高分子量溴化环氧树脂阻燃剂制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分子量溴化环氧树脂阻燃剂是新型高分子型溴系阻燃剂之一,除了具有优异的阻燃性能外,还具有耐迁移、耐析出和阻燃持久等特点,近几年在国外得到较快的发展。据文献报道,该产品在某些阻燃材料中将是十溴二苯醚的理想替代品之一,目前,仅有国外公司在销售该种产品,我国还没有实现真正的工业化生产,所以研制开发溴化环氧树脂阻燃剂具有重要意义,本文研究工作主要包括三方面的内容。
    研究以溴化钠/溴酸钠完全代替传统的溴素作为溴代试剂合成了四溴双酚A,避免了使用溴素和因溴素作为溴代试剂时产生的溴化氢对设备、操作人员以及环境的危害。详细研究了有机溶剂/水的比例、反应温度、反应时间、相转移催化剂、原料配比等因素对产品质量和收率的影响。研究表明有机溶剂可以重复使用且对产品质量和收率没有任何影响,首次在国内实现了四溴双酚A基本无污染工艺的合成。所得产品的熔点为180-182.1℃,溴含量为58.0%以上,元素分析、红外光谱等表征了产品的结构。
    研究以四溴双酚A和环氧氯丙烷为原料在二氧六环和水混合溶剂中一步法合成了高分子量溴化环氧树脂阻燃剂。详细研究了溶剂/水的配比、碱金属碱、相转移催化剂、反应温度、反应时间等因素对产品分子量和产率的影响。研究表明在溴化四甲基铵、溴化四乙基铵、聚乙二醇(分子量为6,000)和聚乙二醇(分子量为400)相转移催化体系中,氢氧化锂最好,氢氧化钾次之,氢氧化钠最次。研究还表明在碱金属氢氧化物环境中,溴化四乙铵和聚乙二醇(分子量为6,000)复合相转移催化剂比上面提到的任何单一相转移催化剂都好。在优化条件下改变原料配比和反应时间分别制备了分子量约为2.5×104、4.5×104和6.1×104的溴化环氧树脂阻燃剂,红外光谱证明了所得产品环氧端基的存在,元素分析证明产品的溴含量达52.0%上,热分析表明它们的热分解温度都在310℃以上。
    
    
    研究分子量分别约为2.5×104、4.5×104和6.1×104的阻燃剂产品对ABS的阻燃以及对ABS物理机械性能的影响。研究表明,随着产品分子量的增加,对ABS的综合物理机械性能影响越来越小,分子量为6.1×104的阻燃剂除了对ABS的悬臂梁缺口冲击强度影响较大外(这是目前所有溴系阻燃剂的一大缺陷,但这一缺陷可以通过其它技术进行弥补),ABS的其余物理机械性能几乎不受影响。阻燃性能测试表明,高分子量溴化环氧树脂阻燃剂阻燃ABS的氧指数大小恰与其对ABS的机械性能的影响相反,即分子量增大,氧指数降低,但还都在难燃范围之内,且水平和垂直燃烧实验都是离火即熄,都能达到UL94 V-0级。与十溴二苯醚对比试验研究表明,添加高分子量溴化环氧树脂阻燃剂的ABS材料溴含量为7.9%时与添加十溴二苯醚阻燃剂的ABS材料溴含量为10.1%的阻燃性能相当。
High molecular weight bromated epoxy resins is a sort of the novel bromine-containing flame retardants which has excellent flame retardant efficiency and can not easily move from polymer materials. It has been researched and developed abroad recently. Some flame retardant polymer materials added the high molecular weight bromated epoxy resins as flame-retardant additive have been studied that such flame retardant agent has a combination of good fire retardant efficiency, UV stability, excellent mechanical properties, thermal stability and nonblooming ,which is the ideal substitute of decabromodiphenyl oxide.
    The real domestic industrialization for them has not been realized. Currently, there is only Dead Sea Bromine Group in Israel selling its products of these kinds of flame-retardants in our country. Therefore, the research and development of them is very important.
    The present work is dedicated to the research and development of new methods, which prepared tetrabromobisphenol A and high molecular weight bromated epoxy resins. The applied research of the high molecular weight bromated epoxy resins as flame retardant was studied at the same time.
    One subject of the present work relates to a green chemistry synthesis of tetrabromobisphenol A wherein the combination of sodium bromide and sodium bromated as brominating agent which completely replaces conventional liquid bromine. This new methods can shun corrosiveness of liquid bromine or gas hydrogen bromide released during bromating reaction to the equipments and eliminate harmfulness to the operating worker and environment.
    Detailed research is concerned with the conditions such as solvents, reaction time, reaction temperature, phase transfer catalyst and the ratio of raw materials having influence to the product's quality and yield. It is also concerned with the organic solvent being recycled and having no influence to the quality and yield of the production. The melting point ranged from 180.0 to 182.1℃, and bromine-content of production is over 58.0% are same as to the production prepared by literature.
    
    
    One-step synthesis of the high molecular weight bromated epoxy resins for flame retardants is studied with tetrabromobisphenol A and epichlorohydrin as raw materials in mixed solvent comprising 1,4-dioxan and water.
    The findings of present work show that organic/water ratio,alkali metal alkali, phase transfer catalyst, reaction time, reaction temperature, all of them have influence to the molecular weight and yield of the production. In the presence of the phase transfer catalysts such as tetramethylammonium bromide, tetraethylammonium bromide or polyethylene glycol(MW 400 and 6,000),lithium hydroxide is the best alkali among lithium hydroxide ,sodium hydroxide and potassium hydroxide. In the presence of alkali metal hydroxide,the phase transfer catalyzed composition comprising of tetramethylammonium bromide and polyethylene glycol(MW 6,000) is more effective than any other phase transfer catalyzed systems made up of only one phase transfer catalyst such as tetrametylammonium bromide, tetraethylammonium bromide and polyethylene glycol(MW 400 and 6,000).
    Under the optimized conditions,three sort of products(MW 25×104,4.5×104 and 6.1×104) were prepared through varied conditions of the raw materials ratio and the reaction time. Bromine content of them is all over above 52.0%. All of their thermal decomposition temperature is over 310℃. The structures of finished products which have epoxy group at both end of their molecular chain proved by the infrared spectrum.
    Flame retardant properties and mechanical properties of ABS which was incorporated into different molecular weight bromated epoxy resins flame retardant agent were evaluated. Our studies investigated the comprehensive mechanical properties of ABS added bromated epoxy resin with different molecular weight are almost as good as that ABS added decabromodiphenyl oxide .But most preferable is 61 thousand among the different molecular weight products. The bromated epoxy resin w
引文
[1] 欧育湘.实用阻燃技术[M].北京:化学工业出版社,2002.
    [2] Alusuisse Martinswerk GmbH.Flame Retardants: trends and new developments[J]. Plastics Additives& Compounding April 2001,4: 16-20.
    [3] 周政懋. 我国阻燃技术发展新动向[J].阻燃材料与技术,2002(5):1,13.
    [4]  王永强.阻燃材料及应用技术[M].北京:化学工业出版社,2003.4.
    [5]  欧育湘.新世纪前10年全球阻燃剂发展预测[J].化工进展,1999,6:29-32.
    [6]  吴哲浩 陈康生. 我国十溴二苯醚生产状况及建议[J].阻燃材料与技术, 1996, 4:5-9.
    [7]  樊 真.阻燃剂PBO的色泽改进研究[J]. 阻燃材料与技术, 1996,6:1-3.
    [8] 何亦农.低分子量溴化环氧树脂的合成研究[J].广东化工, 1995, 8: 29-31.
    [9]  李志娟,李青山,杨德治. 走向21世纪的新型阻燃剂[J]. 化学工程师,2001(4):34-36.
    [10] 王睦铿. 聚合型高分子阻燃剂[J].化工新型材料, 1995, 1: 35-40.
    [11] 王筱梅,白克江,杨平. 乙撑双(四溴邻苯二甲酰胺)的合成及阻燃性能的研究[J]. 塑料工业, 1993, 2: 41、46-48.
    [12] 熊孝勇.微胶囊化TBC阻燃剂及其应用[J].阻燃材料与技术.1999,3: 1-3.
    [13] 常源亮,刘耀德.新型溴化环氧树脂类阻燃剂[J].山东化工,1998,2:41-47.
    [14] 欧育湘,王筱梅. 多溴二苯醚阻燃体系热裂及燃料产物的研究[J]. 阻燃材料与技术, 1997, 2: 7-12.
    [15] 薛恩玉. 阻燃科学及应用[M]. 北京:国防工业出版社. 1988.
    [16] 伍元宏. 阻燃剂化学及其应用[M]. 上海科学技术出版社. 1988
    [17] Kidder R C.. Proc Int Conf Fire Safety, 1989, 14:53-67
    
    
    [18] 欧育湘. 阻燃剂——制造、性能及应用[M]. 北京:兵器工业出版社, 1997.
    [19] 梁 诚.我国阻燃剂生产现状与发展趋势[J].化工新型材料,2001,29(8):5~7.
    [20] 张志德,陈玉琴.溴系阻燃剂的国内外新进展[J].精细石油化工,1999,5:59-62.
    [21] Clayton A May.Epoxy Resins - Chemistry and Technology,Second Edition[M].New York and Basel:Marsel Dekker Inc.,1988.
    [22] 育 辰.溴化环氧阻燃剂的最新技术[J].化工科技动态,1995,10:16-19.
    [23] 王克智.塑料助剂的开发及应用[J].塑料科技,1996,6:46-55.
    [24] 秦华军,张立新. 阻燃剂的现状和展望[J]. 华北工学院学报,2001,22(2):112-115.
    [25] 蔡永源.环氧树脂开发及应用研究动向[J].江苏化工,2000,28(2):25-27.
    [26] 吴良义,马 丽,沈大理等.环氧树脂"十五"发展规划建议[J].热固性树脂,1999,4:11-22.
    [27] Yoshio Imai.Syntheses of Some Condensation Polymer by Phase-Transfer Catalyzed Polycondensation[J]. J Macro Sci-Chem,1981,A15(5):833-852.
    [28] 董书安,刘惠萍.新型相转移催化剂的合成与应用研究[J].中国化工,1998,5:56-57.
    [29] Mc Kinne,Bonnie G,Sharp L. Process for high purity tetrabromobisphenol A[P] .US 5 208 389,1993-5-4.
    [30] Thanikavelu Manimaran,Richard A Horlb. Manufacture of tetrabromobisphenol A[P]. US 6 147 264,2000-12-14.
    [31] Bonnie G McKinnie,Richard A Holub,Hassan Y Elnagar.Process for the preparation of pure tetrabromobisphenol A in high yield by the
    
    bromination of bisphenol in the presence of solvent[P].US 6 084 137,2000-4-4.
    [32] 邓立新,赵志刚. 2001年美国总统绿色化学挑战奖[J].化学教学,2002,4:27~28.
    [33] Xi Zuwei,Zhou Ning,Sun Yu,et al.Reaction-Controlled Phase-Transfer Catalysis for Propylene Rpoxidation to Propylene Oxide[J].Science,2001,292:1139-1141.
    [34] 刘永贵. 固体双酚A型环氧树脂合成工艺述评[J].绝缘材料通讯,1999,6:28~34.
    [35] Садыгов О А,Гуреанов М Ш,Чалабиев Ч А. [J].ХИМ ПРОМ,1991,717(12):13~14.
    [36] Jenkner Herbert.Halagenated 2,2-bis(4-hydroxyphenol)propane. Ger Offen 2 511 981,1976-9-30.
    [37] Holub Richard,Alferi Steven R.Production of tetrabromophenol A.PCT Int Appl WO 9 964 384,1999-12-16..
    [38] Manimaran Thani Ravelu,Elnagar Hassany.Process for the prepation of tetrabromobisphenol A.US P 6 218 584,2001-4-17.
    [39] 冯拥军,李春喜,徐咏燕.四氯化碳作为反应原料的研究进展[J].化工进展,2002,21(3):183-184.
    [40] 宁永城.有机化合物结构鉴定与有机波谱学[M].北京:化学工业出版社,2001.
    [41] 王正熙.聚合物红外光谱分析和鉴定[M].成都:四川大学出版社,1989.
    [42] 陈 佶.国内外塑料添加剂发展态势[J].国际塑料物料商情,2002,6:27-28.
    [43] 翰松青.阻燃工程塑料现状及发展趋势[J].国际塑料物料商情,2002,10:
    
    24-25.
    [44] A K Banthia ,David Lunsford,Dean C,et al.Interfacial Synthesis Part 1:Phase-Transfer Catslyzed of Polyhydroxy Ether[J]. Journal of Macromolecular Science-Chemistry,1981,A15(5):943-966.
    [45] 陶凤岚,徐积功.聚氧乙烯类表面活性剂在二氯卡宾制备中的相转移催化作用[J].高等学校化学学报,1981,2(4):460-462.
    [46] Shabestary Nahid,Khazaeli,Hickman Richie.et al.. Journal of Chemical Education,1998,75(11):1470-1472.
    [47] Donald G Lee, Victor S Chang.Oxidation of Hydrocarbons .8.Use of Dimethyl Polyethylene Glycol as a Phase Transfer Agent for the Oxidation of Alkenes by Potassium Permanganate[J]. J Org Chem,43(8):1532-1536.
    [48] Yoshikazu Kimura,Steven L Regen.Poly(ethylene glycols ) and Poly(ethylene glycol)-Grafted Copolymers Are Extraodinary Catalysts for Dehydrohalogenation under Two-Phase and Three-Phase Conditions[J]. J Org Chem,1983,48(2):195-198.
    [49] M Richaros,B I Dahiyat,D M Arm,et al.Interfacial Polycondensation and Characterizaion of Polyphosphates and Polyphosphonates[J]. J Polym Sci:Chem Edit,1991,29(8):1157-1165.
    [50] 林汉枝,马自觉,钟振声等.聚苯乙烯支载缩乙二醇冠醚的合成及催化性能[J].华南理工大学学报(自然科学版),1999,27(3):94-99.
    [51] Marwah P,Marwah A K,Shankar G R..Synth Commun,1989,19(16):2809.
    [52] 曾广建,桂一枝. 新型相转移催化剂的合成及其催化水解反应研究[J].化学通报,1992,9:35-39.
    [53] 曾广建,桂一枝.新型相转移催化剂的合成及其催化水解反应研究[J].化
    
    学通报,1994,7:1-8
    [54] 黄月文,刘伟区,罗广建.乳液分散相转移催化合成合成高弹环氧[J].高分子材料科学与工程,2001,17(1):47-50.
    [55] 徐临晓,陶凤岚,吴世晖.线型聚氧乙烯化合物的相转移催化反应[J].有机化学.1984,4:265-270.
    [56] George L Brode,John Wynstra. Analysis of the Base-Catalyzed Phenol-Epichlorohydrin Condensation[J].J Polym Sci:Part A,4(5):1045-1055.
    [57] L Schechter,J Wynstra.Glycidyl ether reactions with alcs,phenols,Carboxylic acids ,and acid anhydrides[J]. Ind Eng Chem,1961,48(1):86-93.
    [58] Walther Burchard,Siegfried Bantle.Branching in High Molecular Weigh Polyhydroxythers Based on Bisphenol A[J].Makromol Chem,1981,182:145-163.
    [59] Shabestary Nahid,Khazaeli,Hickman Richie.et al.Phase transfer catalytic reaction: a physical chemistry laboratory experiment[J].Journal of Chemical Education,1998,75(11):1470-1472.
    [60] N S Enikolopyan,M A Matkevtch,L S Sakhonrnko,et al.Kinetics of Epoxide Resins Formation from Epichlorohydrin and Bisphenol-A[J] .J Polym Sci:Chem Edit,20(6):1231-1245.
    [61] Mxdonnnsel Christopher R S.Hardenable Resin Compositions[P]. US P 4 129548,1978-12-12..
    [62] Kyowa Fermentation Industry Co Litd.Substituted Polythioureas[P]. Brit P 1 122 996,1964-10-1..
    [63] L Schechter,J Wynstra.Glycidyl ether reactions with
    
    alcs,phenols,Carboxylic acids ,and acid anhydrides[J]. Ind Eng Chem,1961,48(1):86-93.
    [64] P M Thangamathesvaran,Sampat R Jain.Synthesis and Characterization of Thiocarbonohydrazone-Based Epoxy Resins[J]. J Polym Sci:Chem Edit,1991,29(2):261-267.
    [65] 余卓深,郑 珍,叶莲华等.室温快速固化羟甲基环氧树脂- 硫脲己二胺体系的研究[J].塑料工业,1984,6: 5-18.
    [66] 惠新平,张梅林,张自义.相转移催化在杂环化学中的应用[J].有机化学,1999,19(5): 458-467.
    [67] Pedro-Alberto Martínez,Virginia Cádiz,Ana Mantecón;et al.Synthesis,Characterization,and Thermal Behaviour of New Epoxy Polyesterimides[J].Die Angewandte Makromolekulare Chemie,1985,133:97-109.
    [68] M 谢缅诺维奇,T C 赫拉莫娃.聚合物的红外光谱和核磁共振谱[M].北京:中国石油化工出版社,1985.
    [69] Dudley H,Ian Gleming.王建波,施卫峰译.有机化学中的光谱方法[M].北京:北京大学出版社,2001.
    [70] Lieng-huang LEE.Mechanism of Thermal Degradation of Phenolic Condensation Polymers .Ⅰ. Studies on the Thermal Stability of Polycarbonate[J].J Polym Sci:Part A,2:2859-2873.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.