托卡马克边缘等离子体中低频带状流的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
理论预言托卡马克中的带状流在调制湍流和降低湍流引起的输运方面可以起到重要的作用,换言之,带状流和湍流的相互作用在决定湍流的饱和以及输运水平上至关重要。环形等离子体中的带状流存在两个分支:低频带状流和测地声模。本论文以低频带状流的实验研究为主。
     在HL-2A托卡马克边界,使用四组朗缪尔探针阵列,我们观测到了低频带状流和测地声模共存的现象。低频带状流在悬浮电位的功率谱上表现为峰值接近零频,频谱展宽约3kHz的相干模结构。除了确定其极向和环向的对称性,我们同时也测量了径向结构和相关长度。平均径向波数的范围为kr = 0.15~0.5cm?1,波数展宽(半高全宽)为?kr = 3~4 cm?1。低频带状流的径向波数谱上存在两个几乎对称的正负峰,表明其波包沿径向的传播既向内又向外。这是实验上首次对边界等离子体中的低频带状流完整的三维谱结构的测量。
     包络和双谱分析都表明低频带状流与湍流的相互作用与测地声模是类似的,暗示它们有着相同的产生机制。一点不同是包含低频带状流的三波组合的强度小于包含测地声模的三波组合。另一点不同是低频带状流与背景湍流的包络的相关系数小于测地声模。这两点都可以用边界区低频带状流的幅度较小来解释。
     我们还首次运用三谱分析处理了悬浮电位的涨落信号。结果同样表明测地声模的三谱系数要高于低频带状流。另一个结果是所有四波相互作用强度的平均远小于三波作用,说明仍然是三波耦合主导着非线性相互作用。
The zonal ?ows in tokamak plasma are predicted to play an important role inregulating the turbulence and enhancing the confinement. In other words, the role ofthe mutual interaction between zonal ?ows and turbulence are emphasized as the pro-cess of determining turbulence saturation and transport level. There are two branchesfor the zonal ?ows in toroidal plasmas: the low-frequency zonal ?ows (LFZF) andGeodesic Acoustic Mode (GAM). The experimental study of LFZF is the main sub-ject of this thesis.
     The LFZF, coexisting with the GAM is observed at the edge of HL-2A tokamakplasmas using four Langmuir probe arrays. It is identified as a low-frequency coher-ent mode peaking close to zero frequency and broadening about 3kHz on the powerspectral density of the ?oating potential ?uctuations. Besides the poloidal and toroidalaxisymmetry, the radial wavenumber and correlation length of the LFZF are also esti-mated. The averaged radial wavenumber is kr = 0.15~0.5cm?1 with the full widthat half maximum ?kr = 3~4 cm?1. The spectral for the LFZF radial wavenumberappear to have two peaks at approximately symmetric positive and negative values,implying the LFZF packages propagate both inwards and outwards. This is the firstcomplete measurement of three-dimension spectral structure of the LFZF in the edgeplasma.
     The envelope and the bispectrum analysis both reveal that the interaction betweenthe LFZF and the ambient turbulence (AT) is similar as that between the GAM and theAT, suggesting the same generation mechanism. One difference is that the intensity ofthe wave triad interactions including the LFZF is much smaller than that including theGAM and the other difference is the coherence coefficients between the LFZF and theenvelope of the AT is also smaller that that between the GAM and the AT envelope,both of which could be explained by the smaller amplitude of the LFZF in the edgeregion.
     The trispectrum analysis is firstly applied to the ?oating potential ?uctuations.The tricoherence of GAM is also larger than that of LFZF. It is also found that the averaged intensity of four-wave interactions is much smaller than that of three-waveinteractions, implying that the three-wave coupling dominates the nonlinear interac-tion process.
引文
[1] Spiegel E A, Zahn J P. 1992 The solar tachocline. Astronomy and Astrophysics265 106
    [2] Wootton A J et al. 1990 Fluctuations and anomalous transport in tokamaks.Phys. Fluids B 2 12
    [3] Perkins F W et al. 1993 Nondimensional transport scaling in the TokamakFusion Test Reactor: Is tokamak transport Bohm or gyro-Bohm? Phys. FluidsB 5 477
    [4] Christiansen J P et al. 1993 Evidence for a local diffusive model of transport ina tokamak. Plasma Phys. Control. Fusion 34 1881
    [5] Budny R V et al. 2000 Local transport in Joint European Tokamak edge-localized, high-confinement mode plasmas with H, D, DT, and T isotopes. Phys.Plasma 7 5038
    [6] Mckee G R et al. 2001 Non-dimensional scaling of turbulence characteristicsand turbulent. diffusivity. Plasma Phys. Control. Fusion 41 1235
    [7] Stroth U et al. 1993 Dimensionally similar discharges in the W7-AS stellarator.Phys. Rev. Lett. 70 936
    [8] Yamada H et al. 2000 Energy Confinement Time and Heat Transport in InitialNeutral Beam Heated Plasmas on the Large Helical Device. Phys. Rev. Lett. 841216
    [9] Gentle K W et al. 1995 Strong Nonlocal Effects in a Tokamak PerturbativeTransport Experiment. Phys. Rev. Lett. 74 3620
    [10] Wagner F et al. 1982 Regime of Improved Confinement and High Beta inNeutral-Beam-Heated Divertor Discharges of the ASDEX Tokamak. Phys. Rev.Lett. 49 1408
    [11] Itoh K, Itoh S-I. 1996 The role of the electric field in confinement. PlasmaPhys. Control. Fusion 38 1
    [12] Burrell K H. 1997 Effects of E×B velocity shear and magnetic shear on turbu-lence and transport in magnetic confinement devices. Phys. Plasma 4 1499
    [13] Connor J W, Wilson H R. 2000 A review of theories of the L-H transition.Plasma Phys. Control. Fusion 42 R1
    [14] Wagner F. 2007 A quarter-century of H-mode studies. Plasma Phys. Control.Fusion 49 B1
    [15] Groebner R J, Burrell K H and Seraydarian R P. 1990 Role of edge electric fieldand poloidal rotation in the L-H transition. Phys. Rev. Lett. 64 3015
    [16] Ida K et al. 1990 Edge electric-field profiles of H-mode plasmas in the JFT-2Mtokamak. Phys. Rev. Lett. 65 1364
    [17] Biglari H, Diamond P H and Terry P W. 1990 In?uence of sheared poloidalrotation on edge turbulence. Phys. Fluids B 2 1
    [18] Hinton F L. 1991 Thermal confinement bifurcation and the L- to H-mode tran-sition in tokamaks. Phys. Fluids B 3 696
    [19] Synakowski E J et al. 1990 Roles of Electric Field Shear and Shafranov Shiftin Sustaining High Confinement in Enhanced Reversed Shear Plasmas on theTFTR Tokamak. Phys. Rev. Lett. 78 2972
    [20] Mckee G et al. 1999 Impurity-Induced Suppression of Core Turbulence andTransport in the DIII-D Tokamak. Phys. Rev. Lett. 84 1922
    [21] Terry P W. 2000 Suppression of turbulence and transport by sheared ?ow. Rev.Mod. Phys. 72 109
    [22] Diamond P H, Kim Y B. 1991 Theory of mean poloidal ?ow generation byturbulence. Phys. Fluids B 3 7
    [23] Shaing K C and Crume E C. 1989 Bifurcation theory of poloidal rotation intokamaks: A model for L-H transition. Phys. Rev. Lett. 63 2369
    [24] Stringer T E. 1969 Diffusion in Toroidal Plasmas with Radial Electric Field.Phys. Rev. Lett. 22 770
    [25] Itoh S I and Itoh K. 1989 Model of the H-mode in tokamaks. Nucl. Fusion 291031
    [26] Rozhansky V and Tendler M. 1992 The effect of the radial electric field on theL–H transitions in tokamaks. Phys. Fluids B 4 1877
    [27] Diamond P H et al. 1993 Self-Regulating Shear Flow Turbulence: A Paradigmfor the L to H Transition. Phys. Rev. Lett. 72 2565
    [28] Hidalgo C et al. 1999 Radial Structure of Reynolds Stress in the Plasma Bound-ary of Tokamak Plasmas. Phys. Rev. Lett. 83 2203
    [29] Xu Y H et al. 2000 Role of Reynolds Stress-Induced Poloidal Flow in Trigger-ing the Transition to Improved Ohmic Confinement on the HT-6M Tokamak.Phys. Rev. Lett. 84 3867
    [30] Hasegawa A, Maclennan C G and Kodama Y. 1979 Nonlinear behavior andturbulence spectra of drift waves and Rossby waves. Phys. Fluids B 22 2122
    [31] Hasegawa A, Mima K. 1978 Pseudo-three-dimensional turbulence in magne-tized nonuniform plasma. Phys. Fluids 21 87
    [32] Hasegawa A and Wakatani M. 1987 Self-Organization of Electrostatic Turbu-lence in a Cylindrical Plasma. Phys. Rev. Lett. 59 1581
    [33] Diamond P H et al. 2005 Zonal ?ows in plasma. Plasma Phys. Control. Fusion47 R35
    [34] Horton W. 1999 Drift waves and transport. Rev. Mod. Phys. 44 735
    [35] Lin Z et al. 1998 Turbulent Transport Reduction by Zonal Flows: MassivelyParallel Simulations. Science 281 1835
    [36] Winson N, Johnson J L and Dawson J M. 1968 Geodesic Acoustic Waves inHydromagnetic Systems. Phys. Fluids 11 2448
    [37] Rosenbluth M N and Hinton F L. 1998 Poloidal Flow Driven by Ion-Temperature-Gradient Turbulence in Tokamaks. Phys. Rev. Lett. 80 724
    [38] Hinton F L and Rosenbluth M N. 1999 Dynamics of axisymmetric (E×B) andpoloidal ?ows in tokamaks. Plasma Phys. Control. Fusion 41 A653
    [39] Dimits A M et al. 1995 Scalings of Ion-Temperature-Gradient-Driven Anoma-lous Transport in Tokamaks. Phys. Rev. Lett. 77 71
    [40] Lin Z et al. 1999 Effects of Collisional Zonal Flow Damping on TurbulentTransport. Phys. Rev. Lett. 83 3645
    [41] Diamond P H et al. 1998 Dynamics of zonal ?ows and self-regulating drift-wave turbulence. 17th Int. Conf. on Fusion Energy (Yokohama, 1998) Th/3-1
    [42] Manfredi G, Roach C M and Dendy R O. 2001 Zonal ?ow and streamer gener-ation in drift turbulence. Plasma Phys. Control. Fusion 43 825
    [43] Hallatschk K and Diamond P H. 2003 Modulational instability of drift waves.New. J. Phys. 5 29
    [44] Chen L, Lin Z and White R B. 2000 Excitation of zonal ?ow by drift waves intoroidal plasmas. Phys. Plasmas 7 3219
    [45] Cheng C Z and Okuda H. 1977 Formation of Convective Cells, AnomalousDiffusion, and Strong Plasma Turbulence Due to Drift Instabilities. Phys. Rev.Lett. 38 708
    [46] Roger B N, Dorland W and KotschenreutherOkuda M. 2000 Generation andStability of Zonal Flows in Ion-Temperature-Gradient Mode Turbulence. Phys.Rev. Lett. 85 5336
    [47] Hazeltine R D. 1974 Rotation of a toroidally confined, collisional plasma. Phys.Fluids 17 961
    [48]兰涛. 2008托克马克边缘等离子体中测地声模带状流的实验研究.博士学位论文
    [49] Hahm T S et al. 2000 Zonal ?ow measurements concept I. Plasma Phys.Control. Fusion 42 A205
    [50] Dimits A M et al. 1995 Comparisons and physics basis of tokamak transportmodels and turbulence simulations. Phys. Plasmas 7 969
    [51] Miki K, Kishimoto Y, Miyato N and Li J Q. 2007 Intermittent Transport As-sociated with the Geodesic Acoustic Mode near the Critical Gradient Regime.Phys. Rev. Lett. 99 145003
    [52] Bak P, Tang C and Wiesenfeld. 1987 Self-organized criticality: An explanationof the 1/f noise. Phys. Rev. Lett. 59 381
    [53] Carreras B A, Lynch V E, Newman D E and Sanchez R. 2002 Avalanch struc-ture in a running sandpile model. Phys. Rev. E 66 011302
    [54] Newman D E, Sanchez R, Carreras B A and Ferenbaugh W. 2002 Transition inthe Dynamics of a Diffusive Running Sandpile. Phys. Rev. Lett. 88 204304
    [55] Newman D E, Carreras B A, Diamond P H and Hahm T S. 1996 The dynamicsof marginality and self-organized criticality as a paradigm for turbulent trans-port. Phys. Plasmas 3 5
    [56] Sanchez R, Newman D E, Carreras B A. 2002 Waiting-Time Statistics of Self-Organized-Criticality Systems. Phys. Rev. Lett. 88 068302
    [57] Sanchez R, B P Milligen, Newman D E and Carreras B A. 2003 Quiet-TimeStatistics of Electrostatics Turbulence Fluxes from the JET Tokamak and theW7-AS and TJ-II Stellarators. Phys. Rev. Lett. 88 204304
    [58] Gruzinov I, Diamond P H and Rosenbluth M N. 2002 Sandpiles withBistable Automata Rules: Towards a Minimal Model of Pedestal Formationand Structue. Phys. Rev. Lett. 89 255001
    [59] Melnikov A V et al. 2006 Investigation of geodesic acoustic mode oscillationsin the T-10 tokamak. Plasma Phys. Control. Fusion 48 S87
    [60] Conway G D et al. 2006 Direct measurement of zonal ?ows and geodesicacoustic mode oscillations in ASDEX Upgrade using Doppler re?ectometry.Plasma Phys. Control. Fusion 47 1165
    [61] Fujisawa A et al. 2007 Intermittent characteristics in coupling between turbu-lence and zonal ?ow. Plasma Phys. Control. Fusion 49 211
    [62] Malkov M A, Diamond P H and Rosenbluth M N. 2001 On the nature ofbursting in transport and turbulence in drift wave-zonal ?ow systems. Phys.Plasmas 8 5073
    [63] Hahm T S et al. 1999 Shearing rate of time-dependent E×B ?ow. Phys.Plasmas 7 969
    [64] Hahm T S and Burrell K H. 1995 Flow shear induced ?uctuation suppressionin finite aspect ratio shaped tokamak plasma. Phys. Plasmas 2 1648
    [65] Hatch D R, Terry P W and Nevins W M. 2009 Role of stable eigenmodes ingyrokinetic models of ion temperature gradient turbulence. Phys. Plasmas 16022311
    [66] Gao Zhe, Itoh K, Sanuki H and Dong J Q. 2006 Multiple eigenmodes ofgeodesic acoustic mode in collisionless plasmas. Phys. Plasmas 13 100702
    [67] Zonca F, White R B and Chen L. 2004 Nonlinear paradigm for drift wave-zonal?ow interplay: Coherence, chaos and turbulence. Phys. Plasmas 11 2488
    [68] Kim E J and Diamond P H. 2002 Dynamics of zonal ?ow saturation in strongcollisionless drift wave turbulence. Phys. Plasmas 9 4530
    [69] Lang J, Chen Y, and Parker S E. 2007 Gyrokineticδf particle simulation oftrapped electron mode driven turbulence. Phys. Plasmas 14 082315
    [70] Scott B D. 2002 The nonlinear drift wave instability and its role in tokamakedge turbulence. New. J. Phys. 4 52
    [71] Scott B D. 2005 Energetics of the interaction between electromagnetic E×Bturbulence and zonal ?ows. New. J. Phys. 7 92
    [72] Scott B D. 2003 The geodesic transfer effect on zonal ?ows in tokamak edgeturbulence. Phys. Lett. A 320 53
    [73] Hallatschek k and Biskamp D. 2001 Transport Control by Coherent ZonalFlows in the Core/Edge Transitional Regime. Phys. Rev. Lett. 86 1223
    [74] Hallatschek k. 2007 Nonlinear three-dimensional ?ows in magnetized plasmas.Plasma Phys. Control. Fusion 49 B137
    [75] Coda S, Porkolab M and Burrell K H. 2001 Signature of Turbulence ZonalFlows Observed in the DIII-D Tokamak. Phys. Rev. Lett. 86 4835
    [76] Moyer R A et al. 2001 Increased Nonlinear Coupling between Turbulence andLow-Frequency Fluctuations at the L-H Transition. Phys. Rev. Lett. 87 135001
    [77] Xu G S et al. 2003 Direct Measurement of Poloidal Long-Wavelength E×BFlows in the HT-7 Tokamak. Phys. Rev. Lett. 91 125001
    [78] Fujisawa A et al. 2004 Identification of Zonal Flows in a Toroidal Plasma.Phys. Rev. Lett. 93 165002
    [79] Nagashima Y et al. 2005 Observation of Nonlinear Coupling between Small-PoloidalWave-Number Potential Fluctuations and Turbulent Potential Fluctua-tions in Ohmically Heated Plasmas in the JFT-2M Tokamak. Phys. Rev. Lett.95 095002
    [80] Gupta D K et al. 2006 Detection of Zero-Mean-Frequency Zonal Flows in theCore of a High-Temperature Tokamak Plasma. Phys. Rev. Lett. 97 125002
    [81] Pedrosa M A et al. 2008 Evidence of Long-Distance Correlation of Fluctua-tions during Edge Transitions to Improved-Confinement Regimes in the TJ-IIStellarator. Phys. Rev. Lett. 100 215003
    [82] Hutchinson I H. Principles of Plasma Diagnostics. CAMBRIDGE UNIVER-SITY PRESS
    [83] Stangeby P C. 1990 Plasma boundary phenomena in Tokamaks. Nucl. Fusion30 1225
    [84] Matthews G F. 1994 Tokamak plasma diagnosis by electrical probes. PlasmaPhys. Control. Fusion 36 1595
    [85] Pitts R A and Stangeby P C. 1990 Experimental tests of Langmuir probe theoryfor strong magnetic fields. Plasma Phys. Control. Fusion 32 1237
    [86] Bendat J S and Piersol A G. 1980 Engineering Applications of Correlation andSpectral Analysis. A Wiley-interscience publication
    [87] Carreras B A. 1997 Progress in Anomalous Transport Research in ToroidalMagnetic Confinement Devices. IEEE Trans. Plasma Sci. 25 1281
    [88] Zweben S J and Taylor R J. 1981 Phenomenological comparison of magneticand electrostatic ?uctuations in the macrotor tokamak. Nucl. Fusion 21 193
    [89] Balbin R et al. 1992 Measurement of density and temperature ?uctuations usinga fast-swept Langmuir probe. Rev. Sci. Instrum. 63 4605
    [90] Tsui H Y W et al. 1992 A new scheme for Langmuir probe measurement oftransport and electron temperature ?uctuations. Rev. Sci. Instrum. 63 4608
    [91] Lin H et al. 1992 A comparison of Langmuir probe techniques for measuringtemperature ?uctuations. Rev. Sci. Instrum. 63 4611
    [92] Giannone L et al. 1994 Density, temperature, and potential ?uctuation mea-surements by the swept Langmuir probe technique in Wendelstein 7-AS. Phys.Plasmas 1 3614
    [93] Ji H et al. 1991 Fluctuation and electron-heat transport in a reversed-field-pinchplasma. Phys. Rev. Lett. 67 62
    [94] Powers E J. 1974 Spectral techniques for experimental investigation of plasmadiffusion due to polychromatic ?uctuations. Nucl. Fusion 14 749
    [95] Boedo J A et al. 2000 Suppresion of Temperature Fluctuations and EnergyBarrier Generation by Velocity Shear. Phys. Rev. Lett. 84 2630
    [96] Beall J M, Kim Y C and Powers E J. 1982 Estimation of wavenumber andfrequency spectra using fixed probe pairs. J. Appl. Phys. 53 3933
    [97] Iwama N, Ohba Y and Tsukishima T. 1978 Estimation of wave-numer spectrumparameters from fixed probe-pair data. J. Appl. Phys. 50 3197
    [98] Kim Y C and Powers E J. 1979 Digital Bispectral Analysis and Its Applicationsto Nonlinear Wave Interactions. IEEE Trans. Plasma Sci. PS-7 120
    [99] Kim Y C, Beall J Mand Powers E J. 1980 Bispectrum and nolinear wave cou-pling. Phys. Fluids 23 258
    [100] Hidalgo C et al. 1993 Experimental Evidence of Three-Wave Coupling onPlasma Turbulence. Phys. Rev. Lett. 71 3127
    [101] Diamond P H et al. 2000 In Search of the Elusive Zonal Flow Using Cross-Bicoherence Analysis. Phys. Rev. Lett. 84 4842
    [102] Holland C et al. 2002 Evidence for Reynolds-stress driven shear ?ows usingbispectral analysis: theory and experiment. Plasma Phys. Control. Fusion 44A453
    [103] Itoh K et al. 2005 On the bicoherence analysis of plasma turbulence. Phys.Plasmas 12 102301
    [104] Nagashima Y et al. 2006 Convergence study of bispectral analysis in experi-ments of high temperature plasmas. Rev. Sci. Instrum. 77 045110
    [105] Mendel J M. 1991 Tutorial on Higher-Order Statistics (Spectra) in Signal Pro-cessing and System Theory: Theoretical Results and Some Applications. Proc.IEEE 79 278
    [106] Nikias C L and Mendel J M. 1993 Signal Processing with Higher-Order Spectra.IEEE Signal Processing Magazine 10 10
    [107] Hinich M J and Wolinsky M. 2005 Normalizing Bispectra. IEEE Journal ofStatistical Planning and Inference 130 405
    [108] Hinich M J and Messer H. 1995 on the principle domain of the discrete bispec-trum of a stationary signal. IEEE Transactions on Signal Processing 43 2130
    [109] Collis W B, White P R and Hammond J K. 1998 Higher-order Spectra: theBispectrum ans Trispectrum. Mechanical Systems and Signal Processing 12375
    [110] Chandran V and Vanhoff B. 1994 Statistics of Tricoherence. IEEE Transactionson Signal Processing 42 3430
    [111] V. Kravtchenko-Berejnoi et al. 1995 On the use of tricoherent analysis to detectnon-linear wave-wave interactions. Signal Processing 42 291
    [112] Yan L W et al. 2005 Fast reciprocaing probe system on th HL-2A tokamak.Rev. Sci. Instrum. 76 093506
    [113] Stangeby P C. 2000 The Plasma Boundary of Magnetic Fusion Devices. Insti-tude of Physics Publishing
    [114] Cheng J et al. 2009 Statistical and spectral characteristics of blobs in the scrape-off layer of HL-2A tokamak. submitted to Plasma Phys. Control. Fusion
    [115] Zhao K J et al. 2006 Toroidal Symmetry of the Geodesic Acoustic Mode ZonalFlow in a Tokamak Plasma. Phys. Rev. Lett. 96 255004
    [116] Lan T et al. 2008 Spectral characteristics of geodesic acoustic mode in theHL-2A tokamak. Plasma Phys. Control. Fusion 50 045002
    [117] Lan T et al. 2008 Spectral features of the geodesic acoustic mode and its inter-action with turbulence in a tokamak plasma. Phys. Plasmas 15 056105
    [118] Uckan T et al. 1991 Characteristics of edge plasma turbulence on the ATFtorsatron. Phys. Fluids B 3 1000
    [119] Moyer R A et al. 1995 Beyond paradigm: Turbulence, transport, and the originof the radial electric field in low to high confinement mode transitions in theDIII-D tokamak. Phys. Plasmas 2 2397
    [120] Fujisawa A et al. 2007 Causal Relationship between Zonal Flow and Turbu-lence in a Toroidal Plasma. J. Phys. Soc. Jpn. 59 3815
    [121] Gabor D. 1946 Theory of communications. J. Inst. Electr. Eng. Part 3 90 429
    [122] Fonck R J et al. 1993 Long-wavelength density turbulence in the TFTR toka-mak. Phys. Rev. Lett. 70 3736
    [123] Kim J S et al. 1997 Measurements of Nonlinear Energy Transfer in Turbulencein the Tokamak Fusion Test Reactor. Phys. Rev. Lett. 79 841
    [124] Kim Y C, Khadra L and Powers E J. 1980 Wace modulation in a nonlineardispersive medium. Phys. Fluids 23 11
    [125] Sokolov V et al. 2006 Observation and identification of zonal ?ows in a basicphysics experiment. Plasma Phys. Control. Fusion 48 S111
    [126] Ido T et al. 2006 Geodesic-acoustic-mode in JFT-2M tokamak plasmas. PlasmaPhys. Control. Fusion 48 S41
    [127] Fujusawa A et al. 2007 Experimental Evidence of a Zonal Magnetic Field in aToroidal Plasma. Phys. Rev. Lett. 98 165001
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.