高分子及其复合湿敏、气敏材料的设计、制备和敏感特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文设计制备了四种类型共七种高分子及复合高分子湿敏材料:基于聚4-乙烯基吡啶/聚甲基丙烯酸缩水甘油酯(P4VP/PGMA)互穿网络聚合物(IPN);基于聚甲基丙烯酸二甲氨基乙酯/聚甲基丙烯酸缩水甘油酯(PDMAEM/PGMA)互穿网络聚合物及其分别与聚苯胺(PANI-CSA)或聚吡咯(PPy)的复合物;聚苯乙烯磺酸钠(NaPSS)以及聚二甲基二烯丙基氯化铵(PDDA)聚电解质材料与多壁碳纳米管复合物,和羧基改性超支化聚合物H20。通过浸涂法在金叉指电极表面涂膜,再经过加热处理,同时进行季铵化、交联反应,方便地制备互穿聚合物网络湿敏元件及其它湿敏元件。另外,采用气相聚合、溶液原位生长、静电纺丝三种方法直接制得了聚吡咯、聚吡咯/多壁碳纳米管复合物以及聚吡咯复合物纳米纤维气敏材料及气体敏感元件。使用FT-IR、UV-vis、XRD、TGA、TEM、SEM、AFM和拉曼光谱等手段表征了材料组成和形貌。研究了湿敏元件的湿敏特性以及气敏元件对氨气、甲醇等有机气体的气敏特性。讨论了敏感层的组成、结构及其微观形貌,制备工艺条件等因素对敏感元件响应性能的影响。探讨了敏感材料的湿敏或气敏机理。
     研究了制备互穿聚合物的浸涂液总浓度、浸涂液中互穿聚合物组成比例、交联剂浓度、制备工艺(电极结构、浸涂液陈化时间、季铵化温度及时间、敏感层的厚度、保护膜)以及测试环境(测试温度、频率)等,对基于P4VP/PGMA互穿聚合物网络(IPN)湿敏元件感湿特性的影响。与基于单一亲水、疏水网络或半互穿网络的元件相比,制得的电阻型湿敏元件,不仅在95~25%RH范围,阻抗变化范围10~3~10~6Ω,具有响应快(吸湿3 s、脱湿时间21 s),灵敏度高(10~3),湿滞小(~1%RH)以及线性度好(R~2=0.996)等优异的湿敏响应特性,而且还具备良好的耐高温高湿、耐水、耐溶剂特性。通过交流复阻抗谱分析,研究其湿敏特性并建立等效模型,其湿敏行为与典型聚电解质湿敏材料相一致,导电机理主要为离子导电,而亲疏水组分的比例是决定元件表现为电阻型响应或电容型响应的关键。
     研究了互穿聚合物的组成、制备工艺,对基于PDMAEM/PGMA IPN湿敏元件的感湿特性的影响,发现该元件在98~18%RH湿度范围内,阻抗变化范围10~3~10~7Ω,同样具有响应快(吸湿4 s、脱湿20 s),灵敏度高(~10~4),湿滞小(~2%RH)等优良的湿敏响应特性,同时还发现该元件具有良好的耐水性(20 min)。同时,以该湿敏膜为基,采用聚吡咯的气相聚合法,或涂覆可溶聚苯胺,制得了复合湿敏元件。发现复合元件不仅基本保留了IPN湿敏元件原有的湿敏特性,而且低湿条件下的阻抗明显降低,有利于较低湿度环境(15~30%RH)的检测。研究了多壁碳纳米管的引入对聚苯乙烯磺酸钠、聚二甲基二烯丙基氯化铵湿敏响应特性的影响,讨论了复合物组成对其湿敏特性及其湿敏机理的影响。元件在98~20%RH范围的阻抗随湿度降低线性减少,为较低湿度的测量提供了基础。该类复合湿敏元件的感湿行为主要受离子导电与本征电子导电两种机理所控制。初步探讨了通过端基改性制备基于超支化聚酯H20的湿敏材料,及其湿敏元件的感湿特性。发现羧基改性超支化H20湿敏材料随末端基的性质和数量的不同,其表现出不同的湿敏特性。
     研究了氧化剂、掺杂剂种类和浓度以及多壁碳纳米管的引入,对气相聚合制备的聚吡咯及其纳米复合物氨气响应特性的影响。发现多壁碳纳米管的引入可提高纳米复合物对氨气的响应灵敏度,其对50 ppm氨气的灵敏度高达10%,同时在很高的氨气浓度下(12500 ppm)响应也可回复,显示良好的应用前景。研究了制备工艺条件对溶液原位生长制备的聚吡咯元件的氨气敏感特性的影响,制得的元件对低浓度的氨气(32~550 ppm)也表现出良好的可逆线性响应。初步研究了静电纺丝制得的聚吡咯复合物纤维元件的氨气敏感特性,其与薄膜元件相比具有更高响应灵敏度、更好的回复性。讨论了聚吡咯及其复合物的气体敏感机理,发现氧化剂、掺杂剂种类和多壁碳纳米管,对聚吡咯及其纳米复合物氨气响应灵敏度及回复性有明显的影响。
Four types of humidity sensitive materials based on polymer and polymer composite were designed and prepared,including an interpenetrating polymer network (IPN)composed of poly(4-vinylpyridine)and poly(glycidyl methacrylate) (P4VP/PGMA),an IPN composed of poly(N,N'-dimethylaminoethyl methacrylate)and poly(glycidyl methacrylate)(PDMAEM/PGMA)and its composites with polyaniline (PANI)or polypyrrole(PPy),a composite of sodium polystyrenesulfonate(NaPSS)and multi-walled carbon nanotube(MWNT)and a composite of poly(diallydimethylammonium chloride)(PDDA)and MWNT,and a hyperbranched polyester undergoing terminal group modification.Humidity sensors were prepared by dip-coating these sensitive materials on the interdigital gold electrodes.In particular,the sensors were heated to initiate the simultaneous quaternization and crosslinking reactions to form the IPN structure.Furthermore,gas sensitive materials and gas sensors based on PPy and its composites with MWNT or polymers were prepared by the method of vapor phase polymerization,in-situ solution polymerization and electrospinning.The compositions and morphologies of the sensitive materials were characterized by means of FT-IR,UV-vis,XRD,TGA,SEM,TEM,AFM,Raman spectroscopy,etc.The humidity sensitive properties of the polymer and polymer composites were investigated at room temperature,together with the gas sensitive properties of PPy and its composites towards NH_3,methanol vapor,etc.The effects of the composition,structure and morphology of the sensitive films,preparation techniques on the sensing characteristics of the humidity and gas sensors were discussed.The humidity and gas sensitive mechanisms were explored.
     The effect of the concentration of dip-coating solution,ratio of the two polymer components,the concentration of crosslinking agents,the preparation techniques (electrode structure,temperature and time of quaternization reaction,aging time, thickness of the sensitive film,protection film,etc.)and the measuring conditions on the humidity sensitive properties of P4VP/PGMA IPN was investigated.It was found that the polymer network exhibited an impedance change of 10~3~10~6Ωin the range of 95~25%RH,indicating a high sensitivity.In addition,it showed a fast response (response time of 3 s and 21 s for adsorption and desorption,respectively),small hysteresis(~1%RH)and good linearity(R~2=0.996).Besides,it was also featured with good durability to high temperature and high humidity,and high resistance to water and solvents.The investigations on the humidity sensitive mechanism by complex impedance spectra revealed that the polymer composite showed sensing characteristics typical of polyelectrolytes,and ion conductivity played a major role in its conduction behavior.The ratio of hydrophobic to hydrophilic components in the polymer network determined whether it exhibited a resistive-type or capacitive-type response.
     The effect of the composition and preparation conditions on the humidity sensitive properties of PDMAEM/PGMA IPN was investigated.It was found that the polymer network exhibited an impedance change of 10~3~10~7Ωin the range of 98~18%RH.In addition,it was also featured with a fast response(response time of 4 s and 20 s for adsorption and desorption,respectively),small hysteresis(~2%RH)and high resistance to water.The polymer network was covered by a layer of vapor phase polymerized PPy or soluble PANI to prepare composite humidity sensors.It was found that the composite not only maintained the good humidity sensitive properties of the PDMAEM/PGMA IPN,but also exhibited a much smaller resistance at low humidity,which facilitated the measurement of low humidities(15~30%RH).The effect of introduction of MWNT on the humidity sensitive properties of the composite of NaPSS and PDDA with MWNT was investigated.And the exploration of its sensing mechanism revealed that its conduction behaviors were related to both ionic and electronic conduction.The humidity sensitive properties of hyprebranched polyester(H20)whose terminal hydroxyl group was converted to carboxylic group were investigated.It was found that the properties and numbers of terminal groups of modified H20 affected its humidity sensitive properties.
     The effect of the properties and concentration of oxidants and dopants,and the introduction of MWNT on the gas sensitive properties of PPy and its nanocomposites prepared by vapor phase polymerization towards NH_3 vapor was investigated.It was found that the inclusion of MWNT improved the sensitivity of the nanocomposite, reaching 10%towards NH_3 vapor of 50 ppm.In addition,a reversible response was observed in the sensing of high concentration NH_3 vapor(12500 ppm),which indicates its great potentials for practical applications.The effect of the preparation conditions on the NH_3 sensitive properties of PPy prepared by in-situ solution polymerization was investigated,and a reversible and linear response towards NH_3 vapor of very low concentrations(32~550 ppm)was observed.The gas sensitive properties of fibers of PPy and its composite obtained by electrospinning towards NH_3 vapor was investigated, and the fibers exhibited a higher sensitivity and better reversibility than the thin films of PPy and the composite.The exploration on their gas sensitive mechanism revealed that the properties of oxidants and dopants,the introduced MWNT all have great effect on their sensitivity and reversibility in the detection of NH_3 vapor.
引文
[1] J. Janata; A. Bezegh, Chemical sensors. Anal Chem, 1988, 60, 62R.
    [2] E. Bekyarova; M. Davis; T. Burch; M. E. Itkis; B. Zhao; S. Sunshine; R. C. Haddon, Chemically functionalized single-walled carbon nanotubes as ammonia sensors. J Phys Chem B, 2004, 108, 19717.
    [3] W. S. Cho; S. I. Moon; K. K. Paek; Y. H. Lee; J. H. Park; B. K. Ju, Patterned multiwall carbon nanotube films as materials of NO_2 gas sensors. Sens Actuator, B, 2006,119,180.
    [4] S. Chopra; K. McGuire; N. Gothard; A. M. Rao; A. Pham, Selective gas detection using a carbon nanotube sensor. Appl Phys Lett, 2003, 83, 2280.
    [5] Z. Y. Hou; D. Xu; B. C. Cai, Ionization gas sensing in a microelectrode system with carbon nanotubes. Appl Phys Lett, 2006, 89.
    [6] J. Kong; N. R. Franklin; C. W. Zhou; M. G. Chapline; S. Peng; K. J. Cho; H. J. Dai, Nanotube molecular wires as chemical sensors. Science, 2000, 287, 622.
    [7] C. Y. Lee; S. Baik; J. Q. Zhang; R. I. Masel; M. S. Strano, Charge transfer from metallic single-walled carbon nanotube sensor arrays. J Phys Chem B, 2006,110,11055.
    [8] J. Li; Y. J. Lu; Q. Ye; M. Cinke; J. Han; M. Meyyappan, Carbon nanotube sensors for gas and organic vapor detection. Nano Lett, 2003, 3, 929.
    [9] Y. H. Lin; F. Lu; Y. Tu; Z. F. Ren, Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett, 2004,4,191.
    [10] Y. J. Lu; J. Li; J. Han; H. T. Ng; C. Binder; C. Partridge; M. Meyyappan, Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors. Chem Phys Lett, 2004, 391, 344.
    [11] Y. J. Lu; C. Partridge; M. Meyyappan; J. Li, A carbon nanotube sensor array for sensitive gas discrimination using principal component analysis. J Electroanal Chem, 2006, 593,105.
    [12] A. Modi; N. Koratkar; E. Lass; B. Q. Wei; P. M. Ajayan, Miniaturized gas ionization sensors using carbon nanotubes. Nature, 2003, 424, 171.
    [13] Q. F. Pengfei; O. Vermesh; M. Grecu; A. Javey; O. Wang; H. J. Dai; S. Peng; K. J. Cho, Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett, 2003, 3, 347.
    [14] R. K. Roy; M. P. Chowdhury; A. K. Pal, Room temperature sensor based on carbon nanotubes and nanofibres for methane detection. Vacuum, 2005, 77, 223.
    [15] N. Sinha; J. Z. Ma; J. T. W. Yeow, Carbon nanotube-based sensors. J Nanosci Nanotechnol, 2006, 6, 573.
    [16] O. K. Varghese; P. D. Kichambre; D. Gong; K. G. Ong; E. C. Dickey; C. A. Grimes, Gas sensing characteristics of multi-wall carbon nanotubes. Sens Actuator, B, 2001, 81, 32.
    [17] S. G. Wang; Q. Zhang; D. J. Yang; P. J. Sellin; G. F. Zhong, Multi-walled carbon nanotube-based gas sensors for NH_3 detection. Diam Relat Mater, 2004,13,1327.
    [18] J. K. Abraham; B. Philip; A. Witchurch; V. K. Varadan; C. C. Reddy, A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor. Smart Mater Struct, 2004,13,1045.
    [19] K. H. An; S. Y. Jeong; H. R. Hwang; Y. H. Lee, Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites. Adv Mater, 2004, 16, 1005.
    [20] D. L. Carroll; R. Czerw; S. Webster, Polymer-nanotube composites for transparent, conducting thin films. Synth Met, 2005,155, 694.
    [21] H. W. Chen; R. J. Wu; K. H. Chan; Y. L. Sun; P. G. Su, The application of CNT/Nafion composite material to low humidity sensing measurement. Sens Actuator, B, 2005,104, 80.
    [22] L. M. Dai; P. Soundarrajan; T. Kim, Sensors and sensor arrays based on conjugated polymers and carbon nanotubes. Pure Appl Chem, 2002, 74,1753.
    [23] N. Ferrer-Anglada; M. Kaempgen; S. Roth, Transparent and flexible carbon nanotube/polypyrrole and carbon nanotube/polyaniline pH sensors. Phys Status Solidi B-Basic So, 2006,243,3519.
    [24] M. Gao; L. Dai; G. G. Wallace, Glucose sensors based on glucose-oxidase-containing polypyrrole/aligned carbon nanotube coaxial nanowire electrodes. Synth Met, 2003,137,1393.
    [25] A. T. C. Johnson; C. Staii; M. Chen; S. Khamis; R. Johnson; M. L. Klein; A. Gelperin, DNA-decorated carbon nanotubes for chemical sensing. Phys Status Solidi B-Basic So, 2006, 243, 3252.
    [26] M. Kaempgen; S. Roth, Transparent and flexible carbon nanotube/polyaniline pH sensors. J Electroanal Chem, 2006, 586, 72.
    [27] M. K. Kumar; S. Ramaprabhu, Nanostructured Pt functionlized multiwalled carbon nanotube based hydrogen sensor. J Phys Chem B, 2006,110,11291.
    [28] J. Li; Y. J. Lu; M. Meyyappan, Nano chemical sensors with polymer-coated carbon nanotubes. IEEE Sens Lett, 2006, 6,1047.
    [29] Y. Li; M. J. Yang; Y. Chen, Nanocomposites of carbon nanotubes and silicone-containing polyelectrolyte as a candidate for construction of humidity sensor. J Mater Sci, 2005,40, 245.
    [30] X. L. Luo; A. J. Killard; A. Morrin; M. R. Smyth, Eehancement of a conducting polymer-based biosensor using carbon nanotube-doped polyaniline. Anal Chim Acta, 2006, 575, 39.
    [31] X. F. Ma; M. Wang; G. Li; H. Z. Chen; R. Bai, Preparation of polyaniline-TiO_2 composite film with in situ polymerization approach and its gas-sensitivity at room temperature. Mater Chem Phys, 2006,98,241.
    [32] X. F. Ma; G. Li; M. Wang; Y. N. Cheng; R. Bai; H. Z. Chen, Preparation of a nanowire-structured polyaniline composite and gas sensitivity studies. Chem-Eur J, 2006, 12, 3254.
    [33] F. L. Qu; M. H. Yang; J. H. Jiang; G. L. Shen; R. Q. Yu, Amperometric biosensor for choline based on layer-by-layer assembled functionalized carbon nanotube and polyaniline multilayer film. Anal Biochem, 2005, 344,108.
    [34] K. S. V. Santhanam; R. Sangoi; L. Fuller, A chemical sensor for chloromethanes using a nanocomposite of multiwalled carbon nanotubes with poly(3-methylthiophene). Sens Actuator, B, 2005,106, 766.
    [35] P. Santhosh; K. M. Manesh; A. Gopalan; K. P. Lee, Fabrication of a new polyaniline grafted multi-wall carbon nanotube modified electrode and its application for electrochemical detection of hydrogen peroxide. Anal Chim Acta, 2006, 575, 32.
    [36] P. G. Su; S. C. Huang, Electrical and humidity sensing properties of carbon nanotubes-SiO_2-poly (2-acrylamido-2-methylpropane sulfonate) composite material. Sens Actuator, 5,2006,113,142.
    [37] P. G. Su; Y. L. Sun; C. C. Lin, A low humidity sensor made of quartz crystal microbalance coated with multi-walled carbon nanotubes/Nafion composite material films. Sens Actuator, B, 2006, 115,338.
    [38] Z. Y. Sun; X. R. Zhang; N. Na; Z. M. Liu; B. X. Han; G. M. An, Synthesis of ZrO_2-carbon nanotube composites and their application as chemiluminescent sensor material for ethanol. J Phys Chem B, 2006,110,13410.
    [39] K. S. Teh; L. W. Lin, MEMS sensor material based on polypyrrole-carbon nanotube nanocomposite: film deposition and characterization. J Micromech Microeng, 2005,15, 2019.
    [40] L. Valentini; V. Bavastrello; E. Stura; I. Armentano; C. Nicolini; J. M. Kenny, Sensors for inorganic vapor detection based on carbon nanotubes and poly(o-anisidine) nanocomposite material. Chem Phys Lett, 2004, 383, 617.
    [41] J. Wang; M. Musameh, Carbon-nanotubes doped Polypyrrole glucose biosensor. Anal Chim Acta, 2005, 539, 209.
    [42] H. H. Yu; T. Cao; L. D. Zhou; E. D. Gu; D. S. Yu; D. S. Jiang, Layer-by-layer assembly and humidity sensitive behavior of poly(ethyleneimine)/multiwall carbon nanotube composite films. Sens Actuator, B, 2006,119, 512.
    [43] B. Zhang; R. W. Fu; M. Q. Zhang; X. M. Dong; P. L. Lan; J. S. Qiu, Preparation and characterization of gas-sensitive composites from multi-walled carbon nanotubes/polystyrene. Sens Actuator, B, 2005,109, 323.
    [44] T. Zhang; M. B. Nix; B. Y. Yoo; M. A. Deshusses; N. V. Myung, Electrochemically functionalized single-walled carbon nanotube gas sensor. Electroanalysis, 2006,18,1153.
    [45] M. J. Cunningham, Development and performance of a small relative humidity sensor for indoor microclimate measurements. Build Environ, 1999, 34, 349.
    [46] P. Bruno, Humidity sensors for automotive, appliances and consumer application. Sens Actuator, 5,1999,59,231.
    [47] D. Ye; C. Z. Yang; Y. M. Chen; Y. G. Li, A new approach for measuring predicted mean vote (PMV) and standard effective temperature(SET). Build Environ, 2003, 38, 33.
    [48] C. Chen, Moisture measurement of grain using humidity sensors. Transactions of the Asae, 2001,44.
    [49] T. Fujita; K. Maenaka, Integrated multi-environmental sensing-system for the intelligent data carrier. Sens Actuator, A, 2002, 97-8, 527.
    [50] T. J. Harpster; S. Hauvespre; M. R. Dokmeci; K. Najafi, A passive humidity monitoring system for in situ remote wireless testing of micropackages. J Microekctromech S, 2002,11, 61.
    [51] T. Keck; R. Leiacker; A. Heinrich; S. Kuhnemann; G. Rettinger, Humidity and temperature profile in the nasal cavity. Rhinology, 2000, 38, 167.
    [52] J. Rathgeber; G. Kahle; T. Schulze; K. Zuchner, Rapid measurement of water vapour pressure at the saturation point using a new hybrid humidity sensor. Biomedizinische Technik, 2000, 45,288.
    [53] N. T. T. Ha; D. K. An; P. V. Phong; P. T. M. Hoa; L. H. Mai, Study and performance of humidity sensor based on the mechanical-optoelectronic principle for the measurement and control of humidity in storehouses. Sens Actuator, B, 2000, 66, 200.
    [54] F. W. Dunmore, An electrometer and its application to radio meteorography. J Res Nat Bur Std, 1938, 20, 723.
    [55] C. Bariain; I. R. Matias; F. J. Arregui; M. Lopez-Amo, Optical fiber humidity sensor based on a tapered fiber coated with agarose gel. Sens Actuator, B, 2000,69,127.
    [56] D. C. Bownass; J. S. Barton; J. D. C. Jones, Detection of high humidity by optical fibre sensing at telecommunications wavelengths. Opt Commun, 1998,146,90.
    [57] J. M. Corres; F. J. Arregui; I. R. Matias, Design of humidity sensors based on tapered optical fibers. J Lightwave Technol, 2006, 24,4329.
    [58] A. Gaston; F. Perez; J. Sevilla, Optical fiber relative-humidity sensor with polyvinyl alcohol film. Appl Opt, 2004,43,4127.
    [59] B. D. Gupta; Ratnanjali, A novel probe for a fiber optic humidity sensor. Sens Actuator, B, 2001, 80,132.
    [60] R. Jindal; S. Tao; J. P. Singh; C. Winstead; S. Kirthi, Effect of coatings on evanescent wave fiber-optic humidity sensor. Abstr Pap Am Chem Soc, 2002, 223, B158.
    [61] M. Kawamura; T. Takeuchi; H. Fuad; S. Sato, Humidity and temperature sensing using an optical fiber and a corner cube prism. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1999, 38, 849.
    [62] S. K. Khijwania; K. L. Srinivasan; J. P. Singh, An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity. Sens Actuator, B, 2005,104, 217.
    [63] M. Konstantaki; S. Pissadakis; S. Pispas; N. Madamopoulos; N. A. Vainos, Optical fiber long-period grating humidity sensor with poly(ethylene oxide)/cobalt chloride coating. Appl Opt, 2006, 45,4567.
    [64] S. K. Shukla; G. K. Parashar; A. P. Mishra; P. Misra; B. C. Yadav; R. K. Shukla; L. M. Bali; G. C. Dubey, Nano-like magnesium oxide films and its significance in optical fiber humidity sensor. Sens Actuator, B, 2004, 98, 5.
    [65] L. N. Xu; J. C. Fanguy; K. Soni; S. Q. Tao, Optical fiber humidity sensor based on evanescent-wave scattering. Opt Lett, 2004, 29,1191.
    [66] B. C. Yadav; R. K. Shukla; L. M. Bali, Sol-gel processed TiO_2 films on U-shaped glass-rods as optical humidity sensor. Indian J Pure Appl Phys, 2005,43, 51.
    [67] R. Buchhold; A. Nakladal; G. Gerlach; P. Neumann, Design studies on piezoresistive humidity sensors. Sens Actuator, B, 1998, 53,1.
    [68] F. Benmakroha; J. F. Alder, Toward development of a humidity correction algorithm for surface acoustic wave sensors .4. The effect of coating mass, relative humidity and temperature on the isosteric heat of adsorption of benzene, toluene, 2-nitrotoluene and 2,4-dinitrotoluene onto platinum/lead-coated piezoelectric crystals. Anal Chim Acta, 1997,343,215.
    [69] C. Caliendo, Acoustic method of investigating the material properties and humidity sensing behavior of polymer coated piezoelectric substrates. J Appl Phys, 2006,100.
    [70] S. Mintova; S. Y. Mo; T. Bein, Humidity sensing with ultrathin LTA-type molecular sieve films grown on piezoelectric devices. Chem Mater, 2001,13, 901.
    [71] F. Pascal-Delannoy; B. Sorli; A. Boyer, Quartz Crystal Microbalance (QCM) used as humidity sensor. Sens Actuator, A, 2000, 84, 285.
    [72] P. G. Su; Y. L. Sun; C. C. Lin, Novel low humidity sensor made of TiO_2 nanowires/poly(2-acrylamido-2-methylpropane sulfonate) composite material film combined with quartz crystal microbalance. Talanta, 2006, 69, 946.
    [73] Y. S. Zhang; K. Yu; O. Y. Shiki; L. Q. Luo; H. M. Hu; Q. X. Zhang; Z. Q. Zhu, Detection of humidity based on quartz crystal microbalance coated with ZnO nanostructure films. Physica B, 2005, 368, 94.
    [74] Y. S. Zhang; K. Yu; R. L. Xu; D. S. Jiang; L. Q. Luo; Z. Q. Zhu, Quartz crystal microbalance coated with carbon nanotube films used as humidity sensor. Sens Actuator, A, 2005,120,142.
    [75] M. Penza; G. Cassano, Relative humidity sensing by PVA-coated dual resonator SAW oscillator. Sens Actuator, B, 2000, 68, 300.
    [76] Y. T. Chen; H. L. Kao, Humidity sensors made on polyvinyl-alcohol film coated SAW devices. Electron Lett, 2006,42, 948.
    [77] A. E. Hoyt; A. J. Ricco; J. W. Bartholomew; G. C. Osbourn, SAW sensors for the room-temperature measurement of CO_2 and relative humidity. Anal Chem, 1998, 70, 2137.
    [78] K. Korsah; C. L. Ma; B. Dress, Harmonic frequency analysis of SAW resonator chemical sensors: application to the detection of carbon dioxide and humidity. Sens Actuator, B, 1998, 50, 110.
    [79] M. Penza; V. I. Anisimkin, Surface acoustic wave humidity sensor using polyvinyl-alcohol film. Sens Actuator, A, 1999, 76, 162.
    [80] D. Rebiere; C. Dejous; J. Pistre; J. F. Lipskier; R. Planade, Synthesis and evaluation of fluoropolyol isomers as saw microsensor coatings: role of humidity and temperature. Sens Actuator, 5,1998,49,139.
    [81] C. Caliendo; I. Fratoddi; M. V. Russo, Sensitivity of a platinum-polyyne-based sensor to low relative humidity and chemical vapors. Appl Phys Lett, 2002, 80,4849.
    [82] R. Anchisini; G. Faglia; M. C. Gallazzi; G. Sberveglieri; G. Zerbi, Polyphosphazene membrane as a very sensitive resistive and capacitive humidity sensor. Sens Actuator, B, 1996, 35,99.
    [83] J. I. Cho; K. Choi; C. J. Kim; B. I. Kim; S. H. Park; G. S. Bang, Fabrication of capacitive-type humidity sensor with poly(p-phenylene ether sulfone). Polym-Korea, 2006, 30, 207.
    [84] V. Ducere; A. Bernes; C. Lacabanne, A capacitive humidity sensor using cross-linked cellulose acetate butyrate. Sens Actuator, B, 2005,106, 331.
    [85] L. Gu; Q. A. Huang; M. Qin, A novel capacitive-type humidity sensor using CMOS fabrication technology. Sens Actuator, B, 2004,99,491.
    [86] M. Matsuguchi; T. Kuroiwa; T. Miyagishi; S. Suzuki; T. Ogura; Y. Sakai, Stability and reliability of capacitive-type relative humidity sensors using crosslinked polyimide films. Sens Actuator, B, 1998, 52, 53.
    [87] M. Matsuguchi; N. Maeda; Y. Sakai, Competitive sorption of water vapor and CO_2 in photocrosslinked PVCA film for a capacitive-type humidity sensor. JAppl Polym Sci, 2002, 83, 401.
    [88] M. Matsuguchi; M. Shinmoto; Y. Sadaoka; T. Kuroiwa; Y. Sakai, Effect of degree of cross-linking on the characteristics of a PVCA capacitive-type humidity sensor. Sens Actuator, B, 1996, 34,349.
    [89] T. Munoz; K. J. Balkus, Preparation of FeAPO-5 molecular sieve thin films and application as a capacitive type humidity sensor. Chem Mater, 1998,10,4114.
    [90] A. Tetelin; C. Pellet, Modeling and optimization of a fast response capacitive humidity sensor. IEEE Sens Lett, 2006, 6, 714.
    [91] A. T. Wu; M. Seto; M. J. Brett, Capacitive SiO humidity sensors with novel microstructures. Sensor Mater, 1999,11,493.
    [92] J. T. W. Yeow; J. P. M. She, Carbon nanotube-enhanced capillary condensation for a capacitive humidity sensor. Nanotechnology, 2006,17, 5441.
    [93] A. A. A. De Queiroz; D. A. W. Soares; P. Trzesniak; G. A. Abraham, Resistive-type humidity sensors based on PVP-Co and PVP-I-2 complexes. J Polym Sci, Part B: Polym Phys, 2001, 39,459.
    [94] C. W. Lee; M. S. Gong, Resistive humidity sensor using phosphonium salt-containing polyelectrolytes based on the mutually cross-linkable Copolymers. Macromol Res, 2003,11, 322.
    [95] C. W. Lee; Y. Kim; S. W. Joo; M. S. Gong, Resistive humidity sensor using polyelectrolytes based on new-type mutually cross-linkable Copolymers. Sens Actuator, B, 2003, 88,21.
    [96] Y. Li; M. J. Yang, A novel thin film resistive humidity sensor based on soluble conjugated polymer: (propionic acid)-co-(propargyl alcohol). Chin Chem Lett, 2001,12, 701.
    [97] Y. Li; M. J. Yang; N. Camaioni; G. Casalbore-Miceli, Humidity sensors based on polymer solid electrolytes: investigation on the capacitive and resistive devices construction. Sens Actuator, B, 2001,77,625.
    [98] Y. Li; M. J. Yang; Y. She, A novel resistive humidity sensor based on sodium polystyrenesulfonate/TiO_2 nanocomposites. Chinese Journal of Polymer Science, 2002, 20, 237.
    [99] P. G. Su; C. J. Ho; Y. L. Sun; I. C. Chen, A micromachined resistive-type humidity sensor with a composite material as sensitive film.Sens Actuator,B,2006,113,837.
    [100]P.G.Su;C.L.Uen,A resistive-type humidity sensor using composite films prepared from poly(2-acrylamido-2-methylpropane sulfonate)and dispersed organic silicon sol.Talanta,2005,66,1247.
    [101]Z.W.Yao;M.J.Yang,A fast response resistance-type humidity sensor based on organic silicon containing cross-linked copolymer.Sens Actuator,B,2006,117,93.
    [102]G.Scholz,Market analysis:sensors and instruments for gas humidity.Technisches Messen,1992,59,88.
    [103]J.P.Lafarie,in:Proceedings of Conference on Humidity and Moisture,Washington DC,1985;pp 875.
    [104]M.Pope,U.S.Pat,1955,No.2728831.
    [105]Y.Takaoka;Y.Maebashi;S.Kobayashi;T.Usui,Humidity sensor.Jpn Patent,1983.
    [106]N.Kinjo;S.Ohara;T.Sugawara;S.Tsuchitani,Changes in electrical resistance of ionic copolymers caused by moisture sorption and desorption.Polym J,1983,15,621.
    [107]吴雄,半导体敏感器件,1987,44.
    [108]F.J.Arregui;Z.Ciaurriz;M.Oneca;I.R.Matias,An experimental study about hydrogels for the fabrication of optical fiber humidity sensors.Sens Actuator,B,2003,96,165.
    [109]S.Muto;O.Suzuki;T.Amano;M.Morisawa,A plastic optical fibre sensor for real-time humidity monitoring.Meas Sci Technol,2003,14,746.
    [110]S.Carturan;A.Quaranta;E.Negro;M.Bonafini;G.Maggioni;G.Della Mea,Optical properties of a fluorinated polyimide as related to ethanol and water-vapor-sensing capability.IEEE Sens Lett,2006,6,1445.
    [111]K.Takato;N.Gokan;M.Kaneko,Effect of humidity on photoluminescence from Ru(bpy)(3)(2+)incorporated into a polysaccharide solid film and its application to optical humidity sensor.J Photochem Photobiol,A,2005,169,109.
    [112]M.Matsuguchi;M.Shinmoto;Y.Sadaoka;T.Kuroiwa;Y.Sakai,Effect of the degree of cross-linking on the characteristics of a PVCA capacitive-type humidity sensor.Sens Actuator,B,1996,34,349.
    [113]R.K.Ralston;L.A.Tobin;S.S.Bajikar;D.D.Denton,Comparative performance of linear,cross-linked,and plasma-deposited PMMA capacitive humidity sensors.Sens Actuator,1994,B2,139.
    [114]M.J.Yang;Y.Li;X.W.Zhan;M.F.Ling,A novel resistive-type humidity sensor based on poly(p-diethynylbenzene).J Appl Polym Sci,1999,74,2010.
    [115]Y.Li;M.J.Yang,Humidity sensitive properties of substituted polyacetylenes.Synth Met,2002,129,285.
    [116]Y.Li;M.J.Yang;G.Casalbore-Miceli;N.Camaioni,Humidity sensitive properties and sensing mechanism of pi-conjugated polymer p-diethynylbenzene-co-propargyl alcohol.Synth Met,2002,128,293.
    [117]Y.Li;M.J.Yang;Y.She,Humidity sensitive properties of crosslinked and quaternized poly(4-vinylpyridine-co-butyl methacrylate).Sens Actuator,B,2005,107,252.
    [118]M.H.Yang;Z.W.Yao;Y.S.Chen;Y.Li,Humidity sensitive properties of a silicone-containing polyelectrolyte material.Chin Chem Lett,2006,17,73.
    [119]Y.Sadaoka;M.Matsuguchi;Y.Sakai;K.Takahashi,Effect of sorbed water on the dielectric constant of some cellulose thin films.J Mater Sci Lett,1988,7,121.
    [120]T.Sashida,Long term reliability of capacitive type type humidity sensor using CAB as humidity sensitive materal.Trans.Soc.Instrum.Control Eng.,1990,26,251.
    [121]C.B.Park;Y.H.Lee;S.B.Yi,Fabrication of porous polymeric film for humidity sensing.Sens Actuator,B(13-14),86.
    [122]孙良彦,国外温度传感器发展动态.传感器技术,1996,2,1.
    [123]M.Matsuguchi;E.Hirota;T.Kuroiwa;S.Obara;T.Ogura;Y.Sakai,Drift phenomenon of capacitive-type relative humidity sensors in a hot and humid atmosphere.J Electrochem Soc,2000,147,2796.
    [124]M.Matsuguchi;M.Yoshida;T.Kuroiwa;T.Ogura,Depression of a capacitive-type humidity sensor's drift by introducing a cross-linked structure in the sensing polymer.Sens Actuator,B,2004,102,97.
    [125]M.Matsuguchi;Y.Sadaoka;Y.Nuwa;M.Shinmoto;Y.Sakai;T.Kuroiwa,Capacitive-type humidity sensors using polymerized vinyl carboxylate.J Electrochem Soc,1994,141,614.
    [126]M.Matsuguchi;Y.Sadaoka;K.Nosaka;M.Ishibashi;Y.Sakai,Effect of sorbed water on the dielectric properties of acetylene-terminated polyimide resins and their application to a humidity sensors.J Electrochem Soc,1993,140,825.
    [127]Y.Sakai;Y.Sadaoka;M.Matsuguchi,Humidity sensors based on polymer thin films.Sens Actuator,B,1996,35,85.
    [128]周明军;卢崇考,PI/CAB复合介质膜湿敏元件敏感特性研究.传感技术学报,2001,14,44.
    [129]章佩娴,STC'91论文集:1991,416.
    [130]G.Casalbore-Miceli;M.Campos;G.Beggiato,Solid State Ionics,1995,80,239.
    [131]M.Campos;G.Casalbore-Miceli;N.Camaioni;G.Chiodelli,Synth Met,1995,73,131.
    [132]K.K.Maurya;N.Srivastava;S.A.Hashmi;S.Chandra,Protone conducting polymer electrolyte:Ⅱ polyethylene oxide+NH_4I system.J Mater Sci,1992,27,6357.
    [133]Y.Sadaoka;Y.Sakai;H.Akiyama,A humidity sensor using alkali salt-poly(ethylene oxide)hybrid films.J Mater Sci,1986,5,235.
    [134]M.Matsuguchi;T.Uno;A.Yamanaka;T.Kuroiwa;T.Ogura;Y.Sakai,Improvements in the long-term stability of a LiCl dew-point sensor using cross-linked porous poly(vinyl alcohol)film.Sens Actuator,B,2004,97,74.
    [135]M.V.Russo;G.Iucci;G.Polzonetti,Polymer,1992,33,4401.
    [136] A. Bearzotti; A. D'Amico; G. Iucci; M. V. Russo, Fast humidity response of a metal halide-doped novel polymer. Sens Actuator, 1992, B7,451.
    [137] A. Furlani; G. Iucci; M. V. Russo; A. Bearzotti; A. D'Amico, Thin films of iodine - polyphenylacethylene as starting materials for humidity sensors. Sens Actuator, 1992, B7,447.
    [138] L. S. Hwang; J. M. Ko; H. W. Rhee; C. Y. Kim, A polymer humidity sensor. Synth Met, 1993, 55-57,3671.
    [139] Y. Li; M. J. Yang, Humidity sensitive properties of a novel soluble conjugated copolymer: ethynylbenzene-co-propargyl alcohol. Sens Actuator, B, 2002, 85, 73.
    [140] Y. Li; M. J. Yang, A novel highly reversible humidity sensor based on poly(2-propyn-2-furoate). Sens Actuator, B, 2002, 86,155.
    [141] M. J. Yang; Y. Li; X. W. Zhan; H. M. Sun; M. F. Ling; Y. H. Zhu, A novel humidity-sensitive material based on PDEB with nickel complex catalyst. Chin Chem Lett, 1998,9, 223.
    [142] M. V. Kulkarani; A. A. Athawale, Poly(2,3-dimethylaniline) as competent material for humidity sensor. J Appl Polym Sci, 2001, 81,1382.
    [143] K. Ogura; T. Saino; M. Nakayama; H. Shiigi, The humidity dependence of electrical conductivity of a soluble polyaniline-poly(vinyl alcohol) composite film. J Mater Chem, 1997, 7, 2363.
    [144] K. Ogura; R. C. Patil; H. Shiigi; T. Tonosaki; M. Nakayama, Response of protonic acid-doped poly(o-anisidine)/poly(vinyl alcohol) composites to relative humidity and role of dopant anions. J Polym Sci, Part A: Polym Chem, 2000, 38,4343.
    [145] K. Ogura; H. Shiigi; M. Nakayama; A. Ogawa, Thermal properties of poly(anthranilic acid) (PANA) and humidity-sensitive composites derived from heat-treated PANA and poly(vinyl alcohol). J Polym Sci, Part A: Polym Chem, 1999, 37,4458.
    [146] K. Ogura; T. Tonosaki; H. Shiigi, AC impedance spectroscopy of humidity sensor using Poly(o-phenylenediarnine)/poly(vinyl alcohol) composite film. J Electrochem Soc, 2001, 148, H21.
    [147] T. Tonosaki; T. Oho; K. Isomura; K. Ogura, Effect of the protonation level of poly(o-phenylenediamine) (PoPD) on the ac impedance of humidity-sensitive PoPD/poly(vinyl alcohol) composite film. J Electroanal Chem, 2002, 520, 89.
    [148] S. Jain; S. Chakane; A. B. Samui; V. N. Krishnamurthy; S. V. Bhoraskar, Humidity sensing with weak acid-doped polyaniline and its composites. Sens Actuator, B, 2003, 96, 124.
    [149] S. Miyoshi; T. Sugihara; A. Jinda; M. Hijikigawa, Thin film humidity sensor composed of cross-linked polyeletrolyte. Pro. Int. Meet. Chemical Sensor, Fukuoka, Japan, 1983, 451.
    [150] Y. Sakai; Y. Sadaoka; K. Ikeuchi, Humidity sensors composed of grafted Copolymers. Sens Actuator, 1986, 9, 125.
    [151] Y. Sakai; M. Matsuguchi; N. Yonesato, Humidity sensor based on alkali salts of poly(2-acrylamido-2-methylpropane sulfonic acid). Electrochim Acta, 2001, 46, 1509.
    [152] Y. H. Xin; S. Z. Wang, An investigation of sulfonated polysulfone humidity-sensitive materials. Sens Actuator, A, 1994, 40, 147.
    [153]A.Yamanaka;T.Kodera;K.Fujikawa;H.Kita,Conductive characteristic of Nafion membranes sensing humidity.Denki Kagaku,1988,56,200.
    [154]P.H.Huang,Halogenated polymeric humidity sensors.Sens Actuator,1988,13,329.
    [155]S.Z.Wu;F.X.Li;Y.L.Zhu;J.R.Shen,The switch-type humidity sensing properties of polyacrylic acid and its copolymers.J Mater Sci,2000,35,2005.
    [156]Y.Sakai;Y.sadaoka;H.Fukumoto,Humidity-sensitive and water-resistive polymeric materials.Sens Actuator,1988,13,243.
    [157]Y.Sakai;Y.Sadaoka;M.Matsuguch;Y.Kanakura;M.Tamura,A humidity sensor using polytetrafluoroethylene-graft-quaternized-polyvinylpyridine.J Electrochem Soc,1991,138,2474.
    [158]Y.Sakai;Y.Sadaoka;M.Matsuguch;V.L.Rao;M.Kamigaki,A humidity sensor using graft copolymer with polyelectrolyte branches.Polymer,1989,30,1068.
    [159]N.Inagaki,Preparation of quaternary nitrogen-containing plasma films and their application to moisture sensors.Thin Solid Films,1984,118,225.
    [160]N.Inagaki;K.Suzuki,Moisture sensor device of plasma-films doped with methyl bromide.Polym Bull,1984,11,541.
    [161]张彤;孙良彦;徐宝琨;金玲玲,湿敏共聚物的制备及其敏感元件的电特性研究.工艺与设备,1999,8.
    [162]S.Z.Wu;Y.L.Zhu;F.X.Li;J.R.Shen,Humidity sensing properties of the vinylpyridine-butyl acrylate-styrene copolymers.J Appl Polym Sci,1999,74,1992.
    [163]M.J.Yang;Y.She;Y.Li,Humidity sensitive properties of quaternized poly(4-vinylpyridine-co-butyl methacrylate).J Mater Sci Lett,2002,21,1477.
    [164]陈贻帜;吴锦屏;张春华;郭奋;张军,阻抗型聚合物湿敏传感器HMPTAC/St共聚物感湿膜的感湿性能.精细化工,1998,15,24.
    [165]M.S.Gong;C.W.Lee;S.W.Joo;B.K.Choi,Humidity-sensitive properties of phosphonium salt-containing polyelectrolytes.J Mater Sci,2002,37,4615.
    [166]Y.Sakai;M.Matsuguch;Y.Sadaoka;K.Hirayama,A humidity sensor composed of interpenetrating polymer networks of hydrophilic and hydrophobic methacrylate polymers.J Electrochem Soc,1993,140.
    [167]S.Otsuki;Y.Dozen,Humidity sensing characteristics of photochemically crosslinked polyelectrolytes.Kobunshi Ronbunshu,1988,45,549.
    [168]Y.Sakai;Y.Sadaoka;M.Matsuguch,A humidity sensor using cross-linked quaternized polyvinylpyridine.J Electrochem Soc,1989,136,171.
    [169]Y.Sakai;Y.Sadaoka;M.Matsuguch;H.Sakai,Humidity sensor durable at high humidity using simultaneous cross-linked and quaternized poly(chloromethyl styrene).Sens Actuator,B,1995,25,689.
    [170]Y.Sakai;Y.Sadaoka;M.Matsuguch;M.Moriga;M.Shimada,Humidity sensors based on organopolysiloxanes having hydrophilic groups.Sens Actuator,1989,16,359.
    [171]C.W.Lee;H.W.Rhee;M.S.Gong,Humidity sensor using epoxy resin containing quaternary ammonium salts.Sens Actuator,B,2001,73,124.
    [172]M.S.Gong;M.H.Lee;H.W.Rhee,Humidity sensor using cross-linked copolymers containing viologen moiety.Sens Actuator,B,2001,73,185.
    [173]C.W.Lee;H.W.Rhee;M.S.Gong,Humidity sensitive properties of copolymers containing phosphonium salts.Synth Met,1999,106,177.
    [174]S.Y.Son;M.S.Gong,Polymeric humidity sensor using phosphonium salt-containing polymers.Sens Actuator,B,2002,86,168.
    [175]C.W.Lee;S.W.Joo;M.S.Gong,Polymeric humidity sensor using polyelectrolytes derived from alkoxysilane cross-linker.Sens Actuator,B,2005,105,150.
    [176]M.S.Gong;S.W.Joo;B.K.Choi,Humidity-sensitive properties of a cross-linked polyelectrolyte prepared from mutually reactive copolymers.J Mater Chem,2002,12,902.
    [177]S.H.Park;J.S.Park;C.W.Lee;M.S.Gong,Humidity sensor using gel polyelectrolyte prepared from mutually reactive copolymers.Sens Actuator,B,2002,86,68.
    [178]M.S.Gong;J.S.Park;M.H.Lee;H.W.Rhee,Humidity sensor using cross-linked polyelectrolyte prepared from mutually reactive copolymers containing phosphonium salt.Sens Actuator,B,2002,86,160.
    [179]M.S.Gong;S.W.Joo;B.K.Choi,Humidity sensor using mutually reactive copolymers containing quaternary ammonium salt and reactive function.Sens Actuator,B,2002,86,81.
    [180]Y.Sakai;Y.Sadaoka;M.Matsuguch;I.Hiramatsu;K.Hirayama,Proceedings of the 3rd international meeting on chemical sensors,Cleveland,OH,1990,273.
    [181]Y.Sakai;M.Matsuguch;Y.Sadaoka;K.Hirayama,A humidity sensor composed of interpenetrating polymer networks of hydrophilic and hydrophobic methacrylate polymers.J.Electrochem.Soc.,1993,140,432.
    [182]孙良彦;邱法斌;平田光寿,高分子电阻型湿敏元件改性研究.传感器技术,1994,10.
    [183]J.Wang;F.Q.Wu;K.H.Shi;X.H.Wang;P.P.Sun,Humidity sensitivity of composite material of lanthanum ferrite/polymer quaternary acrylic resin.Sens Actuator,B,2004,99,586.
    [184]C.D.Feng;S.L.Sun;H.Wang;C.U.Segre;J.R.Stetter,Humidity sensing properties of nafion and sol-gel derived SiO_2/Nafion composite thin films.Sens Actuator,B,1997,40,217.
    [185]P.G.Su;I.C.Chen;R.J.Wu,Use of poly(2-acrylamido-2-methylpropane sulfonate)modified with tetraethyl orthosilicate as sensing material for measurement of humidity.Anal Chim Acta,2001,449,103.
    [186]P.G.Su;S.C.Huang,Humidity sensing and electrical properties of a composite material of SiO_2 and poly-[3-(methacrylamino)propyl]trimethyl ammonium chloride.Sens Actuator,B,2005,105,170.
    [187]P.G.Su;W.Y.Tsai,Humidity sensing and electrical properties of a composite nano-sized SiO_2and poly(2-acrylamido-2-methylpropane sulfonate).Sens Actuator,B,2004,100,417.
    [188]P.G.Su;Y.L.Sun;C.S.Wang;C.C.Lin,Humidity sensing and electrical properties of hybrid films prepared from[3-(methacrylamino)propyl]trimethyl ammonium chloride,aqueous monodispersed colloidal silica and methyl methacrylate.Sens Actuator,B,2006,119,483.
    [189]J.Wang;W.P.Yan;J.C.Zhang;F.B.Qiu;T.Zhang;G.F.Liu;B.K.Xu,Property analysis and humidity sensitivity of the composite material of BaTiO_3 and RMX.Mater Chem Phys,2001,69,288.
    [190]J.Wang;Q.H.Lin;R.Q.Zhou;B.K.Xu,Humidity sensors based on composite material of nano-BaTiO_3 and polymer RMX.Sens Actuator,B,2002,81,248.
    [191]J.Wang;B.K.Xu;S.P.Ruan;S.P.Wang,Preparation and electrical properties of humidity sensing films of BaTiO_3/polystrene sulfonic sodium.Mater Chem Phys,2003,78,746.
    [192]Y.Li;M.J.Yang;Y.She,Humidity sensors using in situ synthesized sodium polystyrene sulfonate/ZnO nanocomposites.Talanta,2004,62,707.
    [193]R.P.Tandon;M.R.Tripathy;A.K.Arora;S.Hotchandani,Gas and humidity response of iron oxide - Polypyrrole nanocomposites.Sens Actuator,B,2006,114,768.
    [194]N.Parvatikar;S.Jain;S.Khasim;M.Revansiddappa;S.V.Bhoraskar;M.C.N.A.Prasad,Electrical and humidity sensing properties of polyaniline/WO_3 composites.Sens Actuator,B,2006,114,599.
    [195]N.Parvatikar;S.Jain;S.V.Bhoraskar;M.V.N.A.Prasad,Spectroscopic and electrical properties of polyaniline/CeO_2 composites and their application as humidity sensor.J Appl Polym Sci,2006,102,5533.
    [196]S.Iijima,Helical mical microtubes of graphitic carbon.Nature,1991,354,56.
    [197]P.Ball,The perfect nanotube.Nature,1996,328,207.
    [198]E.T.Thostenson;Z.F.Ren;T.S.Chou,Advance in the science and technology of carbon nanotubes and their composites:a review.Compos Sci Technol,2001,61,1899.
    [199]G.CasalboreMiceli;N.Camaioni;M.J.Yang;M.Zhen;X.W.Zhan;A.DAprano,Charge transport mechanism in pressed pellets of polymer proton conductors.Solid State Ionics,1997,100,217.
    [200]X.W.Zhan;M.J.Yang;M.X.Wan,Electrical properties and spectroscopic studies of HClO_4-doped poly(p-diethylbenzene).Synth Met,1998,94,249.
    [201]B.Z.Lubentsov;O.N.Timofeeva;M.L.Khidekel,Conducting polymer interaction with gasous substances Ⅱ.PANI-H_2O,PANI-NH_3.Synth Met,1991,45,235.
    [202]S.Jain;S.Chakane;A.B.Samui;V.N.Krishnamurthy;S.V.Bhoraskar,in:Proceedings of the 9th National Seminar on Physics and Technology of Sensors(NSPTS-9),C40,Pune,2002;p P.1.
    [203]G.Casalbore-Miceli;M.J.Yang;N.Camaioni;C.M.Mari;Y.Li;H.Sun;M.Ling,Investigations on the ion transport mechanism in conducting polymer films.Solid State Ionics,2000,131,311.
    [204]张彤;徐宝琨;徐娓;阮圣平;董玮;全宝富;孙良彦,用直、交流方法分析高分子电阻型湿敏元件的敏感机理.传感器技术学报,2001,129.
    [205] H. Shirakawa; E. J. Louis; A. G. MacDiarmid; C. K. Chiang; A. J. Heeger, Synthesis of electrically conducting organic polymer : halogen derivatives of Polyacetylene, (CH)_x. J Chem Soc Chem Comms, 1977, 577.
    [206] C. Nylander; M. Armgarth; I. Lundstrom, An ammonia detector based on a conducting polymer. Anal Chem Symp Ser, 1983,17,203.
    [207] K. C. Persaud; P. Pelosi, An approach to an artificial nose. Trans Am Soc Artif Int Organs, 1985,31,297.
    [208] E. H. Amrani; S. Ibrahim; K. C. Persaud, Synthesis, chemical characterisation and multifrequency measurements of poly N-(2-pyridyl) pyrrole for sensing volatile chemicals. Mater SciEng, 1993, C1, 17.
    [209] J. M. Slater; E. J. Watt, Examination of ammonia-poly(pyrrole) interactions by piezoelectric and conductivity measurements. Analyst, 1991,116,1125.
    [210] Y. H. Park; M. H. Han, Preparation of conducting polyacrylonitrile/polypyrrole composite films by electrochemical synthesis and their electrical properties. J Appl Polym Sci, 1992,45,1973.
    [211] H. L. Wang; L. Toppare; J. E. Fernandez, Conducting polymer blends: polythiophene and Polypyrrole blends with polystyrene and poly(bisphenol A carbonate). Macromolecules, 1990, 23, 1053.
    [212] H. Yoon; M. Chang; J. Jang, Sensing behaviors of Polypyrrole nanotubes prepared in reverse microemulsions: Effects of transducer size and transduction mechanism. J Phys Chem B, 2006, 110, 14074.
    [213] N. T. Kemp; A. B. Kaiser; H. J. Trodahl; B. Chapman; R. G. Buckley; A. C. Partridge; P. J. S. Foot, Effect of ammonia on the temperature-dependent conductivity and thermopower of Polypyrrole. J Polym Sci, Part B: Polym Phys, 2006,44,1331.
    [214] L. N. Geng; Y. Q. Zhao; X. L. Huang; S. R. Wang; S. M. Zhang; W. P. Huang; S. H. Wu, The preparation and gas sensitivity study of polypyrrole/zinc oxide. Synth Met, 2006, 156, 1078.
    [215] X. L. Liu; J. Ly; S. Han; D. H. Zhang; A. Requicha; M. E. Thompson; C. W. Zhou, Synthesis and electronic properties of individual single-walled carbon nanotube/polypyrrole composite nanocables . Adv Mater, 2005,17, 2727.
    [216] L. S. Jiang; H. K. Jun; Y. S. Hoh; J. O. Lim; D. D. Lee; J. S. Huh, Sensing characteristics of polypyrrole-poly(vinyl alcohol) methanol sensors prepared by in situ vapor state polymerization. Sens Actuator, B, 2005, 105, 132.
    [217] K. Hosono; I. Matsubara; N. Murayama; S. Woosuck; N. Izu, Synthesis of polypyrrole/MoO_3 hybrid thin films and their volatile organic compound gas-sensing properties. Chem Mater, 2005, 17, 349.
    [218] K. Hosono; I. Matsubara; N. Murayama; W. Shin; N. Izu, The sensitivity of 4-ethylbenzenesulfonic acid-doped plasma polymerized Polypyrrole films to volatile organic compounds. Thin Solid Films, 2005,484, 396.
    [219] S. H. Hoseini; A. A. Entezami, Graft copolymer of polystyrene and Polypyrrole and studies of its gas and vapor sensing properties. Iranian Polym J, 2005,14,101.
    [220] C. P. de Melo; B. B. Neto; L. F. B. Lira; J. E. G. de Souza, Influence of the nature of the surface of Polypyrrole films upon their interaction with volatile organic compounds. Colloid Surf, A, 2005, 257-58, 99.
    [221] C. P. de Melo; B. B. Neto; E. G. de Lima; L. F. B. de Lira; J. E. G. de Souza, Use of conducting Polypyrrole blends as gas sensors. Sens Actuator, B, 2005,109, 348.
    [222] M. Su; L. Fu; N. Q. Wu; M. Aslam; V. P. Dravid, Individually addressed large-scale patterning of conducting polymers by localized electric fields. Appl Phys Lett, 2004, 84, 828.
    [223] T. Shimanouchi; S. Morita; H. S. Jung; Y. Sakurai; Y. Suzuki; R. Kuboi, Development of PPy films doped with thiol-SAM-Cu particles for NH_3 gas sensing. Sensor Mater, 2004,16,255.
    [224] L. Ruangchuay; A. Sirivat; J. Schwank, Electrical conductivity response of Polypyrrole to acetone vapor: effect of dopant anions and interaction mechanisms. Synth Met, 2004,140, 15.
    [225] I. Matsubara; K. Hosono; N. Murayama; W. Shin; N. Izu, Synthesis and gas sensing properties of polypyrrole/MoO_3-layered nanohybrids. Bull Chem Soc Jpn, 2004, 77,1231.
    [226] L. Ruangchuay; A. Sirivat; J. Schwank, Polypyrrole/poly(methylmethacrylate) blend as selective sensor for acetone in lacquer. Talanta, 2003, 60,25.
    [227] C. W. Lin; Y. L. Liu; R. Thangamuthu, Investigation of the relationship between surface thermodynamics of the chemically synthesized Polypyrrole films and their gas-sensing responses to BTEX compounds. Sens Actuator, B, 2003, 94, 36.
    [228] H. K. Jun; L. S. Jiang; K. M. Lee; Y. S. Hohl; J. O. Lim; J. S. Huh, Polypyrrole-based methanol sensors prepared by chemical and vapor state polymerization. Eco-Mater Proc Des, 2003, 439,326.
    [229] H. K. Jun; Y. S. Hoh; B. S. Lee; S. T. Lee; J. O. Lim; D. D. Lee; J. S. Huh, Electrical properties of Polypyrrole gas sensors fabricated under various pretreatment conditions. Sens Actuator, B, 2003, 96, 576.
    [230] S. H. Hosseini; A. A. Entezami, Conducting polymer blends of Polypyrrole with polyvinyl acetate, polystyrene, and polyvinyl chloride based toxic gas sensors. J Appl Polym Sci, 2003,90, 49.
    [231] S. H. Hosseini; A. A. Entezami, Chemical and electrochemical synthesis of conducting graft copolymer of vinyl acetate with pyrrole and studies of its gas and vapor sensing. J Appl Polym Sci, 2003, 90,40.
    [232] N. Diab; J. Oni; A. Schulte; I. Radtke; A. Blochl; W. Schuhmann, Pyrrole functionalised metalloporphyrins as electrocatalysts for the oxidation of nitric oxide. Talanta, 2003, 61, 43.
    [233] J. E. G. de Souza; F. L. dos Santos; B. B. Neto; C. G. dos Santos; M. V. B. dos Santos; C. P. de Melo, Free-grown Polypyrrole thin films as aroma sensors. Sens Actuator, B, 2003, 88, 246.
    [234] N. V. Bhat; A. P. Gadre; V. A. Bambole, Investigation of electropolymerized Polypyrrole composite film: Characterization and application to gas sensors. J Appl Polym Sci, 2003, 88, 22.
    [235] K. Suri; S. Annapoorni; A. K. Sarkar; R. P. Tandon, Gas and humidity sensors based on iron oxide-polypyrrole nanocomposites. Sens Actuator, B, 2002, 81, 277.
    [236] J. G. Roh; H. R. Hwang; J. B. Yu; J. O. Lim; J. S. Huh, Oxidant effects on Polypyrrole and polyaniline sensor for several volatile organic gases. J Macromol Sci, Chem, 2002, A39,1095.
    [237] Y. C. Liu; B. J. Hwang; W. C. Hsu, Characteristics of Pd/Nafion oxygen sensor modified with Polypyrrole by chemical vapor deposition. J Solid State Elcetrochem, 2002, 6, 351.
    [238] Y. C. Liu; B. J. Hwang; W. C. Hsu, Improvement in anti-aging of metallized Nafion (R) hydrogen sensors modified by chemical vapor deposition of Polypyrrole. Sens Actuator, B, 2002, 87, 304.
    [239] N. Guernion; R. J. Ewen; K. Pihlainen; N. M. Ratcliffe; G. C. Teare, The fabrication and characterisation of a highly sensitive Polypyrrole sensor and its electrical responses to amines of differing basicity at high humidities. Synth Met, 2002,126, 301.
    [240] C. N. Van; K. Potje-Kamloth, Electrical and NOx gas sensing properties of metallophthalocyanine-doped polypyrrole/silicon heterojunctions. Thin Solid Films, 2001, 392,113.
    [241] C. W. Lin; S. S. Liu; B. J. Hwang, Study of the actions of BTEX compounds on Polypyrrole film as a gas sensor. J Appl Polym Sci, 2001, 82, 954.
    [242] B. J. Hwang; J. Y. Yang; C. W. Lin, Recognition of alcohol vapor molecules by simultaneous measurements of resistance changes on polypyrrole-based composite thin films and mass changes on a piezoelectric crystal. Sens Actuator, B, 2001, 75, 67.
    [243] K. Henkel; A. Oprea; I. Paloumpa; G. Appel; D. Schmeisser; P. Kamieth, Selective Polypyrrole electrodes for quartz microbalances: NO_2 and gas flux sensitivities. Sens Actuator, B, 2001, 76,124.
    [244] N. Diab; W. Schuhmann, Electropolymerized manganese porphyrin/polypyrrole films as catalytic surfaces for the oxidation of nitric oxide. Electrochim Acta, 2001,47,265.
    [245] J. E. G. de Souza; F. L. dos Santos; B. Barros-Neto; C. G. dos Santos; C. P. de Melo, Polypyrrole thin films gas sensors. Synth Met, 2001,119, 383.
    [246] N. V. Bhat; A. P. Gadre; V. A. Bambole, Structural, mechanical, and electrical properties of electropolymerized Polypyrrole composite films. J Appl Polym Sci, 2001, 80, 2511.
    [247] W. Prissanaroon; L. Ruangchuay; A. Sirivat; J. Schwank, Electrical conductivity response of dodecylbenzene sulfonic acid-doped Polypyrrole films to SO_2-N-2 mixtures. Synth Met, 2000, 114, 65.
    [248] L. Cui; M. J. Swarm; A. Glidle; J. R. Barker; J. M. Cooper, Odour mapping using microresistor and piezo-electric sensor pairs. Sens Actuator, B, 2000, 66, 94.
    [249] B. P. J. D. Costello; P. Evans; N. Guernion; N. M. Ratcliffe; P. S. Sivanand; G. C. Teare, The synthesis of a number of 3-alkyl and 3-carboxy substituted pyrroles; their chemical polymerisation onto poly(vinylidene fluoride) membranes, and their use as gas sensitive resistors. Synth Met, 2000, 114,181.
    [250] V. Syritski; J. Reut; A. Opik; K. Idla, Environmental QCM sensors coated with Polypyrrole. Synth Met, 1999, 102,1326.
    [251] V. C. Nguyen; K. Potje-Kamloth, Electrical and chemical sensing properties of doped polypyrrole/gold Schottky barrier diodes. Thin Solid Films, 1999, 338, 142.
    [252] A. L. Kukla; Y. M. Shirshov; S. A. Piletsky, Ammonia sensors based on sensitive polyaniline films. Sens Actuator, B, 1996, 37, 135.
    [253] N. E. Agbor; J. P. Cresswell; M. C. Petty; A. P. Monkman, An optical gas sensor based on polyaniline Langmuir-Blodgett films. Sens Actuator, B, 1997,41, 137.
    [254] S. K. Dhawan; D. Kumar; M. K. Ram; S. Chandra; D. C. Trivedi, Application of conducting polyaniline as sensor material for ammonia. Sens Actuator, B, 1997,40, 99.
    [255] V. Svetlicic; A. J. Schmidt; L. L. Miller, Conductometric sensors based on the hypersensitive response of plasticized polyaniline films to organic vapors. Chem Mater, 1998,10, 3305.
    [256] K. Ogura; H. Shiigi, A CO_2 sensing composite film consisting of base-type polyaniline and poly(vinyl alcohol). Electrochem solid state lett, 1999, 2,478.
    [257] S. Takeda, A new type of CO_2 sensor built up with plasma polymerized polyaniline thin film. Thin Solid Films, 1999, 344, 313.
    [258] A. A. Athawale; M. V. Kulkarni, Polyaniline and its substituted derivatives as sensor for aliphatic alcohols. Sens Actuator, B, 2000, 67,173.
    [259] Z. Jin; Y. X. Su; Y. X. Duan, An improved optical pH sensor based on polyaniline. Sens Actuator, B, 2000,71,118.
    [260] M. G. H. Meijerink; D. J. Strike; N. F. de Rooij; M. Koudelka-Hep, Reproducible fabrication of an array of gas-sensitive chemo-resistors with commercially available polyaniline. Sens Actuator, 5,2000,68,331.
    [261] S. Z. Wu; F. Zeng; F. X. Li; Y. L. Zhu, Ammonia sensitivity of polyaniline films via emulsion polymerization. Eur Polym J, 2000,36,679.
    [262] S. H. Hosseini; A. A. Entezami, Preparation and characterization of polyaniline blends with polyvinyl acetate, polystyrene and polyvinyl chloride for toxic gas sensors. Polym Advan Technol, 2001,12,482.
    [263] Z. Jin; Y. X. Su; Y. X. Duan, Development of a polyaniline-based optical ammonia sensor. Sens Actuator, B, 2001, 72, 75.
    [264] S. Koul; R. Chandra; S. K. Dhawan, Conducting polyaniline composite: a reusable sensor material for aqueous ammonia. Sens Actuator, B, 2001, 75,151.
    [265] H. Shiigi; T. Oho; T. Tonosaki; K. Ogura, CO_2-sensitive characteristics of base-type polyaniline poly(vinyl alcohol) composites at room temperature and effects of coexisting gases. Electrochemistry, 2001, 69, 997.
    [266] D. Xie; Y. D. Jiang; D. Li; Z. M. Wu; Y. R. Li, Preparation and gas-sensing property of polyaniline based ultrathin films by Langmuir-Blodgett technology. Acta Polymerica Sinica, 2001, 224.
    [267] H. Hu; M. Trejo; M. E. Nicho; J. M. Saniger; A. Garcia-Valenzuela, Adsorption kinetics of optochemical NH_3 gas sensing with semiconductor polyaniline films. Sens Actuator, B, 2002, 82, 14.
    [268] G. Anitha; E. Subramanian, Dopant induced specificity in sensor behaviour of conducting polyaniline materials with organic solvents. Sens Actuator, B, 2003, 92, 49.
    [269] H. Dong; U. Megalamane; W. Jones, Conductive polyaniline/PMMA coaxial nanofibers: Fabrication and chemical sensing. Abstr Pap Am Chem Soc, 2003, 226, U401.
    [270] J. B. Gao; J. M. Sansinena; H. L. Wang, Chemical vapor driven polyaniline sensor/actuators. Synth Met, 2003,135,809.
    [271] L. Grigore; M. C. Petty, Polyaniline films deposited by anodic polymerization: Properties and applications to chemical sensing. J Mater Sci-Mater El, 2003,14, 389.
    [272] J. X. Huang; S. Virji; B. H. Weiller; R. B. Kaner, Polyaniline nanofibers: Facile synthesis and chemical sensors. J Am Chem Soc, 2003,125, 314.
    [273] J. X. Huang; S. Virji; B. H. Weiller; R. B. Kaner, Synthesis of polyaniline nanofibers and their applications in sensors. Abstr Pap Am Chem Soc, 2003, 226, U401.
    [274] K. H. Hong; K. W. Oh; T. J. Kang, Polyaniline-nylon 6 composite fabric for ammonia gas sensor. J Appl Polym Sci, 2004, 92, 37.
    [275] J. Huang; S. Virji; B. H. Weiller; R. B. Kaner, Nanostructured polyaniline sensors. Chem-Eur J, 2004, 10,1315.
    [276] J. X. Huang; S. Virji; R. G. Blair; K. N. Tun; B. H. Weiller; R. B. Kaner, Chemical vapor sensors based on polyaniline nanofibers. Abstr Pap Am Chem Soc, 2004,227, U504.
    [277] J. X. Huang; S. Virji; B. H. Weiller; R. B. Kaner, Polyaniline nanofibers: Facile synthesis, chemical sensors and nanocomposites. Abstr Pap Am Chem Soc, 2004, 228, U445.
    [278] J. Reemts; J. Parisi; D. Schlettwein, Electrochemical growth of gas-sensitive polyaniline thin films across an insulating gap. Thin Solid Films, 2004,466, 320.
    [279] S. Virji; J. X. Huang; R. B. Kaner; B. H. Weiller, Polyaniline nanofiber gas sensors: Examination of response mechanisms. Nano Lett, 2004,4, 491.
    [280] J. Wang; S. Chan; R. R. Carlson; Y. Luo; G. L. Ge; R. S. Ries; J. R. Heath; H. R. Tseng, Electrochemically fabricated polyaniline nanoframework electrode junctions that function as resistive sensors. Nano Lett, 2004, 4,1693.
    [281] V. Dixit; S. C. K. Misra; B. S. Sharma, Carbon monoxide sensitivity of vacuum deposited polyaniline semiconducting thin films. Sens Actuator, B, 2005,104, 90.
    [282] G. K. Prasad; T. P. Radhakrishnan; D. S. Kumar; M. G. Krishna, Ammonia sensing characteristics of thin film based on polyelectrolyte templated polyaniline. Sens Actuator, B, 2005, 106, 626.
    [283] E. Segal; R. Tchoudakov; M. Narkis; A. Siegmann; Y. Wei, Polystyrene/polyaniline nanoblends for sensing of aliphatic alcohols. Sens Actuator, B, 2005, 104, 140.
    [284] S. Watcharaphalakom; L. Ruangchuay; D. Chotpattahanont; A. Sirivat; J. Schwank, Polyaniline/polyimide blends as gas sensors and electrical conductivity response to CO-N-2 mixtures. Polym Int, 2005, 54, 1126.
    [285] S. H. Hosseini, Investigation of sensing effects of polystyrene-graft-polyaniline for cyanide compounds. J Appl Polym Sci, 2006, 101, 3920.
    [286] M. Irimia-Vladu; J. W. Fergus, Impedance spectroscopy of thin films of emeraldine base polyaniline and its implications for chemical sensing. Synth Met, 2006,156,1396.
    [287] M. Irimia-Vladu; J. W. Fergus, Suitability of emeraldine base polyaniline-PVA composite film for carbon dioxide sensing. Synth Met, 2006,156,1401.
    [288] Y. D. Jiang; G. Z. Xie, Polyaniline based gas sensor for NO_2 by Langmuir-Blodgett technology. Rare Metal Mater Eng, 2006, 35, 59.
    [289] C. B. Lim; J. B. Yu; D. Y. Kim; S. O. Sohn; D. D. Lee; J. S. Huh, Sensing characteristics of polyaniline sensor coated with porous poly(vinylidenfluoride) layer to methanol gas. Rare Metal Mater Eng, 2006, 35,459.
    [290] X. F. Ma; G. Li; M. Wang; R. Bai; F. Yang; H. Z. Chen, Unusual electrical response of a poly(aniline) composite film on exposure to a basic atmosphere and its application to sensors. Green Chem, 2006, 8, 63.
    [291] P. P. Sengupta; S. Bank; B. Adhikari, Polyaniline as a gas-sensor material. Mater Manuf Process, 2006, 21, 263.
    [292] S. Virji; R. B. Kaner; B. H. Weiller, Hydrogen sensors based on conductivity changes in polyaniline nanofibers. J Phys Chem B, 2006,110,22266.
    [293] S. X. Xing; C. Zhao; S. Y. Jing; Y. Wu; Z. C. Wang, Morphology and gas-sensing behavior of in situ polymerized nanostructured polyaniline films. Eur Polym J, 2006,42,2730.
    [294] K. Xu; L. H. Zhu; J. Li; H. Q. Tang, Effects of dopants on percolation behaviors and gas sensing characteristics of polyaniline film. Electrochim Acta, 2006, 52, 723.
    [295] V. Zucolotto; M. Ferreira; M. R. Cordeiro; C. J. L. Constantino; W. C. Moreira; O. N. Oliveira, Nanoscale processing of polyaniline and phthalocyanines for sensing applications. Sens Actuator, B, 2006,113, 809.
    [296] A. Z. Sadek; C. O. Baker; D. A. Powell; W. Wlodarski; R. B. Kaner; K. Kalantar-zadeh, Polyaniline nanofiber based surface acoustic wave gas sensors - Effect of nanofiber diameter on H-2 response. IEEE Sens Lett, 2007, 7, 213.
    [297] J. B. Chang; V. Liu; V. Subramanian; K. Sivula; C. Luscombe; A. Murphy; J. S. Liu; J. M. J. Frechet, Printable polythiophene gas sensor array for low-cost electronic noses. J Appl Phys, 2006, 100.
    [298] H. Fukuda; M. Ise; T. Kogure; N. Takano, Gas sensors based on poly-3-hexylthiophene thin-film transistors. Thin Solid Films, 2004, 464-65, 441.
    [299] M. Giannetto; V. Mastria; G. Mori; A. Arduini; A. Secchi, New selective gas sensor based on piezoelectric quartz crystal modified by electropolymerization of a molecular receptor functionalised with 2,2 '-bithiophene. Sens Actuator, B, 2006, 115, 62.
    [300] R. Rella; P. Siciliano; F. Quaranta; T. Primo; L. Valli; L. Schenetti; A. Mucci; D. Iarossi, Gas sensing measurements and analysis of the optical properties of poly[3-(butylthio) thiophene] Langmuir-Blodgett films. Sens Actuator, B, 2000, 68, 203.
    [301] F. Tanaka; T. Kawai; S. Kojima; K. Yoshino, Electrical and optical properties of poly(3-alkoxythiophene) and their application for gas sensor. Synth Met, 1999, 102, 1358.
    [302] S. N. Tan; H. L. Ge, Investigation into vapour-phase formation of Polypyrrole. Polymer, 1997, 37, 965.
    [303] M. Brie; R. Turcu; C. Neamtu; S. Pruneanu, The effect of initial conductivity and doping anions on gas sensitivity of conducting Polypyrrole films to NH_3. Sens Actuator, B, 1996, 3 7,119.
    [304] M. Penza; E. Milella; M. B. Alba; A. Quirini; L. Vasanelli, Selective NH_3 gas sensor based on Langmuir-Blodgett Polypyrrole film. Sens Actuator, B, 1997, 40, 205.
    [305] N. Bhat; P. Geetha; S. Pawde, Preparation and characterization of composites of Polypyrrole. Polym Eng Sci, 1999, 39,1517.
    [306] C. W. Lin; B. J. Hwang; C. R. Lee, Sensing behaviors of the electrochemically co-deposited polypyrrole-poly(vinyl alcohol) thin film exposed to ammonia gas. Mater Chem Phys, 1999, 58,114.
    [307] D. Kincal; A. Kumar; A. D. Child; J. R. Reynolds, Conductivity switching in polypyrrole-coated textile fabrics as gas sensors. Synth Met, 1998, 92, 53.
    [308] M. Penza; E. Milella; V. I. Anisimkin, Monitoring of NH_3 gas by LB polypyrrole-based SAW sensor. Sens Actuator, B, 1998,47, 218.
    [309] M. Penza; E. Milella; V. I. Anisimkin, Gas sensing properties of Langmuir-Blodgett Polypyrrole film investigated by surface acoustic waves. Ieee Transactions on UltrasonicsFerroelectrics and Frequency Control, 1998,45,1125.
    [310] Y. D. Jiang; T. Wang; Z. M. Wu; D. Li; X. D. Chen; D. Xie, Study on the NH_3-gas sensitive properties and sensitive mechanism of Polypyrrole. Sens Actuator, B, 2000, 66, 280.
    [311] E. C. Hernandez; C. Mortensen; L. G. Bachas, Development of NOx gas sensors based on nitrate-selective Polypyrrole electrodes. Electroanalysis, 1997, 9,1049.
    [312] L. T. T. Tuyen; K. PotjeKamloth; H. D. Liess, Electrical properties of doped polypyrrole/silicon heterojunction diodes and their response to NOx gas. Thin Solid Films, 1997, 292, 293.
    [313] L. Torsi; M. Pezzuto; P. Siciliano; R. Rella; L. Sabbatini; L. Valli; P. G. Zambonin, Conducting polymers doped with metallic inclusions: New materials for gas sensors. Sens Actuator, B, 1998, 48, 362.
    [314] R. M. Stuetz; R. A. Fenner; G. Engin, Assessment of odours from sewage treatment works by an electronic nose, H_2S analysis and olfactometry. Water Res, 1999, 33, 453.
    [315] R. Dobay; G. Harsanyi; C. Visy, Conducting polymer based electrochemical sensors on thick film substrate. Electroanalysis, 1999, 11, 804.
    [316] S. Brady; K. T. Lau; W. Megill; G. G. Wallace; D. Diamond, The development and characterisation of conducting polymeric-based sensing devices. Synth Met, 2005, 154, 25.
    [317] K. Potje-Kamloth, Chemical gas sensors based on organic semiconductor Polypyrrole. Crit Rev Anal Chem, 2002, 32, 121.
    [318] J. H. Cho; J. B. Yu; J. S. Kim; S. O. Sohn; D. D. Lee; J. S. Huh, Sensing behaviors of Polypyrrole sensor under humidity condition. Sens Actuator, B, 2005, 108, 389.
    [319] K. K. Kanazawa; A. F. Diaz; R. H. Geiss; W. D. Gill; J. F. Kwak; J. A. Logan; J. F. Rabolt; G. B. Street, Organic metals: Polypyrrole, a stable synthetic metallic polymer. J Chem Soc Chem Comms, 1979,854.
    [320] in.
    [321] G. Gustafsson; I. Lundstrom; B. Liedberg; C. R. Wu; O. Inganas; O. Wennerstrom, The interaction between ammonia and poly(pyrrole) Synth Met, 1989, 31,163.
    [322] I. Lahdesmaki; W. W. Kubiak; A. Lewenstam; A. Ivaska, Interferences in a polypyrrole-based amperometric ammonia sensor. Talanta, 2000, 52,269.
    [323] I. Lahdesmaki; A. Lewenstam; A. Ivaska, A polypyrrole-based amperometric ammonia sensor. Talanta, 1996,43,125.
    [324] B. Sixou; M. Vautrin; A. J. Attias; J. P. Travers, Conductivity evolution of Polypyrrole thin films with aging. Synth Met, 1997, 84, 835.
    [325] C. W. Lin; B. J. Hwang; C. R. Lee, Characteristics and sensing behavior of electrochemicalry codeposited polypyrrole-poly(vinyl alcohol) thin film exposed to ethanol vapors. J Appl Polym Sci, 1999,73,2079.
    [326] R. Gangopadhyay; A. De, Conducting polymer composites: novel materials for gas sensing. Sens Actuator, B, 2001, 77, 326.
    [327] G. E. Collins; L. J. Buckley, Conductive polymer-coated fabrics for chemical sensing. Synth Met, 1996,78,93.
    [328] D. Nicolas-Debarnot; F. Poncin-Epaillard, Polyaniline as a new sensitive layer for gas sensors. Anal Chim Acta, 2003,475,1.
    [329] N. E. Agbor; M. C. Petty; A. P. Monkman, Sens Actuator, B, 1995, 28,173.
    [330] H. L. Hu; J. M. Saniger; J. G. Banuelos, Thin films of polyaniline-polyacrylic acid composite by chemical bath deposition. Thin Solid Films, 1999, 347, 241.
    [331] N. Densakulprasert; L. Wannatong; D. Chotpattananont; P. Hiamtup; A. Sirivat; J. Schwank, Electrical conductivity of polyaniline/zeolite composites and synergetic interaction with CO. Mater Sci Eng, B, 2005, 117,276.
    [332] S. C. K. Misra; P. Mathur; B. K. Srivastava, Vacuum-deposited nanocrystalline polyaniline thin film sensors for detection of carbon monoxide. Sens Actuator, A, 2004,114, 30.
    [333] C. Conn; S. Sestak; A. T. Baker; J. Unsworth, A polyaniline-based selective hydrogen sensor. Electroanaiysis, 1998,10,1137.
    [334] T. J. Yin; W. Z. Wei; J. X. Zeng, Selective detection of dopamine in the presence of ascorbic acid by use of glassy-carbon electrodes modified with both polyaniline film and multi-walled carbon nanotubes with incorporated beta-cyclodextrin. Anal Bioanal Chem, 2006, 386, 2087.
    [335] X. F. Ma; X. B. Zhang; Y. Li; G. A. Li; M. Wang; H. Z. Chen; Y. H. Mi, Preparation of nano-structured polyaniline composite film via "carbon nanotubes seeding" approach and its gas-response studies. Macromol Mater Eng, 2006, 291, 75.
    [336] R. Rella; P. Siciliano; F. Quaranta; T. Primo; L. Valli; L. Schenetti, Poly[3-(butylthio)thiophene] Langmuir-Blodgett films as selective solid state chemiresistors for nitrogen dioxide. Colloid Surf, A, 2002,198, 829.
    [337] M. C. Gallazzi; L. Tassoni; C. Bertarelli; G. Pioggia; F. Di Francesco; E. Montoneri, Poly(alkoxy-bithiophenes) sensors for organic vapours. Sens Actuator, B, 2003, 88,178.
    [338] J. Jang; M. Chang; H. Yoon, Chemical sensors based on highly conductive poly(3,4-ethylene-dioxythiophene) nanorods. Adv Mater, 2005,17,1616.
    [339] H. Yoon; M. Chang; J. Jang, Formation of 1D poly(3,4-ethylenedioxythiophene) nanomaterials in reverse microemulsions and their application to chemical sensors. Adv Func Mater, 2007, 17,431.
    [340] G. A. Sotzing; S. M. Briglin; R. H. Grubbs; N. S. Lewis, Preparation and properties of vapor detector arrays formed from poly(3,4 ethylenedioxy)thiophene-poly(styrene sulfonate)/insulating polymer composites. Anal Chem, 2000, 72, 3181.
    [341] T. H. Lin; K. C. Ho, A complementary electrochromic device based on polyaniline and poly(3,4-ethylenedioxythiophene). Sol Energy Mater, 2006, 90, 506.
    [342] M. C. Lonergan; E. Severin, J.; B. J. Doleman; S. A. Beaber; R. H. Grubbs; N. S. Lewis, Array-based vapor sening using chemical sensitive, carbon black-polymer resistors. Chem Mater, 1996,8,2298.
    [343] N. Tsubokawa; S. Yoshikawa; K. Maruyama; T. Ogasawara; K. Saitoh, Reponsibility of electric resistance of polyethyleneimine-grafte carbon black against alcohol vapor and humidity. Polym Bull, 1997,39,217.
    [344] P. M. Ajayan; O. Stephan; C. Colliex; D. Trauth, Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science, 1994, 265,1212.
    [345] P. G. Collins; K. Bradley; M. Ishigami; A. Zettl, Extreme oxygen sensitivity of electronic properties of carbon naotubes. Science, 2000,287,1801.
    [346] S. Chopra; A. Pham; J. Gaillard; A. Parker; A. M. Rao, Carbon-nanotube-based resonant-circuit sensor for ammonia. Appl Phys Lett, 2002, 80, 4632.
    [347] E. S. Snow; F. K. Perkins; E. J. Howser; S. C. Badescu; T. L. Reinecke, Chemical detection with a single-walled carbon nanotube capacitor. Science, 2005, 307,1942.
    [348] R. H. Norman, Conductive rubbers an plastics. Elsevier: Amsterdam, 1970.
    [349] A. R. Hopkins; N. S. Lewis, Detection and classification characteristics of arrays of carbon black/organic polymer composite chemiresistive vapor detectors for the nerve agent simulants dimethylmethylphosphonate and diisopropylmethylphosponate. Anal Chem, 2001, 73, 884.
    [350] X. M. Dong; R. W. Fu; M. Q. Zhang; B. Zhang; J. R. Li; M. Z. Rong, Vapor-induced variation in electrical performance of carbon black/poly (methyl methacrylate) composites prepared by polymerization filling. Carbon, 2003, 41, 371.
    [351] X. M. Dong; R. W. Fu; M. Q. Zhang; B. Zhang; J. R. Li; M. Z. Rong, A novel sensor for organic solvent vapors based on conductive amorphous polymer composites: carbon black/poly(butyl methacrylate). Polym Bull, 2003, 50, 99.
    [352] X. M. Dong; R. W. Fu; M. Q. Zhang; B. Zhang; M. Z. Rong, Carbon black filled poly(2-ethylhexyl methacrylate) as a candidate for gas sensing material. J Mater Sci Lett, 2003, 22, 1057.
    [353] J. W. Hu; S. G. Chen; M. Q. Zhang; M. W. Li; M. Z. Rong, Low carbon black filled polyurethane composite as candidate for wide spectrum gas-sensing element. Mater Lett, 2004, 58, 3606.
    [354] J. F. Feller; D. Langevin; S. Marais, Influence of processing conditions on sensitivity of conductive polymer composites to organic solvent vapours. Synth Met, 2004,144, 81.
    [355] N. Tsubokawa, Preparation and properties of polymer-grafted carbon nanotubes and nanofibers. Polym J, 2005, 37, 637.
    [356] C. R. Yates; W. Hayes, Synthesis and applications of hyperbranched polymers. Eur Polym J, 2004,40,1257.
    [357] M. Vollprecht; F. Dieterle; S. Busche; G. Gauglitz; K. J. Eichhorn; B. Voit, Quantification of quaternary mixtures of low alcohols in water: Temporal-resolved measurements with microporous and hyperbranched polymer sensors for reduction of sensor number. Anal Chem, 2005, 77, 5542.
    [358] B. W. Koo; C. K. Song; C. Kim, CO gas sensor based on a conducting dendrimer. Sens Actuator, B, 2001,77, 432.
    [359] P. Taranekar; A. Baba; J. Y. Park; T. M. Fulghum; R. Advincula, Dendrimer precursors for nanomolar and picomolar real-time surface plasmon resonance/potentiometric chemical nerve agent sensing using electrochemically crosslinked ultrathin films. Adv Func Mater, 2006,16,2000.
    [360] T. Vossmeyer; B. Guse; I. Besnard; R. E. Bauer; K. Mullen; A. Yasuda, Gold nanoparticle/polyphenylene dendrimer composite films: Preparation and vapor-sensing properties. Adv Mater, 2002,14,238.
    [361] T. Gao; E. S. Tillman; N. S. Lewis, Detection and classification of volatile organic amines and carboxylic acids using arrays of carbon black-dendrimer composite vapor detectors. Chem Mater, 2005,17, 2904.
    [362] R. Kessick; G. Tepper, Electrospun polymer composite fiber arrays for the detection and identification of volatile organic compounds. Sens Actuator, B, 2006,117, 205.
    [363] S. M. Briglin; N. S. Lewis, Characterization of the temporal response profile of carbon black-polymer composite detectors to volatile organic vapors. J Phys Chem B, 2003,107,11031.
    [364] B. Ding; J. H. Kim; Y. Miyazaki; S. M. Shiratori, Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH_3 detection. Sens Actuator, B, 2004,101, 373.
    [365] D. Aussawasathien; J. H. Dong; L. Dai, Electrospun polymer nanofiber sensors. Synth Met, 2005,154, 37.
    [366] Y. Wei; G. W. Jang; K. F. Hsueh; E. M. Scherr; A. G. MacDiarmid; A. J. Epstein, Thermal transitions and mechanical properties of films of chemically prepared polyaniline. Polymer, 1992, 33, 314.
    [367] D. Norris; M. M. Shaker; F. K. Ko; A. G. MacDiarmid, Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends. Synth Met, 2000, 114, 109.
    [368] S. J. Kim; S. G. Yoon; Y. M. Lee; S. I. Kim, Electrical sensitive behavior of poly(vinyl alcohol)/poly(diallyldimethylammonium chloride)IPN hydrogel.Sens Actuator,B,2003,88,286.
    [369]郭宝春;邱清华;贾德名,互穿聚合物网络(IPN)技术在功能高分子中的应用.功能材料,2000,31,29.
    [370]何三雄;高保娇;申艳玲,室温下甲基丙烯酸缩水甘油酯的原子转移自由基溶液聚合反应.高分子材料科学与工程,2006,22,62.
    [371]Y.Sakai;M.Matsuguchi;T.Hurukawa,Humidity sensor using cross-linked poly(chloromethyl styrene).Sens Actuator,B,2000,66,135.
    [372]C.W.Lee;O.Kim;M.S.Gong,Humidity-sensitive properties of new polyelectrolytes based on the copolymers containing phosphonium salt and phosphine function.J Appl Polym Sci,2003,89,1062.
    [373]C.W.Lee;H.S.Park;J.G.Kim;B.K.Choi;S.W.Joo;M.S.Gong,Polymeric humidity sensor using organic/inorganic hybrid polyelectrolytes.Sens Actuator,B,2005,109,315.
    [374]V.Bondarenka;S.Grebinskij;S.Mickevicius;V.Volkov;G.Zacharova,Thin film of poly-vanadium-molybdenum acid as starting materials for humidity sensors.Sens Actuator,B,1995,28,227.
    [375]G.Casalbore-Miceli;M.J.Yang;Y.Li;N.Camaioni;A.Martelli;A.Zanelli,Effect of doping level on the conductance of polymer-salts complexes in the presence of humidity.Sens Actuator,B,2004,97,362.
    [376]E.Zagar;M.Zigon;S.Podzimek,Characterization of commercial aliphatic hyperbranched polyesters.Polymer,2006,47,166.
    [377]R.Nohria;R.K.Khillan;Y.Su;R.Dikshit;Y.Lvov;K.Varahramyan,Humidity sensor based on ultrathin polyaniline film deposited using layer-by-layer nano-assembly.Sens Actuator,B,2006,114,218.
    [378]O.T.Ikkala;L.-O.Pietila;L.Ahjopalo;H.Osterholm;P.J.Passiniemi,On the molecular recognition and associations between electrically conducting polyaniline and solvents.J Chem Phys,1995,103,9855.
    [379]E.Banka;W.Luzny,Structural properties of polyaniline protonated with camphorsulfonic acid.Synth Met,1999,101,715.
    [380]G.CasalboreMiceli;N.Camaioni;Y.Li;A.Martelli;M.J.Yang;A.Zanelli,Water sorption in polymer electrolytes:kinetics of the conductance variation.Sens Actuator,B,2005,105,351.
    [381]X.T.Zhang;J.Zhang;Z.F.Liu,Conducting polymer/carbon nanotube composite films made by in situ electropolymerization using an ionic surfactant as the supporting electrolyte.Carbon,2005,43,2186.
    [382]G.J.Cho;B.M.Fung;D.T.Glatzhofer;J.S.Lee;Y.G.Shul,Preparation and characterization of polypyrrole-coated nanosized novel ceramics.Langmuir,2001,17,456.
    [383]B.Tian;G.Zerbi,Lattice dynamics and vibrational spectra of polypyrrole.J Chem Phys,1990,92,3886.
    [384] B. Tian; G. Zerbi, Lattice dynamics and vibrational spectra of pristine and doped Polypyrrole: effective conjugation coordinate. J Chem Phys, 1990, 92, 3892.
    [385] T. M. Wu; S. H. Lin, Characterization and electrical properties of polypyrrole/multiwalled carbon nanotube composites synthesized by in situ chemical oxidative polymerization. J Polym Sci, Part B: Polym Phys, 2006,44,1413.
    [386] G. Y. Han; J. Y. Yuan; G. Q. Shi; F. Wei, Electrodeposition of polypyrrole/multiwalled carbon nanotube composite films. Thin Solid Films, 2005,474, 64.
    [387] D. Li; Y. D. Jiang; Z. M. Wu; X. D. Chen; Y. R. Li, Self-assembly of polyaniline ultrathin films based on doping-induced deposition effect and applications for chemical sensors. Sens Actuator, B, 2000, 66,125.
    [388] D. Li; W. Y. Ding; X. Wang; L. D. Lu; X. J. Yang, Modifying substrate surfaces with self-assembled polyelectrolyte layers to promote the formation of uniform Polypyrrole films. Appl Surf Sci, 2001,183,259.
    [389] M. K. Ram; M. Adami; P. Faraci; C. Nicolini, Physical insight in the in-situ self-assembled films of Polypyrrole. Polymer, 2000, 41, 7499.
    [390] H. J. Kharat; K. P. Kakde; P. A. Savale; K. Datta; P. Ghosh; M. D. Shirsat, Synthesis of Polypyrrole films for the development of ammonia sensor. Polym Adv Technol, 2007, 18,397.
    [391] Y. Lan; E. B. Wang; Y H. Song; Y L. Song; Z. H. Kang; L. Xu; Z. Li, An effective layer-by-layer adsorption and polymerization method to the fabrication of polyoxometalate-polypyrrole nanoparticle ultrathin films. Polymer, 2006,47,1480.
    [392] M. Trojanowicz; A. Lewenstam; T. K. V. Krawczyk; I. Lahdesmaki; W. Szczepek, Flow injection amperometric detection of ammonia using a polypyrrole-modified electrode and its application in urea and creatinine biosensors. Electroanalysis, 1996, 8,233.
    [393] J. Tamm; T. Raudsepp; M. Marandi; T. Tamm, Electrochemical properties of the Polypyrrole films doped with benzenesulfonate. Synth Met, 2007,157, 66.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.