AGE 激活内皮细胞NF-κB及诱导COX-2表达的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     AGE是蛋白质、脂类的氨基与糖的醛基之间发生非酶性糖化氧化反应的终产物。随着年龄增大及血糖升高,各种组织中AGE增多。AGE形成在多种疾病如糖尿病、动脉粥样硬化、阿尔海默茨病、慢性肾衰等病理过程加速,已经证实AGE蓄积和上述疾病的发生、发展及组织病变密切相关。AGE可通过多种受体而被细胞识别,其各种生物学作用可能与其特异性受体RAGE介导有关。已有的研究表明,AGE与RAGE结合可引起细胞内氧化应激,导致核转录因子(NF)-κB的激活,诱导由NF-κB所调控的各种基因的表达。在内皮细胞,AGE可引起粘附分子(ICAM-1、VACM-1)、单核细胞趋化因子-1(MCP-1)、E-选择素等基因的表达增强。这些因子的表达可增加内皮通透性,增强炎性细胞的吸附,降低内皮细胞的正常防护功能等,故NF-κB激活引起炎症反应,导致血管内皮功能失调,可能参与AGE相关的疾病的病理进程。揭示NF-κB激活的信号通路有助于认识疾病发生发展,指导疾病的治疗。已发现,AGE引起的氧化应激,参与了NF-κB的激活。AGE引起的氧化应激与NADPH氧化酶的激活有关。NADPH氧化酶的激活可能通过两条途径,其中,佛波醇脂引起的NADPH氧化酶激活由PKC介导,而溶血卵磷脂则通过PTK介导。AGE通过何种途径激活NADPH氧化酶及激活后的NADPH氧化酶如何引起NF-κB的激活目前尚不清楚。已发现,
    
    AGE引起的ROS参与了p38 MApK的激活,对单核细胞THpl的研究
    发现,p38 MApK介导了NF一KB的激活。在内皮细胞,p38州叭尹K是否
    参与了AGE诱导的NF一KB的激活目前尚不清楚。
     激活的NF一KB可诱导很多介导免疫和炎症信号的基因表达,环加
    氧酶一2(C0X一2)是NF一KB调节的重要蛋白之一。多种因素可诱导COX一2
    在内皮细胞、血管平滑肌细胞等多种细胞中的表达,引起氧化应激产生
    及炎症反应,参与多种疾病的病理过程。AGE可刺激内皮细胞表达多种
    炎症介质,作为炎症介质调节酶的COX一2是否参与AGE引起的病理生
    理过程目前尚不清楚。
     我们以AGE修饰的人血清白蛋白(AGE一HSA)作为AGE模型,研
    究了AGE诱导内皮细胞NF一KB激活的信号传导机制,观察了AGE对
    COX一2表达的诱导作用。
    方法
     我们用DRA病人关节组织研究NF一KB在体内的激活情况,然后选
    择体外培养的人脐静脉内皮细胞(HUVEC)及内皮细胞株(ECV304)
    为靶细胞,观察AGE修饰蛋白对内皮细胞NF.KB激活及COX一2表达
    的作用并对其作用机制进行探讨。
     1.AGE对血管内皮细胞NF一KB的激活作用。
     (1)用免疫组织化学方法检测NF一KB在DRA病人关节血管内皮细胞
    中的移位激活情况。
     (2)用免疫组织化学法染色检测AGE处理HUVEC后,NF一KB在胞
    浆和胞核内的分布变化,用图象分析仪检测分析核浆灰度比值评价NF-
    KB的激活状况。
     (3)AGE刺激ECV304引起的1кBa的变化用节触stern blot检测,NF~
    
    KB的活性用EMSA检测。
     2.AGE激活血管内皮细胞NF一KB的机制。
    (l)用高铁细胞色素c还原法检测细胞内02一;用琉基反应试剂
    TbioGI。一1测定细胞内GSH。不同浓度AGE刺激ECV304,检测细胞内
    02一的产生量及GSH的含量变化。用抗氧化剂PDTC预处理ECV304,检
    测AGE诱导的02一产生量,1кBQ降解及NF~KB活性改变,观察ROS
    在AGE诱导的NF一KB激活中的作用。
     (2)用NADPH氧化酶特异性激活抑制剂aPocynin预处理Ecv304,检
    测AGE诱导的02一生成量、1кBa降解及NF一KB活性改变,观察NADPH
    氧化酶在AGE诱导02一产生及NF一KB激活中的作用。
     (3)用PKC抑制剂GF109203及PTK抑制剂Geulstein分别预处理
    ECV304,检测AGE诱导的02一生成量改变,观察PKC和PTK在AGE
    诱导NADPH氧化酶激活产生02一中的作用。
     (4)用p38 MApK抑制剂SBZo358o预处理ECV304,检测A能诱导
    的IKB。降解及NF一KB活性改变,探讨p38MAPK在AGE诱导的NF-
    KB激活中的作用。
     3.AGE诱导血管内皮细胞COX一2的表达及机制。
     (l)用W七stem blot检测AGE诱导的内皮细胞COX一2的表达。
     (2)用NF一KB抑制剂SNSO、1仗Ba抑制剂TPCK、抗氧化剂PDTC和
    NADPH氧化酶的激活抑制剂apoc师n预处理Ecv 304,EMsA检测NF-
    KB的活性,观察它们在AGE诱导的COX一2表达中的作用。
    结果
     1.AGE可引起血管内皮细胞NF.KB的激活。
    (1) DRA病人关节滑膜组织中存在N下~KB的激活。免疫组化结果显
    
    示,晚期DRA病人关节滑膜中血管内皮细胞胞核NF一K BIP“染色阳性,
    浸润的单核细胞亦大部分胞核阳性染色,提示NF~KB被激活;早期DRA
    病人关节滑膜中未见明显的NF一KB激活。
    (2) AGE通过RAGE引起HUVECNF~KB激活。NF一KBIP65免疫组
    化结果显示,正常HUVEC细胞浆阳性染色,细胞核阴性;经AGE
    (5O林岁ml,2h)刺激后,细胞核出现阳性染色,说明AGE诱导NF一KB
    从细胞浆向细胞核移位,提示AGE引起NF.KB激活。用可溶性RAGE
    与AGE(20:1)预孵育0.5h,可阻断AGE引起的NF一KB从细胞浆向
    细胞核的移位。说明AGE引起的NF一KB激活是通过RAGE介导的。
     (3) AGE通过诱导IKBQ降解而激活N下~KB。正常ECV304胞浆存
    在较高水平1кBa,AGE(50林gl]耐)刺激0.5h,1кBa降解达50%,
    2
Background
    AGEs are heterogeneous compounds of the end products of nonenzymatical glycation and oxidation of proteins and lipids. AGEs increase in various tissues as a function of age and hyperglycemia. The formation of AGEs is accelerated in given pathological processes and the accumulation of AGEs has been implicated in the pathogenesis of numerous disorders, including diabetes, dialysis related amyloidosis, atherosclerosis and Alzheimer's disease. AGEs can be recognized by several cell surface receptors including scavenger receptors, p60/p90, and RAGE. RAGE is a specific receptor recognizing AGEs and has been found to be present in many cells. Interaction between RAGE and AGEs has been shown to generate an oxidative stress which trigger the activation of nuclear factor (NF)-Kfi. The activation of NF-KB may upregulate the expression of its target genes. In endothelial cells, AGEs could induce a series of gene expression such as internal cell adhesion molecular-1 (1CAM-1), vascular cell adhesion molecule-1(VCAM-1), monocyte chemoattractant protein-1 (MCP-1), and E-selectin. Those induced factors may contribute to the increase of endothelial permeability and adhesion of inflammatory cells, which lead to dysfunction of endothelium. Therefor, activation of NF-KB and subsequent down-stream biological events might be involved in the pathogenesis of
    
    
    AGEs-related diseases. Elucidating the signal transduction involved in the activation of NF-Kfi will be profitable for understanding the pathogenesis of diseases as well as for the development of novel therapeutic strategies. Oxidative stress induced by AGEs have been shown to contribute to the activation of NF-KB. Activation of NADPH oxidase has been found to be the main source of oxidative stress induced by AGEs. NADPH oxidase could be activated via two pathways. The activation of NADPH oxidase by phorbol ester (PMA) is through PKC while that by lysophosphatidylcholine (LPC) through PTk But which pathway AGEs induce the activation of NADPH oxidase via is unclear until now. In monocyte, the activation of p38 MAPK is required for the activation of NF-кB induced by AGEs. Whether p38 MAPK participates in the activation of NF-кB in endothelial cells is unknown.
    The activation of NF-кB could enhance expression of a series of genes relating to immunity and inflammation. Cyclooxygenase 2 is one of the important proteins regulated by NF-кB. COX-2 could be induced in endothelial cells, vascular smooth muscle cells, and some other cells. Expression of COX-2 could cause inflammation and oxidative stress which might contribute to the pathological processes. However, whether COX-2 could be induced by AGEs in endothelial cells has not been reported.
    The aim of the study was to investigate the intracellular mechanisms of AGEs-induced activation of NF-кB and expression of COX-2 in endothelial cells.
    Methods
    DRA joint synovium was used as material to investigate the activation
    
    
    of NF-кB in vivo and human umbilical vein endothelial cells (HUVECs) and HUVEC-derived cell line (ECV304) were was used as endothelial cell models to study AGE-induced activation of NF-кB and expression of COX-2 in vitro.
    1. NF-кB activation induced by AGE in endothelial cells.
    (1) Immunohistochemical staining was used to detect the translocation of NF-кB in joint synovium of DRA patients.
    (2) The activation of NF-кB induced by AGEs on HUVEC was measured by immunohistochemical staining and evaluated by the ratio of optical density between nuclear and cytoplasm.
    (3) The degradation of IкB a and the activation of NF-кB induced by AGEs were detected by Western blot and EMSA, respectively.
    2. The mechanisms for AGE-induced NF-кB activation in endothelial cells.
    (1) Cellular O2- was measured by cytochrom C-Fe3+ reduction and GSH by ThioGlo-1 reagent. ECV304 were stimulated with different concentration of AGE, and cellular (V- and GSH were measured. To observe the role of ROS on AGE-induced NF-кB activation, ECV304 were pretreated with antioxidant PDTC, and AGE-in
引文
1. Bucala R, Vlassara H. Advanced glycosylation end products in diabetic renal and vascular disease. Am J Kidney Dis. 1995,26(6) : 875-88
    2. 侯凡凡,张训.晚期糖基化终产物和氧化应激反应在糖尿病肾病发病机制中的作用.中华肾脏病杂志.1997, 13(6) : 376-378
    3. Odetti P, Fogarty J, Sell DR, Monnier VM. Chromatographic quantitation of plasma and erythrocyte pentosidine in diabetic and uremic subjects. Diabetes. 1992, 41(2) : 153-9
    4. Weiss MF, Erhard P, Kader-Attia FA, et al. Mechanisms for the formation of glycoxidation products in end-stage renal disease. Kidney Int. 2000, 57(6) : 2571-85
    5. Miyata T, Ueda Y, Saito A, Kurokawa K. 'Carbonyl stress' and dialysis-related amyloidosis. Nephrol Dial Transplant. 2000, 15 Suppl 1 :25-8
    6. Miyata T, Ueda Y, Shinzato T, et al. Accumulation of albumin-linked and free-form pentosidine in the circulation of uremic patients with end-stage renal failure: renal implications in the pathophysiology of pentosidine. J Am Soc Nephrol. 1996, 7(8) : 1198-206
    7. Sugiyama S, Miyata T, Ueda Y, et al. Plasma levels of pentosidine in diabetic patients: an advanced glycation end product. J Am Soc Nephrol. 1998 , 9(9) : 1681-8
    8. Jadoul M, Ueda Y, Yasuda Y, et al. Influence of hemodialysis membrane type on pentosidine plasma level, a marker of "carbonyl stress". Kidney Int. 1999, 55(6) : 2487-92
    9. Basta G, Lazzerini G, Massaro M, et al. Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for
    
    amplification of inflammatory responses. Circulation. 2002, 105(7) : 816-22
    10. Rojas A, Romay S, Gonzalez D, et al. Regulation of endothelial nitric oxide synthase expression by albumin-derived advanced glycosylation end products. Circ Res. 2000, 86(3) : E50-4
    11. Otero K, Martinez F, Beltran A, et al. Albumin-derived advanced glycation end-products trigger the disruption of the vascular endothelial cadherin complex in cultured human and murine endothelial cells. Biochem J. 2001, 359(Pt 3) : 567-74
    12. Roff M, Thompson J, Rodriguez MS, et al. Role of IkappaBalpha ubiquitination in signal-induced activation of NFkappaB in vivo. J Biol Chem. 1996 , 271(13) : 7844-50
    13. Fan CM, Maniatis T. Generation of p50 subunit of NF-kappa B by processing of p!05 through an ATP-dependent pathway. Nature. 1991 , 354(6352) : 395-8
    14. Mercie P, Seigneur M, Bilhou-Nabera C, et al. Nuclear transcription factor kappa B (NF-kappa B). Rev Med Interne. 1998, 19(12) : 945-7
    15. Kang JL, Pack IS, Hong SM, Lee HS, et al. Silica induces nuclear factor-kappa B activation through tyrosine phosphorylation of I kappa B-alpha in RAW264. 7 macrophages. Toxicol Appl Pharmacol. 2000,169(1) : 59-65
    16. Schottelius AJ, Baldwin AS Jr. A role for transcription factor NF-kappa B in intestinal inflammation. Int J Colorectal Dis. 1999, 14(1) : 18-28
    17. Baldwin AS Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol. 1996,14: 649-83
    18. 陈瑗,周玫.自由基医学与病理生理.人民卫生出版社. 2002, 1,81-90
    19. Bellavite P. The superoxide-forming enzymatic system of phagocytes. Free Radic Biol Med. 1988,4(4) : 225-61
    20. Stepp DW, Ou J, Ackerman AW, et al. Native LDL and minimally oxidized LDL
    
    differentially regulate superoxide anion in vascular endothelium in situ. Am J Physiol Heart Circ Physiol. 2002, 283(2) : H750-9
    21. Yokoyama M, Inoue N, Kawashima S. Role of the vascular NADH/NADPH oxidase system in atherosclerosis. Ann N Y Acad Sci. 2000, 902: 241-7; discussion 247-8
    22. Wautier MP, Chappey O, Corda S, et al. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab. 2001, 280(5) : E685-94
    23. Zhu X, Lee HG, Raina AK, et al. The role of mitogen-activated protein kinase pathways in Alzheimer's disease. Neurosignals. 2002, 11(5) : 270-81
    24. Cano E, Mahadevan LC. Parallel signal processing among mammalian MAPKs. Trends Biochem Sci. 1995,20(3) : 117-22
    25. Yeh CH, Sturgis L, Haidacher J, et al. Requirement for p38 and p44/p42 mitogen-activated protein kinases in RAGE-mediated nuclear factor-kappaB transcriptional activation and cytokine secretion. Diabetes. 2001, 50(6) : 1495-504
    26. Zill H, Bek S, Hofmann T, et al. RAGE-mediated MAPK activation by food-derived AGE and non-AGE products. Biochem Biophys Res Commun 2003, 300(2) : 311-5
    27. Kam PC, See AU. Cyclo-oxygenase isoenzymes: physiological and pharmacological role. Anaesthesia. 2000,55(5) : 442-9
    28. Vane JR, Bakhle YS, Bolting RM. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol. 1998, 38: 97-120
    29. Miyata T, Inagi R, fida Y, et al. Involvement of beta 2-microglobulin modified with advanced glycation end products in the pathogenesis of hemodialysis-associated amyloidosis. Induction of human monocyte chemotaxis and macrophage secretion
    
    of tumor necrosis factor-alpha and interleukin-1. J Clin Invest. 1994, 93(2) : 521-8
    30. Miyata T, Inagi R, Wada Y, et al. Glycation of human beta 2-microglobulin in patients with hemodialysis-associated amyloidosis: identification of the glycated sites. Biochemistry. 1994, 33(40) : 12215-21
    31. Matsunaga T, Hokari S, Koyama I, et al. NF-kappa B activation in endothelial cells treated with oxidized high-density lipoprotein. Biochem Biophys Res Commun. 2003, 303(1) : 313-9
    32. Rogler G, Brand K, Vogl D, et al. Nuclear factor kappaB is activated in macrophages and epithelial cells of inflamed intestinal mucosa. Gastroenterology. 1998, 115(2) : 357-69
    33. Banning CL, Dlei GG, Hitchon C, et al. Macrophage-derived cytokine and nuclear factor kappaB p65 expression in synovial membrane and skin of patients with psoriatic arthritis. Arthritis Rheum. 2000,43(6) : 1244-56
    34. Hou FF, Chertow GM, Kay J, et al. Interaction between beta 2-microglobulin and advanced glycation end products in the development of dialysis related-amyloidosis. Kidney Int. 1997 , 51(5) : 1514-9
    35. Horiuchi S, Araki N, Morino Y. Immunochemical approach to characterize advanced glycation end products of the Maillard reaction. Evidence for the presence of a common structure. J Biol Chem. 1991, 266(12) : 7329-32
    36. Ohmori Y, Schreiber RD, Hamilton TA. Synergy between interferon-gamma and tumor necrosis factor-alpha hi transcriptional activation is mediated by cooperation between signal transducer and activator of transcription 1 and nuclear factor kappaB. J Biol Chem. 1997, 272(23) : 14899-907
    37. Ghanim H, Garg R, Aljada A, et al. Suppression of nuclear factor-kappaB and stimulation of inhibitor kappaB by troglitazone: evidence for an anti-inflammatory
    
    effect and a potential antiatherosclerotic effect in the obese. J Clin Endocrinol Metab. 2001, 86(3) : 1306-12
    38. Tomita N, Nakazawa R, Hoshi H, et al. Ultrasonographic evaluation of the bursae in patients with dialysis-related amyloidosis. Nephron. 1998,78(3) : 360-4
    39. Ehlerding G, Schaeffer J, Drommer W, et al. Alterations of synovial tissue and their potential role hi the deposition of beta2-microglobulin-associated amyloid. Nephrol Dial Transplant. 1998, 13(6) : 1465-75
    40. Ueda A, Ishigatsubo Y, Okubo T, et al. Transcriptional regulation of the human monocyte chemoattractant protein-1 gene. Cooperation of two NF-kappaB sites and NF-kappaB/Rel subunit specificity. J Biol Chem. 1997,272(49) : 31092-9
    41. Schmitz ML, Baeuerle PA. The p65 subunit is responsible for the strong transcription activating potential of NF-kappa B. EMBO J. 1991,10(12) : 3805-17
    42. 侯凡凡.单核/巨噬细胞在透析相关性淀粉样变中的作用.解放军医学杂志.2001, 26: 783-786
    43. 郭君其,侯凡凡,张训.晚期糖基化终产物修饰的β_2-微球蛋白刺激人关节滑膜细胞分泌促炎症细胞因子.中华风湿病杂志. 2001, 5(5) , 285-288
    44. Mukhopadhyay A, Suttles J, Stout RD, et al. Genetic deletion of the tumor necrosis factor receptor p60 or p80 abrogates ligand-mediated activation of nuclear factor-kappa B and of mitogen-activated protein kinases in macrophages. J Biol Chem 2001, 276(34) : 31906-12
    45. Chiao PJ, Miyamoto S, Verma IM. Autoregulation of I kappa B alpha activity. Proc Natl Acad Sci U S A. 1994,91(1) : 28-32
    46. Arenzana-Seisdedos F, Thompson J, et al. Inducible nuclear expression of newly synthesized I kappa B alpha negatively regulates DNA-binding and transcriptional activities of NF-kappa B. Mol Cell Biol. 1995,15(5) : 2689-96
    
    
    47. Carcamo JM, Pedraza A, Borquez-Ojeda O, et al. Vitamin C suppresses TNF alpha-induced NF kappa B activation by inhibiting I kappa B alpha phosphorylation. Biochemistry. 2002,41(43) : 12995-3002
    48. Bennett BL, Lacson RG, Chen CC, et al. Identification of signal-induced IkappaB-alpha kinases in human endothelial cells. J Biol Chem. 1996, 271(33) : 19680-8
    49. Gra barek J, Du L, Johnson GL, et al. Sequential activation of caspases and serine proteases (serpases) during apoptosis. Cell Cycle. 2002,1(2) : 124-31
    50. Altura BM, Gebrewold A. Inhibitor of nuclear factor-Kappa B activation attenuates venular constriction, leukocyte rolling-adhesion and microvessel rupture induced by ethanol in intact rat brain microcirculation: relation to ethanol-induced brain injury. Neurosci Lett, 2002, 334(1) : 21-4
    51. Basta G, Lazzerini G, Massaro M, et al. Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation. 2002, 105(7) : 816-22
    52. Schmidt AM, Yan SD, Wautier JL, et al. Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res. 1999, 84(5) : 489-97
    53. Neeper M, Schmidt AM, Brett J, et al. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem. 1992, 267(21) : 14998-5004
    54. Schmidt AM, Hori O, Chen JX, et al. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest. 1995, 96(3) :
    
    1395-403
    55. Schmidt AM, Hori O, Brett J, et al. Cellular receptors for advanced glycation end products. Implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arterioscler Thromb. 1994,14(10) : 1521-8
    56. Wong RK, Pettit AI, Davies JE, et al. Augmentation of the neutrophil respiratory burst through the action of advanced glycation end products: a potential contributor to vascular oxidant stress. Diabetes. 2002,51(9) : 2846-53
    57. Urata Y, Yamaguchi M, Higashiyama Y, et al. Reactive oxygen species accelerate production of vascular endothelial growth factor by advanced glycation end products in RAW264. 7 mouse macrophages. Free Radic Biol Med. 2002, 32(8) : 688-701
    58. Olszewski J, Zalewski P, Kedziora J, et al. Evaluation of oxygen free radical generation and antioxidative enzymatic activity in blood of patients with carcinoma of the larynx (preliminary report). Otolaryngol Pol. 2001, 55(1) : 61-3
    59. Lange RW, Day BW, Lemus R, et al. Intracellular S-glutathionyl adducts in murine lung and human bronchoepithelial cells after exposure to diisocyanatotoluene. Chem Res Toxicol 1999 Oct;12(10) :931-6
    60. Morales A, Garcia-Ruiz C, Miranda M, et al. Tumor necrosis factor increases hepatocellular glutathione by transcriptional regulation of the heavy subunit chain of gamma-glutamylcysteine synthetase. J Biol Chem. 1997, 272(48) : 30371-9
    61. Ueda S, Masutani H, Nakamura H, et al. Redox control of cell death. Antioxid Redox Signal. 2002, 4(3) : 405-14
    62. Van den Worm E, Beukelman CJ, et al. Effects of methoxylation of apocynin and analogs on the inhibition of reactive oxygen species production by stimulated human neutrophils. Eur J Pharmacol. 2001,, 433(2-3) : 225-30
    
    
    63. Ben-Shaul V, Lomnitski L, Nyska A, et al. Effect of natural antioxidants and apocynin on LPS-induced endotoxemia in rabbit. Hum Exp Toxicol. 2000, 19(11) : 604-14
    64. Greenberg SS, Jie O, Zhao X, et al. Role of PKC and tyrosine kinase in ethanol-mediated inhibition of LPS-inducible nitric oxide synthase. Alcohol. 1998, 16(2) : 167-75
    65. Bierhaus A, Chevion S, Chevion M, et al. Advanced glycation end product-induced activation of NF-kappaB is suppressed by alpha-lipoic acid in cultured endothelial cells. Diabetes. 1997,46(9) : 1481-90
    66. Hagen TM, Vinarsky V, Wehr CM, et al. (R)-alpha-lipoic acid reverses the age-associated increase in susceptibility of hepatocytes to tert-butylhydroperoxide both in vitro and in vivo. Antioxid Redox Signal. 2000, 2(3) : 473-83
    67. Hou FF, Boyce J, Zhang Y, et al. Phenotypic and functional characteristics of macrophage-like cells differentiated in pro-inflammatory cytokine-containing cultures. Immunol Cell Biol. 2000, 78(3) : 205-13
    68. Gorlach A, Brandes RP, Nguyen K, et al. A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall. Circ Res. 2000, 87(1) : 26-32
    69. Yu JH, Lim JW, Namkung W, et al. Suppression of cerulehi-hiduced cytokine expression by antioxidants in pancreatic acinar cells. Lab Invest. 2002, 82(10) : 1359-68
    70. Chen YR, Shrivastava A, Tan TH. Down-regulation of the c-Jun N-terminal kinase (JNK) phosphatase M3/6 and activation of JNK by hydrogen peroxide and pyrrolidine dithiocarbamate. Oncogene. 2001, 20(3) : 367-74
    71. Harrison D, Griendling KK, Landmesser U, et al. Role of oxidative stress in
    
    atherosclerosis. Am J Cardiol. 2003,91(3A): 7A-11A
    72. Vignais PV. The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci. 2002, 59(9) : 1428-59
    73. Biberstine-Kinkade KJ, Yu L, et al. Mutagenesis of p22(phox) histidine 94. A histidine in this position is not required for flavocytochrome b558 function. J Biol Chem. 2002, 277(33) : 30368-74
    74. Babior BM, Lambeth JD, Nauseef W. The neutrophil NADPH oxidase. Arch Biochem Biophys. 2002, 397(2) : 342-4
    75. Nauseef WM. The NADPH-dependent oxidase of phagocytes. Proc Assoc Am Physicians. 1999,111(5) : 373-82
    76. Takeshita S, Inoue N, Gao D, et al. Lysophosphatidylcholine enhances superoxide anions production via endothelial NADH/NADPH oxidase. J Atheroscler Thromb. 2000, 7(4) : 238-46
    77. Somers MJ, Burchfield JS, Harrison DG Evidence for a NADH/NADPH oxidase in human umbilical vein endothelial cells using electron spin resonance. Antioxid Redox Signal. 2000,2(4) : 779-87
    78. Satoh H, Togo M, Hara M, et al. Advanced glycation endproducts stimulate mitogen-activated protein kinase and proliferation in rabbit vascular smooth muscle cells. BiochemBiophys Res Commun. 1997, 239(1) : 111-5
    79. Simm A, Munch G Seif F, et al. Advanced glycation endproducts stimulate the MAP-khiase pathway in tubulus cell line LLC-PK1. FEBS Lett. 1997, 410(2-3) : 481-4
    80. 郭志坚,侯凡凡,张训,等.晚期糖基化终产物通过p38信号通路抑制内皮细胞合成一氧化氮的研究.中华医学杂志. 2002, 82(19) , 1328-1331
    81. Hattori Y, Suzuki M, Hattori S, et al. Vascular smooth muscle cell activation by
    
    glycated albumin (Amadori adducts). Hypertension. 2002, 39(1) : 22-8
    82. Shanmugam N, Reddy MA, Guha M, et al. High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes. 2003, 52(5) : 1256-64
    83. Parinandi NL, Scribner WM, Vepa S, et al. Phospholipase D activation in endothelial cells is redox sensitive. Antioxid Redox Signal. 1999, 1(2) : 193-210
    84. Cosentino F, Eto M, De Paolis P, et al. High glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells: role of protein kinase C and reactive oxygen species. Circulation. 2003, 107(7) : 1017-23
    85. Billack B, Heck DE, Mariano TM, et al. Induction of cyclooxygenase-2 by heat shock protein 60 in macrophages and endothelial cells. Am J Physiol Cell Physiol. 2002, 283(4) : C1267-77
    86. Bunderson M, Coffin JD, Beall HD. Arsenic induces peroxynitrite generation and cyclooxygenase-2 protein expression in aortic endothelial cells: possible role in atherosclerosis. Toxicol Appl Pharmacol. 2002, 184(1) : 11-8
    87. Willoughby DA, Moore AR, Colville-Nash PR, et al. Resolution of inflammation. : Int J Immunopharmacol. 2000, 22(12) : 1131-5
    88. Ye J, Ding M, Zhang X, et al. Induction of TNFalpha in macrophages by vanadate is dependent on activation of transcription factor NF-kappaB and free radical reactions. Mol Cell Biochem. 1999, 198(1-2) : 193-200
    89. Wang S, Kotamraju S, Konorev E, et al. Activation of nuclear factor-kappaB during doxorubicin-induced apoptosis in endothelial cells and myocytes is pro-apoptotic: the role of hydrogen peroxide. Biochem J. 2002, 367(Pt 3) : 729-40
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.