磁化等离子体中的微观不稳定性及湍流理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文较为系统地论述了磁化等离子体中的微观不稳定性及湍流理论。我们首先回顾了描述等离子体物理的基本方法和基本方程,其次介绍了等离子体物理中传统的湍流输运理论的物理模型以及研究方法。在此基础上,我们提出了一种新的输运模型:拉格朗日系统的输运理论。利用这种输运理论可以很容易地理解一些新的困扰等离子体物理学界的实验现象,诸如托卡马克等离子体中的非局域输运、粒子流或热流箍缩以及反磁剪切中的稳态中空温度(电流)剖面等等。
    论文的第三部分详细介绍了作者在攻读博士期间在等离子体微观不稳定性及湍流理论研究方面完成的一些具体工作。首先是磁曲率对等离子体电阻性不稳定性的影响。这部分研究表明磁曲率的极向分量使得电阻性交换模的色散关系发生变化,它不仅改变不稳定性增长率而且还改变模式的结构。同时我们还发现托卡马克等离子体的坏磁场区域增大了。其次是托卡马克中捕获电子动力学的拉格朗日不变性研究。这部分研究表明托卡马克中的捕获电子流体是一个典型的拉格朗日系统,我们解析地求得了表征系统弛豫态的拉格朗日不变量并与部分实验结果作了定性的比较,发现它们之间具有一致性。再次是平行动力学方程的重整化研究。这部分研究作为位置空间中的非线性相互作用的重整化群处理的推广,发展了一种处理速度空间中的线性和非线性相互作用的重整化方法,得到了碰撞等离子体平行动力学方程的重整化系数。这为等离子体湍流理论甚至其他领域提供了一条新的数学处理途径。最后部分是离子温度梯度模驱动的环带流生长研究。这部分研究采用四波相互作用模型研究了离子温度梯度模驱动的环带流,得到了环带流的增长率与泵浦波的关系。我们发现漂移波确实能够驱动大尺度的环带流
The theory about micro-instability and turbulence in magnetized plasmas is dissertated in some detailed. First, the basic methods and equations describing plasma physics are reviewed. And then, the conventional physical models and studying method of plasma turbulence transport theory are introduced and discussed. A new transport model, which is called as Lagrange transport theory, is suggested. Some new and bewildering phenomena founding in tokamak plasma experiments such as non-local transport, particle flux or heat flux pinch and steady hollow temperature (current) profile in reversed magnetic shear plasmas may be easily explained applying the new model.
    In the third section, we give some detail works on plasma micro-instability and turbulence during our doctoral period. The first is that the effects of the magnetic curvature on the resistive interchange mode in tokamak plasmas. It is shown that the poloidal component of the magnetic curvature makes the dispersion relation of the mode change. Both the growth rate of the instability and the mode structure are changed in presence of the poloidal component of the magnetic curvature. Meanwhile, the bad magnetic field region is enlarged. The second is that the Lagrangian invariant of trapped electron dynamics in tokamaks. It is shown that the trapped electron fluid is a typical Lagrange system. Lagrangian invariant marking relaxed state of the system is obtained analytically. Compared with some experimental results, agreement is found qualitatively. The third is that the renormalization study of parallel dynamic
    equation. As an extension of the renormalization group theory treating nonlinear interaction in spatial space, a renormalization theory dealing with linear and nonlinear interaction in velocity space is developed. The renormalized coefficients of parallel dynamic equation for collision plasmas are derived. It is suggested as a mathematical approach in plasma turbulence theory and other field. And the final is that the study on zonal flow driven by ion-temperature-gradient mode. Employed four-wave-interaction model, the relations between the growth rate of zonal flow and pumping drift wave are obtained. It is found that the zonal flow with large-scale may be driven by ion-temperature-gradient mode. Some problems and suggestions for next step are discussed in the fourth section.
引文
[1] F. L. Hinton and R. D. Hazeltine, Rev. Mod. Phys. 48, 239 (1976).
    [2] R. D. Hazeltine, S. M. Mahajan and D. A. Hitchcock, Phys. Fluids 24, 1164 (1981).
    [3] K. Miyamoto, Plasmas Physics for Nuclear Fusion (Cambridge: MIT).
    [4] B. B. Kadomtsev, Tokamak Plasma: A Complex Physical System, IOP Publishing LTD, UK (1992).
    [5] S. I. Braginski, Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New York), 205 (1965).
    [6] J. W. Connor, R. J. Hastie and J. B. Taylor, Proc. R. Soc. A365, 1 (1979).
    [7] P. W. Terry, P. H. Diamond, K. C. Shaing, L. Garcia and B. A. Carreras, Phys. Fluids 29, 2501 (1986).
    [8] M. Wakatani and A. Hasegawa, Phys. Fluids 27, 611 (1984)
    [9] M. Yagi, K. Itoh, S-I Itoh, A. Fukuyama and M. Azumi, Phys. Fluids B5, 3702 (1993).
    [10] S-I Itoh and K. Itoh, Plasma Phys. Control. Fusion 40, 1729 (1996).
    [11] B. B. Kadomtsev and O. P. Pogutse, Reviews of Plasma Physics, vol. 5, edited by M. A. Leontovich (Consultants Bureau, New York), 312 (1970).
    [12] F. Romanelli, Phys. Fluids B1, 1018 (1989).
    [13] J. W. Connor, J. B. Taylor and H. R. Wilson, Phys. Rev. Lett. 70, 1803 (1993).
    [14] J. Y. Kim and M. Wakatani, Phys. Rev. Lett. 73, 2200 (1994).
    [15] Y. C. Lee, J. Q. Dong, P. N. Guzdar and C. S. Liu, Phys. Fluids 30, 1331 (1987).
    [16] W. Horton, B. G. Hong and W. M. Tang, Phys. Fluids 31, 2971 (1988).
    [17] W. Horton, D-I Choi and W. M. Tang, Phys. Fluids 24, 1077 (1981).
    [18] B. G. Hong and W. Horton, Phys. Fluids B2, 978 (1990).
    [19] V. A. Rozhanskii, JEPT Lett. 34, 56 (1981).
    [20] G. S. Lee and P. H. Diamond, Phys. Fluids 29, 3291 (1986).
    [21] T. H. Dupree, Phys. Fluids 15, 334(1972).
    [22] U. Frisch, Turbulence (Cambridge University: Cambridge), (1995).
    [23] P. G.. Drazin and W. H. Reid, Hydrodynamic Stability (Cambridge University: Cambridge).
    [24] J. O. Hinze, Turbulence (McGraw-Hill, New York).
    [25] W. D. McComb, The Physics of Fluid Turbulence (Clarendon, Oxford).
    [26] A. Yoshizawa, Hydrodynamic and Magnetohydrodynamic turbulent Flow: Modelling and Statistical Theory (Kluwer, Dorder encht), (1998).
    [27] P. C. Liewer, Nucl. Fusion 25, 543 (1985).
    [28] F. Wagner and U. Stroth, Plasma Phys. Control. Fusion 35, 1321 (1993).
    [29] A. Wootton et al, Plasma Phys. Control. Fusion 34, 2030 (1992).
    [30] F. Wagner et al, Phys. Rev. Lett. 49, 1408 (1982).
    [31] K. H. Burrell, Phys. Plasmas 4, 1499 (1997).
    [32] R. D. Stambaugh et al, Phys. Fluids B2, 2941 (1990).
    [33] H. Zohm, Plasma Phys. Control. Fusion 38, 105 (1996).
    [34] K. Itoh and S-I. Itoh, Plasma Phys. Control. Fusion 38, 1 (1996).
    [35] G. M. Staeber, Plasma Phys. Control. Fusion 40, 569 (1998).
    [36] M. Wakatani, Plasma Phys. Control. Fusion 40, 597 (1998).
    [37] J. W. Connor, Plasma Phys. Control. Fusion 40, 531 (1998).
    [38] J. A. Krommes, Plasma Phys. Control. Fusion 40, A641 (1999).
    [39] P. W. Terry, Rev. Mod. Phys. 72, 109 (2000).
    [40] J. W. Connor and H. Wilson, Plasma Phys. Control. Fusion 42, R1 (2000).
    [41] V. Yakhot and S. A. Orszag, J. Sci. Comput. 1, 3 (1986).
    [42] V. Yakhot and S. A. Orszag, Phys. Rev. Lett. 57, 1772 (1986).
    [43] D. Forster, D. R. Nelson and J. M. Stephen, Phys. Rev. A 16,732 (1977).
    [44] D. W. Longcope and R. N. Sudan, Phys. Fluids B3, 1945 (1991).
    [45] S. J. Camargo and H. Tasso, Phys. Fluids B4, 1199 (1992).
    [46] X. D. Peng, 中国核科技报告,CNIC/CD/2001-1, 中国核工业音像出版社。
    [47] C. G. Stueckelberg and A. Petermann, Helv. Phys. Acta 26, 499 (1953).
    [48] Scott E. Parker and Daniele Carati, Phys. Rev. Lett. 75, 441 (1995).
    [49] V. V. Yankov and J. Nycander, Phys. Plasmas 4, 2907 (1997).
    [50] V. Naulin, J. Nycander and J. Juul Rasmussen, Phys. Rev. Lett. 81, 4418 (1998).
    [51] C. C. Petty and T. C. Luce, Nucl. Fusion 34, 121 (1994).
    [52] D. P. Schssel, T. H. Osborne, J. C. DeBoo, J. R. Ferron, E. A. Lazarus and T. S. Taylor, Nucl. Fusion 32, 689(1992).
    [53] F. M. Levinton et al, Phys. Rev. Lett. 75, 4417 (1995).
    [54] M. R. debar, G. M. D. Hogeweij, N. J. Lopes Cardozo, A. A. M. Oomens and F. C. Schuller, Phys. Rev. Lett. 16, 4573 (1997).
    [55] E. Fermi, Thermodynamics (Prentice-Hall, New York), (1937).
    [56] J. Harvey, Phys. Today 48, 32 (1995).
    [57] X. D. Peng and X. M. Qiu, Phys. Plasmas 8, 5 (2001).
    [58] X. M. Qiu and X. D. Peng, Chin. Phys. Lett. 18, 1101 (2001).
    [59] X. D. Peng, J. H. Zhang and C. G. Liu, Contrib. Plasma Phys 40, 419 (2000).
    [60] K. H. Burrell et al, in Proceeds of the 20th European Conference on Controlled and Plasma Physics, Lisbon (1993).
    [61] K. H. Burrell, Phys. Plasmas 4, 1499 (1997).
    [62] B. A. Carreras, L. Garcia and P. H. Diamond, Phys. Fluids 30, 1388 (1987).
    [63] V. V. Yankov and J. Nycander, Comments Plasma Phys. Controlled Fusion 18, 1 (1997).
    [64] J. Nycander and V. V. Yankov, Phys. Plasmas 2, 2874 (1995).
    [65] M. B. Isichenko and V. V. Yankov, Phys. Rep. 283, 161 (1997).
    [66] M. B. Isichenko, A. V. Gruzinov, P. H. Diamond and P. N. Yushmanov, Phys. Plasmas 3, 1916 (1996).
    [67] M. B. Isichenko, A. V. Gruzinov and P. H. Diamond, Phys. Rev. Lett. 29, 4436 (1995).
    [68] Igor A. Ivonin, Vladimir P. Pavlenko and Hans Persson, Phys. Plasmas 6, 3163 (1999).
    [69] M. B. Isichenko, A. V. Gruzinov and P. H. Diaomond, Phys. Rev. Lett. 74, 4436 (1995).
    [70] P. H. Edmonds, E. R. Solano and A. J. Wootton, in Proceedings of the 15th Symposion on Fusion Technology, Utrecht(Elsevier, Science, Amsterdam), vol.
    1, 342 (1989).
    [71] H. R. Koslowski, G. Fuchs, A. Kramer-Flecken, J. Rapp and the TEXTOR-94 team, Plasma Phys. Control. Fusion 39, 325 (1997).
    [72] H. Weisen and E. Minard, Europhys. Lett. 56, 542 (2001).
    [73] A. Thyagaraja and F. A. Haas, Plasma Phys. Control. Fusion 31, 965 (1989).
    [74] F. A. Haas and A. Thyagaraja, Plasma Phys. Control. Fusion 29, 145 (1987).
    [75] Z. Lin, T. S. Halhm, W. W. Lee, W. M. Tang and R. B. White, Science 281, 1835 (1998).
    [76] G. Manfredi, C. M. Roach and R. O. Dendy, Plasma Phys. Control. Fusion 43, 825 (2001).
    [77] A. Hasegawa and K. Mima, Phys. Fluids 21, 87 (1978).
    [78] G. Manfredi, J. Plasma Phys. 61, 601 (1999).
    [79] A. I. Smolyakov and P. H. Diamond, Phys. Plasmas 6, 4410(1999).
    [80] A. I. Smolyakov, P. H. Diamond and V. I. Shevchenko, Phys. Plasmas 7, 1349 (2000).
    [81] L. Chen, Z. Lin and R. White, Phys. Plasmas 7, 3129 (2000).
    [82] G. Hu and W. Horton, Phys. Plasmas 4, 3262 (1997).
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.