ebbesen T W, Lezec H J, Wolff P A, et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature,1998,391(6668):667-669
    [47]Stewart M E, Anderton C R, Nuzzo R G, et al. Nanostructured plasmonic sensors. Chemical Reviews,2008,108(2):494-521
    [48]Suzuki M, Maekita W, Mori Y, et al. Ag nanorod arrays tailored for surface-enhanced Raman imaging in the near-infrared region. Nanotechnology, 2008,19(26):265304/1-265304/7
    [49]Liu Y J, Chu H Y, Zhao Y P. Silver nanorod array substrates abricated by oblique angle eposition:morphological, optical, and SERS characterizations. The Journal of Physical Chemistry C,2010,114(18):8176-8183
    [50]Qian X M, Nie S M. Single-molecule and single-nanoparticle SERS:from fundamental mechanisms to biomedical applications. Chemical Society Reviews, 2008,37(5):912-920
    [51]Park K, Lee J, King W P, et al. Routine femtogram-level chemical analyses using vibrational spectroscopy and self-cleaning scanning probe microscopy tips. Analytical Chemistry,2008,80(9):3221-3228
    [52]Li K B, Clime L V, Veres T, et al. Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays. Nanotechnology,2008, 19(14):145305
    [53]Bae Y, Kim N H, Han S W, et al. Anisotropic assembly of Ag nanoprism. Journal of the American Chemical Society,2008,130(16):5432-5433
    [54]Tao A R, Habas S, Yang P D. Shape control of colloidal metal nanocrystals. Small,2008,4(3):310-325
    [55]Vickova B, Gu X J, Moskovits M, et al. Microscopic surface-enhanced Raman study of a single adsorbate-covered colloidal silver aggregate. Journal of Physical Chemistry,1996,100(8):3169-3174
    [56]Volkan M, Stokes D L, Vo-Dinh T. Surface-enhanced Raman of dopamine and neurotransmitters using sol-gel substrates and polymer-coated fiber-optic probes. Applied Spectroscopy,2000,54(12):1842-1848
    [57]Pemberton J E, Guy A L, Cross N A, et al. Surface enhanced Raman scattering in electrochemical systems:the complex roles of surface roughness. Applied Surface Science,1988,32(1-2):33-56
    [58]Barz F, Gordon J G, Weaver M J, et al. Intense electrochemical SERS signal following hydrogen evolution. Chemical Physics Letters,1983,94(2):168-171
    [59]Dick L A, McFarland A D, Van Duyne R P, et al. Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): improvements in surface nanostructure stability and suppression of irreversible loss. Journal of Physical Chemistry B,2002,106(4):853-860
    [60]Reilly T H, Corbman J D, Rowlen K L. Vapor deposition method for sensitivity studies on engineered surface-enhanced Raman scattering-active substrates. Analytical Chemistry,2007,79(13):5078-5081
    [61]Driskell J D, Shanmukh S, Dluhy R A. The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced Raman scattering substrates. Journal of Physical Chemistry C,2008,112(4):895-901
    [62]Tan S S, Erol M, Du H, et al. Substrates with discretely immobilized silver nanoparticles for ultrasensitive detection of anions in water using surfaceenhanced Raman scattering. Langmuir,2008,24(9):4765-4771
    [63]Sloufova I, Siskova K, Stepanek J, et al. SERS-activating effect of chlorides on borate-stabilized silver nanoparticles:formation of new reduced adsorption sites and induced nanoparticle fusion. Physical Chemistry Chemical Physics,2008, 10(16):2233-2242
    [64]Howes B D, Guerrini L, Smulevich G, et al. The influence of pH and anions on the adsorption mechanism of rifampicin on silver colloids. Journal of Raman Spectroscopy,2007,38(7):859-864
    [65]Kania S, Holze R. On the adsorption and redox catalysis of the oxalate anion and oxalato complexes on gold and metal-modified gold electrodes. Electrochimica Acta,2003,48(8):945-950
    [66]Ahmadi T S, Wang Z L, El-Sayed M A, et al. Shapecontrolled synthesis of colloidal platinum nanoparticles. Science,1996,272(5270):1924-1926
    [67]Lin Z H, Chang H T. Preparation of gold-tellurium hybrid nanomaterials for surface-enhanced raman spectroscopy. Langmuir,2008,24(2):365-367
    [68]Bao L L, Mahurin S M, Dai S, et al. Silver-doped sol-gel film as a surface-enhanced Raman scattering substrate for detection of uranyl and neptunyl ions. Analytical Chemistry,2003,75(23):6614-6620
    [69]Kneipp K, Kneipp H, Feld M S, et al. Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS). Physical Review E,1998,57(6):R6281-R6284
    [70]Bell S E J, Sirimuthu N M S. Surface-enhanced raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides. Journal of the American Chemical Society,2006,128(49):15580-15581
    [71]Siiman O, Bumm L A, Callaghan R, et al. Surface-enhanced Raman scattering by citrate on colloidal silver. Journal of Physical Chemistry,1983,87(6): 1014-1023.
    [72]Lee P C, Meisel D. Surface-enhanced Raman scattering of colloid-stabilizer systems. Chemical Physics Letters,1983,99(3):262-265.
    [73]Zhang X Y, Young M A, Van Duyne R P, et al. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. Journal of the American Chemical Society,2005,127(12):4484-4489
    [74]Yonzon C R, Zhang X Y, Van Duyne R P, et al. Surface-enhanced nanosensors. Spectroscopy,2007,22(1):42-56
    [75]Zhao N, Wei Y, Qi L M, et al. Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions. Langmuir,2008,24(3): 991-998
    [76]Kneipp J, Li X T, Kneipp K, et al. Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing. Analytical Chemistry,2008,80(11):4247-4251
    [77]Bhuvana T, Kulkarni G U. A SERS-active nanocrystalline Pd substrate and its nanopatterning leading to biochip fabrication. Small,2008,4(5):670-676
    [78]Shuiford K L, Lee J, Schatz G C, et al. Optical properties of gold pyramidal shells. Journal of Physical Chemistry C,2008,112(17):6662-6666
    [79]Sung J, Kosuda K M, Van Duyne R P, et al. Stability of silver nanoparticles fabricated by nanosphere lithography and atomic layer deposition to femtosecond laser excitation. Journal of Physical Chemistry C,2008,112(15): 5707-5714
    [80]Yuen C, Wei Z, Huang Z W. Saliva analysis using surface-enhanced Raman spectroscopy technique. Proceedings of SPIE,2008,6826,682610
    [81]Pemble M E. Vibrational spectroscopy from surfaces. Surface analysis—the principle techniques Ed. England:John Wiley & Sons,1997,299-304
    [82]Kneipp K, Wang Y, Feld M S, et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters,1997, 78(9):1667-1670
    [83]Meinhart C D, Wereley S T. The theory of diffraction-limited resolution in microparticle image velocimetry. Measurement Science and Technology,2003, 14(7):1047-1053
    [84]Bailo E, Deckert V. Tip-enhanced Raman scattering. Chemical Society Reviews, 2008,37(5):921-930
    [85]Pettinger B, Ren B, Ertl G, et al. Tip-enhanced Raman pectroscopy (TERS) of malachite green sothiocyanate at Au (111):leaching behavior under the influence of high electromagnetic fields. Journal of Raman Spectroscopy,2005,36(6-7): 541-550
    [86]Beljebbar A, Sockalingum G D, Manfait M, et al. Near-infrared FT-SERS microspectroscopy on silver and gold surfaces:technical development, mass sensitivity, and biological applications. Applied Spectroscopy,1996,50(2): 148-153
    [87]Hildebrandt P, Stockburger M J. Surface-enhanced resonance Ramanspectroscopy of rhodamine-6G adsorbed on colloidal silver. Journal of Physical Chemistry,1984,88(24):5935-5944
    [88]Graham D, Faulds K. Quantitative SERRS for DNA sequence analysis. Chemical Society Reviews,2008,37(5):1042-1051
    [89]Maeda Y, Yamamoto H, Kitano H. Self-assembled monolayers as novel biomembrane mimetics 1 Characterization of cytochrome c bound to self-assembled monolayers on silver by surface-enhanced resonance Raman spectroscopy. Journal of Physical Chemistry,1995,99(13):4837-4841
    [90]Zeisel D, Deckert V, Vo-Dinh T, et al. Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films. Chemical Physics Letters,1998,283(5-6):381-385
    [91]Kneipp K, Wang Y, Dasari R R, et al. Near-infrared surface-enhanced raman-scattering (NIR-SERS) of neurotransmitters in colloidal silver solutions. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,1995, 51(3):481-487
    [92]Shafer-Peltier K E, Haynes C L, Glucksberg M R, et al. Toward a glucose biosensor based on surface-enhanced Raman scattering. Journal of the American Chemical Society,2003,125(2):588-593
    [93]Van Duyne R P, Douglas A S, Zhang X Y, et al. Glucose sensing using near-infrared surface-enhanced Raman spectroscopy:gold surfaces,10-day stability, and improved accuracy. Analytical Chemistry,2005,77(13): 4013-4019
    [94]Douglas A S, Jonathan M Y, Van Duyne R P. In vivo glucose measurement by surface-enhanced Raman spectroscopy. Analytical Chemistry,2006,78(20): 7211-7215
    [95]Cao Y C, Jin R, Mirkin C A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science,2002,297(5586):1536-1540
    [96]Graham D, Mallinder B J, Smith W E. Simple multiplex genotyping by surface-enhanced resonance Raman scattering. Analytical Chemistry,2002, 74(5):1069-1074
    [97]Graham D, Thompson D G, Smith W E, et al. Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. Nature Nanotechnology,2008,3(9):548-551
    [98]Qian X, Zhou X, Nie S. Surface-enhanced Raman nanoparticle beacons based on bioconjugated gold nanocrystals and long range plasmonic coupling. Journal of the American Chemical Society,2008,130(45):14934-14935
    [99]Thornton J, Force R K. Surface-enhanced Raman spectroscopy of nucleic acid compounds and their mixtures. Applied Spectroscopy,1991,45(9):1522-1526
    [100]Ni J, Lipert R J, Porter M D, et al. Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids. Analytical Chemistry,1999, 71(21):4903-4908
    [101]Dou X, Takama T, Yamaguchi Y, et al. Enzyme immunoassay utilizing surface-enhanced Raman scattering of the enzyme reaction product. Analytical Chemistry,1997,69(8):1492-1495
    [102]Porter M D, Lipert R J, Siperko L M. SERS as a bioassay platform:fundamentals, design, and applications. Chemical Society Reviews,2008,37(5):1001-1011
    [103]Grubisha D S, Lipert R J, Park H, et al. Femtomolar detection of prostate-dpecific antigen:an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Analytical Chemistry,2003,75(21): 5936-5943
    [104]Driskell J D, Kwarta K M, Porter M D, et al. Low-level detection of viral pathogens by a surface-enhanced raman scattering based immunoassay. Analytical Chemistry,2005,77(19):6147-6154
    [105]Dijkstra R J, Scheenen W J, Dam N, et al. Monitoring neurotransmitter release using surface-enhanced Raman spectroscopy. Journal of Neuroscience Methods, 2007,159(1):43-50
    [106]Kneipp J, Kneipp H, McLaughlin M, et al. In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Letters,2006, 6(10):2225-2231
    [107]Kneipp K, Haka A S, Kneipp H, et al. Surface-enhanced raman spectroscopy in single living cells using gold nanoparticles. Applied Spectroscopy,2002,56(2): 150-154
    [108]Kim J H, Kim J S, Choi H, et al. Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting. Analytical Chemistry, 2006,78(19):6967-6973
    [109]Gessner R, Winter C, Rosch P, et al. Identification of biotic and abiotic particles by using a combination of optical tweezers and in situ Raman spectroscopy. ChemPhysChem,2004,5(8):1159-1170
    [110]Efrima S, Bronk B V. Silver colloids impregnating or coating bacteria. Journal of Physical Chemistry B,1998,102(31):5947-5950
    [111]He J, Luo X F, Yu Z N, et al. Determination of spore concentration in bacillus thuringiensis through the analysis of dipicolinate by capillary zone electrophoresis. Journal of Chromatography A,2003,994(1-2):207-212
    [112]Harrison L H, Ezzell J W, Kaufmann A F, et al. Evaluation of serologic tests for diagnosis of anthrax after an outbreak of cutaneous anthrax in paraguay. The Journal of Infectious Diseases,1989,160(4):706-710
    [113]Kricka L J, Fortina P. Microarray technology and applications:an all-language literature survey including books and patents. Clinical Chemistry,2001,47(8): 1479-1482
    [114]Park S J, Taton T A, Mirkin C A. Array-based electrical detection of DNA with nanoparticle probes. Science,2002,295(5559):1503-1506
    [115]Van Duyne R P, Zhang X Y, Zhao J, et al. Ultrastable substrates for surface-enhanced Raman spectroscopy:Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. Journal of the American Chemical Society,2006,128(31):10304-10309
    [116]Bell S E J, Mackle J N, Sirimuthu N M S. Quantitative surface-enhanced Raman spectroscopy of dipicolinic acid—towards rapid anthrax endospore detection. Analyst,2005,130(4):545-549
    [117]Brewer K E, Aikens C M. TDDFT Investigation of surface-enhanced Raman scattering of HCN and CN- on Ag-20. Journal of Physical Chemistry A,2010, 114(33):8858-8863
    [118]Lu X N, Al-Qadiri H M, Rasco B A, et al. Application of mid-infrared and Raman spectroscopy to the study of bacteria. Food and Bioprocess Technology, 2011,4(6):919-935
    [119]Syed M A, Bokhari S H A. Gold nanoparticle based microbial detection and identification. Journal of Biomedical Nanotechnology,2011,7(2):229-237
    [120]Zhu G C, Hu Y J, Zhong L, et al. Highly sensitive detection of clenbuterol using competitive surface-enhanced Raman scattering immunoassay. Analytica Chimica Acta,2011,697(1-2):61-66
    [121]Fan M K, Andrade G F S, Brolo A G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Analytica Chimica Acta,2011,693(1-2):7-25
    [122]Mai F D, Yu C C, Juang M Y, et al. Preparation of surface-enhanced Raman scattering-active Au/Al2O3 colloids by sonoelectrochemical methods. Journal of Physical Chemistry C,2011,115(28):13660-13666
    [123]Mai F D, Yang K H, Juang M Y, et al. New electrochemical method to deposit surface-enhanced Raman scattering-active silver nanoparticles on metal substrates. RSC Advances,2011,1(7):1324-1332
    [124]Ma M Y, Wang J, Zheng X W. Enhancement of the colorimetric sensitivity of gold nanoparticles with triethanolamine to minimize interparticle repulsion. Microchimica Acta,2011,172(1):155-162
    [125]Banu K, Shimura T. A novel electroless method for the deposition of single-crystalline gold nanocrystals on and inside an organic solid-matrix. New Journal of Chemistry,2011,35(5):1031-1041
    [126]Prats-Alfonso E, Albericio F. Functionalization of gold surfaces:recent developments and applications. Journal of Materials Science,2011,46(24): 7643-7648
    [127]Tian Z Q, Ren B. Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy. Annual Review of Physical Chemistry,2004,55:197-299
    [128]Leopold N, Lendl B. A new method for fast preparation of highly surface-enhanced raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. Journal of Physical Chemistry B,2003,107(24):5723-5727
    [129]Chu H, Yang H, Huan S, et al. Orientation of 6-mercaptopurine SAMs at the silver electrode as studied by Raman mapping and in situ SERS. Journal of Physical Chemistry B,2006,110(11):5490-5497
    [130]Cui Y, Ren B, Tian Z Q, et al. Synthesis of AgcoreAushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy. Journal of Physical Chemistry B,110(9):4002-4006
    [131]Rowe J E. Shank C V, Murray C A. et al. Ultrahigh-vacuum studies of enhanced raman scattering from pyridine on Ag surfaces. Physical Review Letters,1980, 44(26):1770-1773
    [132]Freeman R G, Grabar K C, Natan M J, et al. Self-assembled metal colloid monolayers:an approach to SERS substrates. Science,1995,267(5204): 1629-1632
    [133]Chumanov G, Sokolov K, Cotton T M, et al. Colloidal metal films as a substrate for surface-enhanced spectroscopy. Journal of Physical Chemistry,1995,99(23): 9466-9471
    [134]Saito Y, Wang J J, Batchelder D N, et al. A simple chemical method for the preparation of silver surfaces for efficient SERS. Langmuir,2002,18(8): 2959-2961
    [135]Green M, Liu F M. SERS substrates fabricated by island lithography:the silver/Pyridine system. Journal of Physical Chemistry B,2003,107(47): 13015-13021
    [136]Hu J W, Zhang Y, Tian Z Q, et al. Synthesis of Au@Pd core-shell nanoparticles with controllable size and their application in surface-enhanced Raman spectroscopy. Chemical Physics Letters,2005,408(4-6):354-359
    [137]Willets K A, Van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry,2007,58:267-297
    [138]Mahajan S, Abdelsalam M, Bartlett P. Tuning plasmons on nano-structured substrates for NIR-SERS. Physical Chemistry Chemical Physics,2007,9(1): 104-109
    [139]Driskell J D, Lipert R J, and Porter M D. Labeled gold nanoparticles immobilized at smooth metallic substrates:systematic investigation of surface plasmon resonance and surface-enhanced raman scattering. Journal of Physical Chemistry B,2006,110(35):17444-17451
    [140]Brown K R, Natan M J. Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces. Langmuir,1998,14(4):726-728
    [141]Lim S, Njok P. N, Zhong C J, et al. Gold and magnetic oxide/gold core/shell nanoparticles as bio-functional nanoprobes. Nanotechnology,2008,19(30): 305102(1-11)
    [142]Kathleen M C, Jaan L. Raman and infrared spectra and theoretical calculations of dipicolinic acid, dinicotinic acid, and their dianions. Journal of Molecular Structure,2008,890(1-3):346-358
    [143]Kolomenskii A A, Schuessler H A. Raman spectra of dipicolinic acid in crystalline and liquid environments. Spectrochimica Acta A,2005,61(4): 647-651
    [144]Khalil M M, Mohamed S A, Radalla A M. Potentiometric and conductometric studies on the binary and mixed ligand complexes in solution:M11-dipicolinic acid-glycine systems. Talanta,1997,44(8):1365-1369
    [145]Tao A, Kim F, Yang P D, et al. Langmuir-blodgett silver nanowire monolayers for molecular sensing using surface-enhanced raman spectroscopy, Nano Letters, 2003,3(9):1229-1233
    [146]Nikoobakht B, Wang J P, El-Sayed M A. Surface-enhanced Raman scattering of molecules absorbed on gold nanorods:off-surface plasmon resonance condition. Chemical Physics Letters,2002,366(1-2):17-23
    [147]Sladkova M, Vlckova B, Slouf M J, et al. Surface-enhanced Raman scattering from a single molecularly bridged silver nanoparticle aggregate. Journal of Molecular Structure,2009,924-926,567-570
    [148]Saleh R, Nickel N H. Excimer laser crystallized phosphorous-doped polycrystalline silicon. Journal of Non-Crystalline Solids,2004,338-340, 143-146
    [149]Gucciardi PG, Bonaccorso F, Lopes M, et al. Light depolarization induced by sharp metallic tips and effects on tip-enhanced Raman spectroscopy. Thin Solid Films,2008,516(22):8064-8072
    [150]Takusagawa F, Hirotsu K, Shimada A. The crystal structure of dipicolinic acid monohydrate. Bulletin of the Chemical Society of Japan,1973,46(7):2020-2027
    [151]Kalugin N G, Wang L, Scully M O, et al. Multi-phonon absorption spectra of dipicolinic acid. Chemical Physics Letters,2006,417(1-3):261-265
    [152]Brito R, Rodriguez V A, Figueroa J, et al. Adsorption of 3-mercapto-propyltrimethoxysilane and 3-aminopropyltrimethoxy- silane at platinum electrodes. Journal of Electroanalytical Chemistry,2002,520(1-2):47-52
    [153]Wang R W, Baran G, Wunder S L. Packing and thermal stability of polyoctadecylsiloxane compared with octadecylsilane monolayers. Langmuir, 2000,16(15):6298-6305
    [154]Rolando J. Tremont, Daniel R, et al. Controlled self-assembly of mercapto and silane terminated molecules at Cu surfaces. Journal of Electroanalytical Chemistry,2003,556,147-158
    [155]Thompson W R, Pemberton J E. Characterization of octadecylsilane and stearic acid layers on Al2O3 surfaces by raman spectroscopy. Langmuir,1995,11(5): 1720-1725
    [156]Joo S W, Chung T D, Kim K, et al. Surfaceenhanced Raman scattering of 4-cyanobiphenyl on gold and silver nanoparticle surfaces. Langmuir,2002, 18(23):8813-8816
    [157]Branuer S, Deming L, Teller E J, et al. On a theory of the van der waals adsorption of gases. Journal of American Chemical Society,1940,62(7): 1723-1732
    [158]Wu D Y, Li J F, Tian Z Q, et al. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chemical Society Reviews,2008,37(5): 1025-1041
    [159]Bell S E J, Sirimuthu N M S. Quantitative surface-enhanced Raman spectroscopy. Chemical Society Reviews,2008,37(5):1012-1024
    [160]Banholzer M J, Millstone J E, Mirkin C A, et al. Rationally designed nanostructures for raman spectroscopy. Chemical Society Reviews,2008,37(5): 885-897
    [161]Kneipp J, Kneipp H, Kneipp K. SERS-a single-molecule and nanoscale tool for bioanalytics. Chemical Society Reviews,2008,37(5):1052-1060
    [162]Cheng H W, Huan S Y, Yu R Q, et al. Surface-enhanced Raman spectroscopic detection of bacteria biomarker using gold nanoparticle immobilized substrates. Analytical Chemistry,2009,81(24):9902-9912
    [163]Smith P A, MacDonald S. Gas chromatography using a resistively heated column with mass spectrometric detection for rapid analysis of pyridine released from bacillus spores. Journal of Chromatography A,2004,1036(2):249-253
    [164]Martin H H, Foster J W. Biosynthesis of dipicolinic acid in bacillus megaterium. Journal of Bacteriology,1958,76(2):167-178
    [165]Kambhampati P, Campion A. Surface-enhanced Raman scattering. Chemical Society Reviews,1998,27(4):241-250
    [166]Kaczor A, Malek K, Baranska M. Pyridine on colloidal silver. Polarization of surface studied by surface-enhanced Raman scattering and density functional theory methods. Journal of Physical Chemistry C,2010,114(9):3909-3917
    [167]Creighton J A, Cristopher G B, Albrecht M G. Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. Journal of the Chemical Society, Faraday Transactions Ⅱ,1979,75,790-798
    [168]Abdelsalam M E, Bartlett P N, Russell A E, et al. Electrochemical SERS at a structured gold surface. Electrochemistry Communications,2005,7(7):740-744
    [169]Kim K, Kim K L, Lee S J. Surface enrichment of Ag atoms in Au/Ag alloy nanoparticles revealed by surface enhanced Raman scattering spectroscopy. Chemical Physics Letters,2005,403(1-3):77-82
    [170]Zuo C, Jagodzinski P W. Surface-enhanced Raman scattering of pyridine using different metals:differences and explanation based on the selective formation of alphapyridyl on metal surfaces. Journal of Physical Chemistry B,2005,109(5): 1788-1793
    [171]Zelenay P, Rice-Jackson L M, Wieckowski A. Adsorption of pyridine on polycrystalline gold electrode studied by radioactive-labeling method. Langmuir, 1990,6(5):974-979
    [172]Gultekin A, Ersoz A, Say R, et al. Gold nanoparticles having dipicolinic acid imprinted nanoshell for bBacillus cereus spores recognition. Applied Surface Science,2009,256(1):142-148
    [173]Brolo G, Irish D E, Lipkowski J. Applications of surface enhanced Raman scattering to the study of metal-adsorbate interactions. Journal of Physical Chemistry B,1997,101(20):3906-3909
    [174]Cai W B, She C X, Tian Z Q, et al. Surface Raman spectroscopic investigation of pyridine adsorption at platinum electrodes—effects of potential and electrolyte. Journal of the Chemical Society, Faraday Transactions,1998,94(20):3127-3133
    [175]Cheng H W, Luo W Q, Yu R Q, et al. Surface-enhanced Raman scattering based detection of bacterial biomarker and potential surface reaction species. Analyst, 2010,135(11):2993-3001
    [176]Bell S E J, Sirimuthu N M S. Surface-enhanced Raman spectroscopy as a probe of competitive binding by anions to citrate-reduced silver colloids. Journal of Physical Chemistry A,2005,109(33):7405-7410
    [177]Mosier-Boss P A, Lieberman S H. Detection of nitrate and sulfate anions by normal raman spectroscopy and SERS of cationic-coated, silver substrates. Applied Spectroscopy,2000,54(8):1126-1135
    [178]Daniels J K, Chumanov G. Nanoparticle-mirror sandwich substrates for surface-enhanced Raman scattering. Journal of Physical Chemistry B,2005, 109(38):17936-17942
    [179]Guingab J D, Lauly B, Winefordner J D, et al. Stability of silver colloids as substrate for surface enhanced Raman spectroscopy detection of dipicolinic acid. Talanta,2007,74(2):271-274
    [180]Kwon Y J, Son D H, Ahn S J, et al. Vibrational spectroscopic investigation of benzoic acid adsorbed on siver. Journal of Physical Chemistry,1994,98(34): 8481-8487
    [181]Barthelmes J, Plieth W. SERS investigations on the adsorption of pyridine carboxylic acids on silver-influence of pH and supporting electrolyte. Electrochimica Acta,1995,40(15):2487-2490
    [182]Haynes C L, McFarland A D, Van Duyne R P. Surface-enhanced Raman spectroscopy. Analytical Chemistry A-Pages,2005,77(17):338 A-346 A
    [183]韩雪,张兰威。芽孢杆菌的检测方法。食品科学,2007,28(1):347-349
    [184]Lindsay J A, Beaman T C, Gerhardt P. Protoplast water content of bacterial spores determined by buoyant density sedimentation. Journal of Bacteriology, 1985,163(2):735-737
    [185]Zhang X Y, Shah N C, Van Duyne R P. Sensitive and selective chem/bio sensing based on surface-enhanced Raman spectroscopy (SERS). Vibrational Spectroscopy,2006,42(1):2-8
    [186]Lee J W, Lee H B, Kim K. Novel fabrication of silver-coated glass capillaries for ready SERS-based detection of dissolved chemical species. Analytical and Bioanalytical Chemistry,2010,397(2):557-562
    [187]Daniels J K, Caldwell T P, Chumanov G, et al. Monitoring the kinetics of bacillus subtilis endospore germination via surface-enhanced Raman scattering spectroscopy. Analytical Chemistry.2006,78(5):1724-1729
    [188]Evanoff D D, Heckel Jr J, Chumanov G, et al. Monitoring DPA release from a single germinating bacillus subtilis endospore via surface-enhanced Raman scattering microscopy. Journal of the American Chemical Society,2006,128(39): 12618-12619
    [189]Cheng H W, Chen Y Y, Yu R Q, et al. Surface-enhanced Raman spectroscopic detection of bacillus subtilis spores using gold nanoparticle based substrates. Analytica Chimica Acta,2011,707(1-2):155-163
    [190]Piggot P J, Hilbert D W. Sporulation of bacillus subtilis. Current Opinion in Microbiology,2004,7(6):579-586
    [191]Setlow P. Spores of Bacillus subtilis:their resistance to radiation, heat and chemicals. Journal of Applied Microbiology,2006,101(3):514-525
    [192]Setlow P. Spore germination. Current opinion in microbiology,2003,6(6): 550-556
    [193]Peng L X, Chen D, Li Y Q, et al. Elastic and inelastic light scattering from single bacterial spores in an optical trap allows the monitoring of spore germination dynamics. Analytical Chemistry,2009,81(10):4035-4042
    [194]Zhang P F, Kong L B, Li Y Q, et al. Characterization of wet-heat inactivation of single spores of bacillus species by dual-trap Raman spectroscopy and elastic light scattering. Applied and Environment Microbiology,2010,76(6):1796-1805
    [195]Huang Y F, Zhu H P, TianZ Q, et al. When the signal is not from the original molecule to be detected:chemical transformation of para-aminothiophenol on Ag during the SERS measurement. Journal of the American Chemical Society,2010, 132(27):9244-9246
    [196]Marquis R E, Bender G R. Mineralization and heat resistance of bacterial spores. Journal of Bacteriology,1985,161(2):789-791
    [197]Margolis P S, Driks A, Losick R. Sporulation gene spoIIB from bacillus subtilis. Journal of Bacteriology,1993,175(2):528-540
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.