ZL50型装载机动力舱空气流动与换热分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国装载机行业的发展,装载机在国民经济基础建设中的应用更加广泛。在实际工程应用中,装载机相应系统工作温度过高、影响正常使用的问题经常发生。本文建立了ZL50型装载机动力舱虚拟风洞模型,采用CFD仿真分析与试验测试相结合的方法,对动力舱空气流动与换热规律进行研究。
     本文通过CFD软件求解散热器模块中管片式与板翅式散热器单元冷却空气阻力特性与换热特性,并以此作为多孔介质模型边界条件,将多孔介质模型与散热器分布参数法相结合建立散热器模块中各散热器整体计算模型。通过虚拟风洞仿真分析,研究动力舱外流场、内流场冷却空气流动规律和散热器模块换热规律。计算结果表明,冷却风扇结构特征,在散热器模块冷却空气侧入口表面,形成冷却空气速度与压力的不均匀分布,降低了散热器模块换热性能;动力舱内大量热空气回流及动力舱后部形成的热空气滞留,影响了散热器模块换热质量。通过对装载机典型工况的整车试验,试验结果与仿真结果吻合良好。在此基础上,分别从冷却空气侧与热流体侧,对动力舱散热器模块换热性能影响因素进行分析,优化出系统综合改进方案。
     本文创新之处在于采用CFD计算方法求解散热器单元冷却空气阻力特性与换热特性,采用多孔介质模型与散热器分布参数法相结合,求解动力舱空气流动与换热规律的新途径。
Title:ZL50-Type Wheel Loader Engine Compartment Air Flow and Heat Transfer Analysis
     The wheel loader industry of China started in the sixties of the twentieth century. After about half a century of development, a large wheel loader industry with the dominant product ZL50 and annual production reached nearly 200 thousands has been established in our country. The scale of the formation of a good development has made us become one of the world's largest countries in production and sales of wheel loader.
     With the development of national economy, the urban and infrastructure construction has been developed in large scale. The total demand for a variety of wheel loader is increasing. In urban construction and infrastructure construction, all kinds of operating environment are harsh and complex. The space of wheel loader engine compartment is limited and the cabin layout over several heat sources and radiators. In engineering operation, the overheating problem often occurs in those radiators used for cooling transmission oil and hydraulic oil in engine compartment. The overheating problem will cause a high temperature in system fluid within the radiator module, including water cooling radiator, transmission oil cooler and hydraulic oil cooler. It will cause system malfunction and damage to the engine.
     Aiming at the overheating problem of radiator module in wheel loader ZL50 engine compartment, the air-side resistance and radiator behavior of tube-fin and plate-fin radiator have been analyzed with computational fluid dynamics method and radiator distributed parameter model together. According to the whole structure of ZL50 wheel loader, the virtual wind tunnel model was built. As for radiator module of engine compartment, the inner and outer fluid field of ZL50 engine compartment and the law of air flow and heat transfer in its inner radiator module have been acquired with porous medium model and radiator distributed parameter model. The studies of this paper are as follows:
     1. Numerical simulation of air flow and heat transfer in radiator unit
     Radiator is generally symmetrical in structure. According to the property of structural symmetry, two different kinds of radiator characteristic units have been analyzed in the chapter 2 of this paper. And along the direction of cooling air flow, we have intercepted two radiator characteristic units in accordance with the symmetrical structure respectively. The characteristics of air flow resistance and heat transfer of two radiator units were solved at different wind speed entrance boundary conditions with the CFD software. As results, the velocity distribution of cooling air flow is uniform in the entrance. Because of the disturbance of fin structure on cooling air and the small size of flow tunnel, the cooling air will be accelerated in the core section of radiator characteristic unit. Due to the viscous layer effect, the velocity of cooling air in the near wall, diaphragm and fin is low. As for the temperature distribution at cooling air side, the entrance cooling air temperature distribution is uniform. The secondary heat transfer surface of radiator characteristic unit fin and cooling air were applied in the core section. And the exit cooling air temperature will reach maximum. As for the distribution of turbulence intensity at the cooling air side, the fin plays an important role on the turbulence intensity. Compared to the fin of tube-fin radiator, the cooling air flow path of plate-fin radiator fin is staggered back and forth and the cooling air flow turbulence intensity will be increased better.By calculation, the flow velocity of cooling air and the curves of pressure loss and the heat transfer factor can be acquired. The results show that the cooling air pressure loss is increased as the increase of the entrance cooling air velocity. Moreover, the shaped cooling air resistance and the radiator characteristic unit heat transfer factor are also hoisted. Finally, the heat transfer performance of radiator characteristic unit will be improved.
     2. The analysis of inner and outer air flow of wheel loader engine compartment
     Based on the whole structure of ZL50 wheel loader, the virtual wind tunnel model of engine compartment has been constructed in the chapter 3 of this paper. In engine compartment, the radiator module is arranged in series. The first one is water radiator, and the second one is the parallel radiator for cooling transmission oil and hydraulic oil. The porous medium model is adopted by the parallel radiator in calculation. In virtual wind tunnel, the CFD simulation analysis have been made for the three classic working conditions of ZL50 wheel loader, namely shovel geotechnical condition, high speed running condition and push geotechnical condition. Due to the small change in vehicle speed, the outer flow law of engine compartment of ZL50 wheel loader in the three classic working conditions is nearly uniform in results. There is no room for air pre-intake, the cooling fan plays an important role on the inner flow law of engine compartment. Through the two sides and the bottom of engine compartment, the cooling air enter into the engine compartment and make heat transfer with radiator module, then flow out. The tangential speed of cooling fan's blade is different along the radial direction. There exists ring distribution of velocity and pressure on the air-side section of radiator module for cooling air. The father off the center, the greater the value is. The uneven distribution of cooling air makes the heat transfer of radiator uneven. Meanwhile, due to the bottleneck effect of the cooling air exit in engine compartment, the large recirculation of hot air between the bottom, two sides and radiator module occurs. It makes the heat transfer performance of radiator module lower.
     3. The analysis of wheel loader engine compartment radiator thermal module
     With the help of CFD computation method, the porous medium model and distribution parameter method, the heat transfer law of engine compartment and its inner radiator module have been studied for the three classic working conditions of wheel loader in the chapter 4 of this paper. The results show that the air is heated by muffler and engine block in engine compartment. Because of the different tangential speed on the cooling fan's blade, the distribution of air velocity and pressure is uneven in the front of radiator module. The uneven distribution makes the heat transfer of radiator module uneven too. Meanwhile, due to the bottleneck effect of the cooling air exit in engine compartment, the large recirculation of hot air between the bottom, two sides and radiator module occurs. The re-circulated air will reflow into the radiator module and increase the air temperature of radiator module on the front-end. Finally, it will lower the heat transfer performance of radiator module.Except for hot air recirculation, the bottleneck effect will also produce a stranded region for hot air and reheat the plate-fin radiator on the back of radiator module. It will lower the ability of heat exchange for transmission oil radiator. Compared the heat transfer power of hydraulic oil radiator with its designed value, it was concluded that the unreasonable design on flow distribution of hydraulic oil in system loop makes the hydraulic oil quantity of its radiator too low to realize the effective heat transfer.
     4. Wheel loader test and the analysis and improvement of radiator module
     behavior. The wheel loader field testing have been proceeded for the three classic working conditions, which are shovel geotechnical condition, high speed running condition and push geotechnical condition. The entrance and exit liquid temperature of water radiator, transmission oil radiator, hydraulic oil radiator and the air temperature of radiator module and the temperature of engine block have been measured. The result shows that the simulation model is verified correct.
     On the condition of different cooling fan speed, the properties of resistance and heat transfer of radiator module have been acquired with simulation. It can be concluded that the pressure loss and cooling air flow increase as the cooling fan speed increases and the heat transfer power of the three radiators in radiator module will increase accordingly. The increase of cooling fan speed can improve the heat transfer ability of radiator module. However, the increase of air flow resistance and cooling fan power can occur. Meanwhile, the spacing of radiator module has an impact on the heat transfer power of radiator. In the limited spacing, the heat transfer power of the three radiators increase as the spacing increasing. when the spacing reaches a certain value, the heat transfer power will not increase effectively.
     According to the above simulations, it can be concluded that the hot-air recirculation, inner hot source, air pre-heating, bottleneck effect of exit structure of engine compartment, intake structure character of engine compartment and hot-air stranded region between air flow exit of engine compartment and back-end of radiator module are the factors which have an impact on the heat transfer ability of engine compartment radiator module. For improving those factors, we have compared many results each other and set up a synthesized system plan. Based on the plan, the speed of cooling fan has been matched reasonably.
引文
[1]杨小强.热管理技术在工程车辆中的应用研究[J].中国工程机械学报,2006,4(1).
    [2]Wambsganss M. Thermal management concepts for higher efficiency heavy vehicles[C].1999.
    [3]Chanfreau M, Joseph A, Butler D, et al. Advanced engine cooling thermal management system on a dual voltage 42v-14v minivan[J]. SAE paper, 2001.
    [4]Chanfreau M, GESSIER B, FARKH A, et al. The need for an Electrical Water Valve in a THErmal Management Intelligent System(THEMIS)[J]. SAE transactions,2003,112(6):243-252.
    [5]Mahmoud K, Loibner E, Wiesler B, et al. Simulation-Based Vehicle Thermal Management System--Concept and Methodology[J]. SAE paper, 2003.
    [6]Chalgren R. Thermal comfort and engine warm-up optimization of a low-flow advanced thermal management system[J]. SAE paper,2004.
    [7]KUBO M, SHII K. Introduction of Heat Management Analysis Method Using One-Dimensional Simulation[J]. Mitsubishi Motors Technical Review, 2005,17:25-29.
    [8]Traci R M, Acebal R, Mohler T. Integrated thermal management of a hybrid electric vehicle[J]. IEEE Transactions on Magnetics,1999, 35 (Compendex):479-483.
    [9]Aute V C, Richardson D, Radermacher R, et al. Vehicle thermal systems optimization using genetic optimization algorithms[C]. Vehicle Thermal Management Systems, VTMS 6, May 18,2003-May 21,2003.2003. Brighton, United kingdom:Professional Engineering Publishing.
    [10]Mahmoud K G, Loibner E, Wiesler B, et al. An overview of the vehicle thermal management simulation tools[C]. Vehicle Thermal Management Systems, VTMS 6, May 18,2003-May 21,2003.2003. Brighton, United kingdom:Professional Engineering Publishing.
    [11]Revereault P, Gessier B, Chanfreau M. Intelligent vehicle system thermal management in a mild hybrid-Diesel vehicle[C]. Vehicle Thermal Management Systems, VTMS 6, May 18,2003-May 21,2003.2003. Brighton, United kingdom:Professional Engineering Publishing.
    [12]Skea A, Jolliffe A, Harrison R, et al. Integrated underbonnet thermal management simulation[C]. Vehicle Thermal Management Systems, VTMS 6, May 18,2003-May 21,2003.2003. Brighton, United kingdom: Professional Engineering Publishing.
    [13]Jenkins L C, Bennett A.21st century challenge:Thermal management design requirements[C].23rd Digital Avionics Systems Conference Proceedings:Avionics System Transitioning to the Next Generation, October 24,2004-October 28,2004.2004. Salt Lake City, UT, United states:Institute of Electrical and Electronics Engineers Inc.
    [14]Fischer A J. Design of a fuel thermal management system for long range air vehicles tracking number:37648[C].3rd International Energy Conversion Engineering Conference, August 15,2005-August 18,2005. 2005. San Francisco, CA, United states:American Institute of Aeronautics and Astronautics Inc.
    [15]Blake D, Postlethwaite I, Barker P, et al. Thermal management of a hybrid vehicle[C]. VTMS 8-Vehicle Thermal Management Systems Conference and Exhibition, May 20,2007-May 24,2007.2007. Nottingham, United kingdom:Chandos Publishing.
    [16]Hildinger S, Zurek D, Ambros P. Thermal analysis of a truck cooling system[C]. VTMS 8-Vehicle Thermal Management Systems Conference and Exhibition, May 20,2007-May 24,2007.2007. Nottingham, United kingdom:Chandos Publishing.
    [17]Qiaoyan C, Shen L, Wule H, et al. The technology of thermal management in the long march vehicle design [C].58th International Astronautical Congress 2007, September 24,2007-September 28,2007.2007. Hyderabad, India:International Astronautical Federation, IAF.
    [18]Stewart T, Gravante S. Transient thermal analysis of a dual loop cooling system coupled with a heavy duty diesel engine using 1-D co-simulation[C]. VTMS 8-Vehicle Thermal Management Systems Conference and Exhibition, May 20,2007-May 24,2007.2007. Nottingham, United kingdom:Chandos Publishing.
    [19]Al Sakka M, Gualous H, Van Mierlo J, et al. Thermal modeling and heat management of supercapacitor modules for vehicle applications[J]. Journal of Power Sources,2009,194(Compendex):581-587.
    [20]宣益民.车辆热特征分析与热系统设计[J].南京理工大学学报(自然科学版),1999,23(3).
    [21]张扬军.汽车发动机热管理仿真系统[C].内燃机科技论文集.2002.
    [22]王黎明.柴油机冷却系统匹配的热管理技术[C].中国内燃机学会、中国汽车工程学会2004年APC联合学术年会论文集.2004.
    [23]王黎明.柴油机冷却系统匹配的热管理技术[C].中国内燃机学会中小功率柴油机分会、基础件分会学术年会论文集.2004.
    [24]张钊.发动机电控冷却系统性能仿真研究[J].汽车工程,2005,27(3).
    [25]罗建曦.节温器对发动机热系统动态性能的影响[J].清华大学学报(自然科学版),2004,44(5).
    [26]张扬军.汽车空气动力学数值仿真研究进展[J].汽车工程,2001,23(2).
    [27]涂尚荣.汽车外部流场仿真的复杂网格系统生成[J].汽车工程,2002, 24(5).
    [28]罗建曦.汽车底部复杂流场数值模拟[J].汽车工程,2003,25(4).
    [29]谢今明.地面效应对汽车外部流动的影响[J].机械工程学报,2003,39(3).
    [30]杨胜.汽车外部复杂流场计算的湍流模型比较[J].汽车工程,2003,25(4).
    [31]罗建曦.车用燃料电池发动机试验台热管理系统设计[J].车用发动机,2003(4).
    [32]张扬军.燃料电池汽车动力系统热管理[J].汽车工程,2003,25(6).
    [33]程夕明.车用燃料电池发动机试验台[J].高技术通讯,2004,14(7).
    [34]田颖.燃料电池发动机热管理试验台测试系统的开发[J].车用发动机,2004(6).
    [35]田颖.汽车热管理试验台测试系统研究[J].车用发动机,2009(2).
    [36]陆国栋.装载机冷却组优化匹配的试验研究[J].内燃机工程,2005,26(4).
    [37]陆国栋.轮式装载机冷却组优化匹配的风洞试验[J].农业机械学报,2006,37(3).
    [38]陆国栋.间距对轮式装载机冷却组性能影响的风洞试验[J].浙江大学学报(工学版),2007,41(4).
    [39]谭建勋.工程机械热管理系统试验平台的开发[J].工程机械,2005,36(1).
    [40]张毅.装载机液压系统过热问题的研究[J].工程机械,2005,36(6).
    [41]张毅.装载机散热系统过热现象的研究[J].浙江大学学报(工学版),2006,40(7).
    [42]张毅.间距对散热器模块匹配性能影响的试验研究[J].内燃机工程,2006,27(5).
    [43]张毅.并联结构换热器模块中冷却空气流量的分配[J].汽车工程,2006,28(11).
    [44]张毅.安装参数影响散热器模块性能的风洞研究[J].汽车工程,2006,28(5).
    [45]张毅.装载机散热器模块进出口位置匹配试验[J].农业机械学报,2007,38(1).
    [46]张毅.进出油管位置影响板翅式油冷器性能的数值模拟[J].农业机械学报,2007,38(2).
    [47]王贤海.汽车热管理研究现状及新进展[J].拖拉机与农用运输车,2005(5).
    [48]陈德玲.混合动力电动轿车前舱热管理[J].上海交通大学学报,2006,40(1).
    [49]陈海松.基于FLOWMASTER的工程机械热平衡仿真分析[J].矿山机械,2007,35(006): 118-121.
    [50]顾宁.发动机热管理仿真的研究与应用[C].2008年全国博士生学术论坛——能源与环境领域论文集.2008.
    [51]梁乐华.应用热管理平台分析汽车冷却系统的参数和灵敏度[J].汽车科技,2008(2).
    [52]齐斌.发动机热管理系统试验和仿真研究[J].车用发动机,2008(4).
    [53]仲韵.汽车分离循环式冷却系统的仿真分析[J].车用发动机,2008(3).
    [54]顾宁.基于KULI的发动机热管理瞬态模型的参数设置与仿真[J].计算机应用,2009,29(7).
    [55]Norris R H, Spofford, W. A.,. High-performance fins for heat transfer[J]. Transactions of ASME,1942, vol.64:489-496.
    [56]Manson S. Correlations of heat transfer data and of friction data for interrupt plain fins staggered in successive rows[J]. NACA Tech., Washington,1950.
    [57]KaysWM, LondonAL. Compact heat exchangers [M].1984. Medium:X; Size: Pages:335.
    [58]Rich D. The effect of fin spacing on the heat transfer and friction performance of multi-row, smooth plate fin-and-tube heat exchangers[J]. ASHRAE Transactions,1973,79(2):137-145.
    [59]Rich D G. EFFECT OF FIN SPACING ON THE HEAT TRANSFER AND FRICTION PERFORMANCE OF MULTI-ROW, SMOOTH PLATE FIN-AND-TUBE HEAT EXCHANGERS[J]. ASHRAE Transactions,1973, Volume 79(Issue Part 2): 137-145
    [60]McQuiston F. Correlation of heat, mass and momentum transport coefficients for plate-fin-tube heat transfer surfaces with staggered tubes[J]. ASHRAE Trans,1978,84(1):294-309.
    [61]Saboya F, Sparrow E. Local and average transfer coefficients for one-row plate fin and tube heat exchanger configurations[J]. (American Society of Mechanical Engineers,1974.) ASME, Transactions, Series C-Journal of Heat Transfer,1974,96:265-272.
    [62]Saboya F, Sparrow E. Transfer characteristics of two-row plate fin and tube heat exchanger configurations[J]. International Journal of Heat and Mass Transfer,1976,19(1):41-49.
    [63]Saboya F, Sparrow E. Experiments on a three-row fin and tube heat exchanger[J]. J. Heat Transfer,1976,98(3).
    [64]Mandel S, Townsend M, Parrish Jr T. Closure to "Discussion of 'Optimal Fin-Side Design of Compact Tube-in-Fin Heat Exchangers with Rippled Fins'" (1980, ASME J. Heat Transfer,102, p.395) [J]. Journal of Heat Transfer,1980,102:395.
    [65]Webb R L. Air-Side Heat Transfer in Finned Tube Heat Exchangers[J]. Heat Transfer Engineering,1980,1 (3):33-49.
    [66]HalIcI F, Taymaz I, Gunduz M. The effect of the number of tube rows on heat, mass and momentum transfer in flat-plate finned tube heat exchangers[J]. Energy,2001,26(11):963-972.
    [67]阎玉英.管片式散热器增强传热的流动显示及分析[J].吉林工业大学学报, 1989(004): 108-114.
    [68]李岳林.管片式散热器在汽车发动机冷却系匹配设计中的数值模拟[J].汽车工程,2001,23(1).
    [69]李刚.管间距对涡强化扁管管片散热器传热的影响[J].工程热物理学报,2004,25(3).
    [70]Beauvais F. Aerodynamic Look At Automotive Radiators[J]. SAE paper, 1965.
    [71]Wong L, Smith M. Airflow phenomena in the louvered-fin heat exchanger[J]. SAE technical paper,1973,730237.
    [72]Davenport C. Heat transfer and fluid flow in louvred triangular ducts[J].1980.
    [73]AchaichiaA, Cowell T. Heat transfer and pressure drop characteristics of flat tube and louvered plate fin surfaces [J]. Experimental thermal and fluid science,1988,1(2):147-157.
    [74]Kajino M, Hiramatsu M. Research and development of automotive heat exchangers[C].1987. Washington, D. C.:Heat Transfer in High Technology and Power Engineering.
    [75]Aoki H, Shinagawa T, Suga K. An experimental study of the local heat transfer characteristics in automotive louvered fins[J]. Experimental Thermal Fluid Science,1989,2(3):293-300.
    [76]Webb R, Chang Y, Wang C. Heat transfer and friction correlations for the louver fin geometry[J]. International journal heat and mass transfer, in Proceedings of the Vechicle Thermal Management System, 1995,2:533-541.
    [77]Sahnoun A, Webb R L. Prediction of Heat Transfer and Friction for the Louver Fin Geometry[J]. Journal of Heat Transfer,1992,114(4): 893-900.
    [78]Dillen E, Webb R. Rationally based heat transfer and friction correlations for the louver fin geometry[J].1994.
    [79]Chang Y, Wang C. A generalized heat transfer correlation for louver fin geometry [J]. International Journal of Heat and Mass Transfer,1997, 40(3):533-544.
    [80]Chang Y-J, Hsu K-C, Lin Y-T, et al. A generalized friction correlation for louver fin geometry[J]. International Journal of Heat and Mass Transfer,2000,43(12):2237-2243.
    [81]Kim M-H, Bullard C W. Air-side thermal hydraulic performance of multi-louvered fin aluminum heat exchangers[J]. International Journal of Refrigeration,2002,25(3):390-400.
    [82]Wieting A. Empirical correlations for heat transfer and flow friction characteristics of rectangular offset-fin plate-fin heat exchangers [J]. ASME Transactions Journal of Heat Transfer,1975,97: 488-490.
    [83]Webb R, Joshi H. Friction factor correlation for the offset strip-fin matrix[C]. Proceedings of the Seventh International Conference.1982. Munich, West Germany:CONF-820901-9, Pennsylvania State Univ., University Park (USA). Dept. of Mechanical Engineering.
    [84]Mochizuki S, Yagi Y, Yang W-J. TRANSPORT PHENOMENA IN STACKS OF INTERRUPTED PARALLEL-PLATE SURFACES[J]. Experimental Heat Transfer, 1987,1(2):127-140.
    [85]Jacobi A M, Shah R K. Air-side flow and heat transfer in compact heat exchangers:A discussion of enhancement mechanisms [J]. Journal Name: Heat Transfer Engineering; Journal Volume:19; Journal Issue:4; Other Information:PBD:Oct-Dec 1998,1998:Medium:X; Size:pp.29-41.
    [86]Hu S, Herold K E. Prandtl number effect on offset fin heat exchanger performance:predictive model for heat transfer and pressure drop[J]. International Journal of Heat and Mass Transfer,1995,38(6): 1043-1051.
    [87]Hu S, Herold K E. Prandtl number effect on offset fin heat exchanger performance:experimental results[J]. International Journal of Heat and Mass Transfer,1995,38(6):1053-1061.
    [88]Sparrow E, Baliga B, Patankar S. Heat transfer and fluid flow analysis of interrupted-wall channels, with application to heat exchangers [J]. ASME Journal of Heat Transfer,1977,99:4-11.
    [89]Patankar S V, Prakash C. An analysis of the effect of plate thickness on laminar flow and heat transfer in interrupted-plate passages [J]. International Journal of Heat and Mass Transfer,1981,24(11): 1801-1810.
    [90]Suzuki K, Hirai E, Miyake T, et al. Numerical and experimental studies on a two-dimensional model of an offset-strip-fin type compact heat exchanger used at low Reynolds number[J]. International Journal of Heat and Mass Transfer,1985,28(4):823-836.
    [91]Zhang L W, Tafti D K, Najjar F M, et al. Computations of flow and heat transfer in parallel-plate fin heat exchangers on the CM-5:effects of flow unsteadiness and three-dimensionality [J]. International Journal of Heat and Mass Transfer,1997,40(6):1325-1341.
    [92]Kroger D. Radiator characterization and optimization[J]. SAE transactions,1984,93(2):2-2.
    [93]李重焕.管带式散热器优化设计实例[J].汽车研究与开发1995(004):18-19.
    [94]张建华.车用增压柴油机中冷器模型及其性能预测[J].内燃机学报,1995,13(001): 65-70.
    [95]李国祥.车用柴油机气—气中冷器数学模型及应用[J].内燃机学报,1997,15(003): 327-332.
    [96]廖强.管带式汽车散热器传热与风阻性能研究[J].重庆大学学报:自然科 学版,1997,20(005): 1-5.
    [97]马虎根.汽车散热器传热及阻力特性的预测方法[J].内燃机工程,2002,23(1).
    [98]贾荣光.高效紧凑式热交换器的计算机辅助设计--优化设计自动制图一体化[J].中国机械工程,1999,10(7).
    [99]马虎根.汽车发动机冷却系统计算机辅助设计[J].汽车工程,2000,22(3).
    [100]Yuan Y, Jackson A, Nelson M. Cfd Simulation of Flow and Heat Transfer in Airways[J].2001.
    [101]Perrotin T, Clodic D. Thermal-hydraulic CFD study in louvered fin-and-flat-tube heat exchangers[J]. International Journal of Refrigeration,2004,27(4):422-432.
    [102]谢春辉.冷凝器翅片表面流体流动及换热过程的三维数值模拟[J].制冷与空调,2005,5(1).
    [103]Hsieh C-T, Jang J-Y.3-D thermal-hydraulic analysis for louver fin heat exchangers with variable louver angle[J]. Applied Thermal Engineering,2006,26(14-15):1629-1639.
    [104]董军启.百叶窗翅片的传热和阻力性能试验研究[J].动力工程,2006,26(6).
    [105]任能.平翅片传热与流动特性的数值模拟[J].制冷与空调,2006,6(4).
    [106]姬长发.管翅换热器换热与流动的三维定常特性分析[J].西安科技大学学报,2007,27(2).
    [107]田晓虎.车用百叶窗翅片式热交换器空气侧性能的CFD研究[J].天津理工大学学报,2007,23(2).
    [108]周益民.百叶窗翅片传热与流动的三维数值模拟[J].节能技术,2007,25(2).
    [109]李军.波纹开缝翅片管换热器传热与流动性的数值模拟[J].广东海洋大学学报,2008,28(4).
    [110]童正明.管翅式散热器顺排结构与错排结构的CFD模拟[J].工业加热,2009,38(3).
    [111]Karayannis A, Markatos N. Mathematical modeling of heat exchangers[C]. 1994.
    [112]du Plessis J P. Similarities between flow across tube bundles and through porous media[C]. Proceedings of the 32nd Heat Transfer and Fluid Mechanics Institute, June 6,1991-June 7,1991.1991. Sacramento, CA, USA:Publ by California State Univ.
    [113]Kang Y T, Christensen R N, Vafai K. Analysis of absorption process in a smooth-tube heat exchanger with a porous medium [J]. Heat Transfer Engineering,1994,15(Compendex):42-55.
    [114]Xie Y, Guo F, Wu H, et al. Porous media modelling of compact heat exchanger[J]. Hedongli Gongcheng/Nuclear Power Engineering,1995, 16(Compendex):177-182.
    [115]Dallaire J, Gosselin L, da Silva A K. Conceptual optimization of a rotary heat exchanger with a porous core[J]. International Journal of Thermal Sciences,2010,49(Compendex):454-462.
    [116]谢永红,郭方中,吴洪涛.紧凑换热器的多孔介质模型化[J].核动力工程,1995,16(2): 177-182.
    [117]Patankar S, Spalding D. A calculation procedure for the transient and steady-state behaviour of shell-and-tube heat exchangers[J]. Heat exchangers:design and theory sourcebook,1974:155-176.
    [118]Patankar S, Spalding D. Computer analysis of the three-dimensional flow and heat transfer in a steam generator [J]. Forschung im Ingenieurwesen,1978,44(2):47-52.
    [119]Patankar S. Numerical heat transfer and fluid flow[M]:Hemisphere Pub. 1980.
    [120]Patankar S V. Recent Developments in Computational Heat Transfer[J]. Journal of Heat Transfer,1988,110(4b):1037-1045.
    [121]Huang L, Wen J, Karayiannis T, et al. CFD Modelling of Fluid Flow and and Heat Transfer in a shell and Tube Heat Exchanger[J]. PHOENICS Journal of Computational Fluid Dynamics and its Applications,1996, 9:181-209.
    [122]Prithiviraj M, Andrews M J. Three-dimensional numerical simulation of shell-and-tube heat exchangers. Part 2:Heat transfer [J]. Journal Name:Numerical Heat Transfer. Part A, Applications; Journal Volume: 33; Journal Issue:8; Other Information:PBD:Jun 1998,1998:Medium: X; Size:pp.817-828.
    [123]Prithiviraj M, Andrews M J. Three dimensional numerical simulation of shell-and-tube heat exchangers. Part 1:Foundation and fluid mechanics [J]. Journal Name:Numerical Heat Transfer. Part A, Applications; Journal Volume:33; Journal Issue:8; Other Information: PBD:Jun 1998,1998:Medium:X; Size:pp.799-816.
    [124]黄兴华.管壳式换热器壳程流动和传热的三维数值模拟[J].化工学报,2000,51(3).
    [125]Bancroft T G, Sapsford S M, Butler D J, Underhood airflow prediction using VECTIS coupled to a 1-D system model, in In Proceedings of the 5th Ricardo Software International Users Conference.2000, Citeseer: Shoreham-by-Sea, UK.
    [126]Srinivasan K, Wang Z, Yuan W, et al. Vehicle thermal management simulation using a rapid omni-tree based adaptive Cartesian mesh generation methodology[J]. Proceedings of HTFED2004, Charlotte, North Carolina,2004.
    [127]Chacko S, Shome B, Kumar V, et al., Numerical simulation for improving radiator efficiency by air flow optimization-.2005, Citeseer.
    [128]Shome B, Joshi R. CFD Based Air-to-Boil Temperature Prediction for
    Sport Utility Vehicle Radiator[J]. SAE paper,2006.
    [129]丁铁新.整车罩壳内空气流动的数值模拟研究[J].柴油机设计与制造,2006,14(3).
    [130]盛明星.整车冷却系统优化匹配方法浅谈[J].柴油机设计与制造,2006,14(2).
    [131]Tai C, Cheng C, Liao C. A Practical and Simplified Airflow Simulation to Assess Underhood Cooling Performance[J]. SAE paper,2007.
    [132]Juan T. Investigation and Assessment of Factors affecting the Underhood Cooling Air Flow Using CFD (Computational Fluid Dynamics)[J]. SAE paper,2008.
    [133]董军启.车辆发动机冷却模块试验与仿真研究[J].内燃机工程,2008,29(5).
    [134]Subramanian S, Bandaru B, Balaji B, et al. Minimization of Hot Air Re-circulation in Engine Cooling System[J]. SAE paper, 2009.
    [135]Alajbegovic A, Xu B, Konstantinov A, et al. Simulation of Cooling Airflow Under Different Driving Conditions[J]. SAE paper,2007.
    [136]周光垌.流体力学[M].北京:高等教育出版社.2000.
    [137]杨世铭.传热学[M].北京:高等教育出版社.1998.
    [138]姚仲鹏.车辆冷却传热[M]:北京理工大学出版社.2001.
    [139]吕明忠.计算机数值仿真在汽车外流场分析方面的应用研究[J].计算机辅助设计与图形学学报,2002,14(2).
    [140]严鹏.轿车外流场数值模拟[J].同济大学学报(自然科学版),2003,31(9).
    [141]傅立敏.轿车并列行驶湍流特性的数值模拟[J].吉林大学学报(工学版)2005,35(4).
    [142]傅立敏.队列行驶车辆的空气动力特性[J].吉林大学学报(工学版),2006,36(6).
    [143]傅立敏.虚拟仪器在汽车尾流测量中的应用[J].吉林大学学报(工学版),2006,36(5).
    [144]胡兴军.具有不同辐板车轮的空气动力学特性研究[J].同济大学学报(自然科学版),2006,34(12).
    [145]傅立敏.汽车超车过程的空气动力特性研究[J].空气动力学学报,2007,25(3).
    [146]杨博.稳态数值模拟在轿车外气动噪声源预测中的应用[J].吉林大学学报(工学版),2007,37(5).
    [147]贺宝琴.汽车外形对智能车辆队列行驶气动特性的影响[J].吉林大学学报(工学版),2008,38(1).
    [148]张英朝.轿车会车时气动特性的数值模拟[J].江苏大学学报(自然科学版),2008,29(2).
    [149]Batchelor G K. An Introduction to Fluid Dynamics[M]. Cambridge, England:Cambridge Univ. Press,.1967.
    [150]刘伟.多孔介质传热传质理论与应用[M].北京:科学出版社.2006.
    [151]史美中.热交换器原理与设计[M].南京:东南大学出版社.1996.
    [152]王永根.柴油机防锈乳化冷却液[M]:人民交通出版社.1982.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.