EB-PVD制备高硅钢箔及后处理工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高硅钢具有优异的软磁性能,如中高频铁损低,磁导率高,矫顽力小,磁滞伸缩接近于零等。而且,高硅钢的厚度对磁性能有非常大的影响,厚度越薄高频铁损就越低。高硅钢特别适合应用于高频高速电机、中高频变压器和电抗器等。但由于高硅硅钢的塑性加工性能很差,极大地限制了它的应用。高硅钢箔(一般指厚度为0.02~0.2mm的板材)的制备工艺方法已成为本领域的一个重要的研究热点。目前,高硅钢箔制备工艺研究领域关注的热点主要有快凝法、特殊轧制法和CVD法等,其中只有CVD法制备品的质量可以被接受,但由于CVD也存在设备维护及环境污染等难以解决的问题而严重制约其大范围应用。
     电子束物理气相沉积工艺具有沉积速率高、无污染且易于制备厚度从数十微米到数百微米箔的特点,可望能够成为一种制备高硅钢箔的理想工艺方法。本文就此开展了相关研究,并获得了令人鼓舞的研究结果。
     最终获得的高硅钢箔厚度为64μm,密度为7.5 g/cm3,饱和磁化强度为1.88T,矫顽力最小值为1.89Oe,铁损P1/10k最小值为8.2 W/kg,为0.1mm取向硅钢同条件下铁损的45.6%,P0.5/20k和最小值5.2 W/kg,为0.1mm取向硅钢同条件下铁损的37.1%。
     通过试验研究和理论分析表明,以Fe-6.5wt.%Si单源EB-PVD工艺不能制备出高硅钢箔;而采用Fe-Si双源EB-PVD工艺可以制备出高硅钢箔;而且制备时,靶基距越高,硅钢箔中硅含量越低;在本试验条件下,只有当靶基距小于等于415 mm时才可以制备出高硅钢箔。EB-PVD制备态高硅钢箔密度为7.26g/cm3,是其理论密度的97%,电阻率为90μ?·cm,高于理论值82μ?·cm,而饱和磁化强度为1.73T,低于理论值1.8T。这说明制备态硅钢箔电磁性能较好,但仍需进行后处理改善。
     采用XRD、EDS、SEM和M?ssbauer等手段对制备的高硅钢箔组织形貌和结构进行了分析表征。研究发现:静止基板下获得的高硅钢箔靠近基板侧、中间部位和背离基板侧存在不同有序度、织构度的Fe(Si)固溶体和形貌组织。靠近基板侧高硅钢箔由无择优取向的无序固溶体A2组成,而中间部位和背离基板侧高硅钢箔都由存在明显(100)择优取向的有序固溶体B2组成,且背离基板侧高硅钢箔的(100)择优取向程度比中间部位高。高硅钢箔截面由靠近基板侧的细小等轴晶和从靠近基板侧到背离基板侧直径逐渐增加的柱状晶组成,其中背离基板侧处柱状晶的平均直径为25~50μm。同样,旋转基板下制备的高硅钢箔两侧Fe(Si)固溶体有序度、织构程度和截面形貌也不同。靠近基板侧由无择优取向的有序相DO3组成,而背离基板侧由含有弱(110)择优取向的有序相B2组成。高硅钢箔截面的组织由等轴晶-柱状晶-等轴晶-柱状晶组成,且柱状晶的直径离基板侧越远而越大,在背离基板处柱状晶的直径达到2~3μm。
     通过逐层分析制备态硅钢箔的相组成和形貌变化,提出了电子束物理气相沉积过程中高硅钢薄箔的生长机理,即无规形核-竞争生长。开始沉积时蒸气原子在基板上随机形核,形成的晶粒为无择优取向的细小等轴晶;随着沉积过程的继续,有些特殊位相的晶粒易于生长而被保留下来,形成的晶粒为柱状晶,且直径越来越大,织构度越来越明显。
     通过试验研究表明,高温快速退火工艺不但不能使高硅钢箔的密度增加,反而导致其致密度下降,出现了几乎垂直于试样表面的柱柱状晶间的“一”字形孔和平行于试样表面的等轴晶和柱状晶界面处的“一”字形孔。相反,热压处理能使高硅钢箔致密化。压强从30MPa增加到60MPa,硅钢箔的密度从7.2 g/cm3增加到7.5 g/cm3,饱和磁化强度由1.74T增加到1.88T。真空退火能明显改善高硅钢箔的软磁性能,矫顽力Hc由6.87Oe降低至最小值1.89Oe,剩磁MR由593G减小到最小值132G。
High Si steel has excellent magnetic properties, such as low core loss in medium and high frequency, high permeability, low coercive force and almost zero magnetostriction. Also, the core loss is lower when the thickness is smaller. It is especially suitable for application in the high frequency and high speed electric machine, medium and high frequency transformer and reactor. But its poor ductility hinders its preparation and application. Therefore, preparation of high Si steel foil becomes a critical issue. Now, the preparation method mainly includes rapidly solidified method, special rolling method and CVD, etc. Except CVD process, fabrication and commercial scale production of high Si steel foil can not be developed due to various problems. And the CVD method has its own shortcoming, such as high repair rate and environmental pollution due to the application of a corrosive and poisonous gas SiCl4.
     Electron beam vapor deposition has a lot of merits, such as high deposition rate, pollution free and being easy to produce foil with from several tens to several hundreds microns and it is expected to be a good method for the preparation. Therefore, we did many researches on the preparation by EB-PVD and got some exciting results.
     The thickness and the density of the finally obtained high Si steel foil are 64μm and 7.5g/cm3, respectively. The coercive force is 1.89Oe and saturation magnetization is 1.88T. The minimum core loss P1/10k is 8.2W/kg, 45.6% of the loss of the 0.1mm thick grain oriented steel foil and the minimum core loss P0.5/20k is 5.2W/kg, 37.1% of the core loss of the 0.1mm thick grain oriented steel foil.
     Experimental results and theoretical analysis showed that high Si steel foil can’t be prepared by one source method using Fe-6.5 wt. % Si source since the Si atom oxidized actively in the vacuum chamber. While high Si steel foil can be obtained by two source method. The silicon content of steel foil decreased when the target-substrate distance was lower and high Si steel foil can be manufactured when the target-substrate distance was smaller than 415 millimeters in some conditions. The density of the high Si steel foil was 7.26 g/cm3, 97 percent of theoretical values, the electrical resistivity was 90μ?·cm, larger than theoretical one 82μ?·cm. And the saturation magnetization was 1.73T, smaller than theoretical value 1.88T. This indicated that that the electrical and magnetic properties were comparatively good and still required to being enhanced by increase of the densification.
     XRD,EDS,SEM and M?ssbauer spectroscopy were used to characterized and analyzed the high Si steel foil. It was found that: The as-deposited high Si steel foil from static substrate had different phase composition and microstructures on the side close to the substrate, middle place and the site far from the substrate. The high Si steel foil was composed of A2 phase with no texture on the side close to the substrate while the steel foil in the middle and on the side far form the substrate consisted of an ordering phase B2 with strong (100) texture. It was composed of small equiaxed crystal and columnar crystallite, the diameter of which was larger when it is more far from the side close to the substrate. The width of columnar grain size was 25~50μm on the side far from the substrate. Similarly, the high Si steel foil from a rotated substrate had different microstructures and phase compositions. It was composed of an ordering phase DO3 with no texture while it consisted an ordering phase B2 with weak (110) preferential orientation. It was composed of equiaxed crystal-columnar grain-equiaxed crystal-columnar grain. The width of the columnar grain grew larger when it was closer to the side far from the substrate and the width was 2~3μm on the side far from the substrate.
     In the evaporation-deposition process, the growth of high Si steel foil obeys the mechanism“random nucleation-preferential growth”. In other words, the evaporated atoms nucleate randomly at the beginning on the substrate. As a result, the formed grains are small equiaxed crystals. With the continual deposition, some grains with a special orientation are reserved due to being easy to grow. As a consequence, the width of columnar crystal grew larger and the texture degree enhanced.
     Experimental Research showed that high temperature rapid annealing can not improve the density and decreased a little on the contrary. Stick-like pores almost perpendicular to the surface of the Si steel foil were formed between the columnar grains and other stick-like pores parallel to the surface of the foil appeared in the interface between equiaxed grains and columnar grains. On the contrary, the hot pressure process can improve the densification degree of high Si steel foil. The density was improved from 7.2 g/cm3 to 7.5 g/cm3 and the saturation magnetization was enhanced from 1.74T to 1.88T as the pressure increased form 0MPa to 60MPa. In addition, vacuum annealing can improve soft magnetic properties markedly. Coercive force and remnant magnetism decreased from 6.87Oe and 593G to the minimum 1.89Oe and 132G, respectively.
引文
1 R.Machado, A.H.Kasama, A.M.Jorge Jr, C.S.Kiminami, W.J.Botta Filho, C. Bolfarini. Evolution of the texture of spray-formed Fe-6.5wt.%Si-1.0 wt.%Al alloy during warm-rolling. Materials Science and Engineering A. 2007, 449-451:854-857
    2 A.H.Kasama, C.Bolfarini, C.S.Kiminami, W.J.Botta Filho. Magnetic properties evaluation of spray formed and rolled Fe-6.5wt.%Si-1.0 wt.% Al alloy. Materials Science and Engineering A. 2007, 449-451:375-377
    3 F.S.Lu, L.Qiang, X.F.Bi. Magnetic and mechanical properties of FeSi alloys with high Si content. Transaction of Nonferrous Metals Society of China. 2006, 16:s81-s84
    4 S.Kenichi, G.Satoshi, U.Satoshi. Soft magnetic materials of JFE steel group. JFE Technical Report. 2005(6):1-7
    5 K.N. Kim, L.M. Pan, J.P. Lin, Y.L.Wang, Z.Lin, G.L.Chen. The effect of boron content on the processing for Fe-6.5wt%Si electrical steel sheets. Journal of Magnetism and Magnetic Materials. 2004, 227:331-336
    6 J.leicht, N.A.Castro, E.C.Silva, F.J.G.Landgraf, A.J.Moses, T.Yonamine. Magnetic properties of 6.5% silicon content non-oriented electrical steel under sine and PWM excitation. Journal of Magnetism and Magnetic Materials. 2008, 320:e385-e388
    7 S.Kunihiro, N.Misao, HYasuyuki. Electrical steels for advanced automobiles—core materials for motors, generators, and high-frequency reactors, JFE Technical Report. 2004:67-73.
    8 M.Namikawa, H.Ninomyiya, Y.Tanaka, Y.Takada. Magnetic properties of
    6.5% silicon steel sheet under PWM voltage excitation. IEEE Transactions on Magnetics. 1998, 34(4):1183-1185
    9李运刚,梁精龙,唐国章,蔡宗英. Fe-6.5wt%Si薄板的制备技术与发展.中国稀土学报. 2004, 22:401-404
    10关春龙,李垚,赫晓东.电子束物理气相沉积技术及其应用现状.航空制造技术. 2003, 11:35-37
    11刘景顺,曾岗,李明伟,杨森,郭洪飞.电子束物理气相沉积(EB-PVD)技术研究及应用进展.材料导报. 2007, 21:246-248
    12马李,孙跃,赫晓东,李垚.电子束物理气相沉积制备超薄高温结构材料的研究.材料导报. 2006, 20(11):100-103
    13 B.A.Movchan. Inorganic materials and coatings produced by EBPVD. Surface Engineering. 2006, 22(1):35-45
    14 P.D.Harmsworth, R.Stevens. Microstructure of zirconia-yttria plasma-sprayed thermal barrier coatings. Journal of Materials Science. 1992, 27:616-624
    15胡传顺,王福会,吴维.热障涂层研究进展.腐蚀科学与防护技术. 2000, 12(3):160-163
    16 U.Schulz, K.Fritscher, H.-J.Ratzer-Scheibe, W.A.Kaysser, M.Peters. Thermal cyclic behavior of microstructurally modified EB-PVD thermal barrier coatings. Materials Science Forum. 1997, 251:957-964
    17 W.Y.Lee, D.P.Stinton, C.C.Berndt, F.Erdogan, Y.D.Lee, Z. Mutasim. Concept of functionally graded materials for advanced thermal barrier coating application. Journal of American Ceramic Society. 1996, 79(12):3003
    18 U.Schulz, K.Fritscher, C.Leyens. Two source jumping beam evaporation for advanced EB-PVD TBC systems. Surface and Coatings Technology. 2000, 133-134:40-48
    19 B.A.Movchan, K.Yakovchuk. Graded thermal barrier coatings, deposited by EB-PVD. Surface & Coatings Technology. 2004, 188-89:85-92
    20 B.A.Movchan. Functionally graded EB PVD coatings. Surface & Coatings Technology. 2002, 149(2-3):252-262
    21 H.B.Xu, H.B.Guo, F.S.Liu, S.K.Gong. Development of gradient thermal barrier coatings and their hot-fatigue behavior. Surface and Coatings Technology. 2000, 130:133-139
    22 H.B.Guo, X.F.Bi, S.K.Gong, H.B.Xu. Microstructure investigation on gradient porous thermal barrier coating prepared by EB-PVD. Scripta Materialia. 2001, 44(4):683-687
    23 H.B.Guo, H.B.Xu, X.F.Bi, S.K.Gong. Preparation of Al2O3-YSZ composite coating by EB-PVD. Materials Science and Engineering A. 2002, 325:389-393
    24 M.Wen, S.K.Gong, H.F.Li, H.B.Xu. Novel thermal barrier coating based onLa2Ce2O7/8YSZ double ceramic layer systems deposited by electron beam physical vapor deposition. Surface & Coatings Technology. 2008, 202:2704-2708
    25 B.A.Movchan, G.S.Marinski. Gradient protective coatings of different application produced by EB-PVD. Surface & Coatings Technology. 1998, 101(1-3):309-315
    26 C.Rebholz, A.Leyland, P.Larour, C.Charitidis, S.Logothetidis, A.Matthews. The effect of boron additions on the tribological behaviour of TiN coatings produced by electron-beam evaporative PVD. Surface & Coatings Technology. 1999, 119:648-653
    27 D.E.Wolfe, J.Singh. Titanium carbide coatings deposited by reactive ion beam-assisted, electron beam-physical vapor deposition. Surface & Coatings Technology. 2000, 124(2-3):142-153
    28 B.A.Movchan. EB-PVD technology in the gas turbine industry: Present and future. Journal of the Minerals Metals & Materials Society. 1996, 48(11):40-45
    29金雪松,毕晓昉,欧盛荃,宫声凯,徐惠彬. K18/Mo纳米多层材料的力学性能及高温稳定性.金属学报. 2000, 36(1):99-103
    30 L.Ma, X.D.He, Y.Li. Optimized design and preparation of Ti/TiAl laminated composite. Transaction of Nonferrous Metals Society of China. 2005, 15(s3):48-52
    31 L.Ma, Y.Sun, X.D.He. Preparation and performance of large-sized Ti/Ti-Al microlaminated composite. Rare Metal Materials and Engineering. 2008, 37(2):325-329
    32 D.M.Zhang, G.Q.Chen, J.C.Han, S.H.Meng. Electron beam-physical vapor deposited TiAl-based laminated composite sheet with Nb layer toughening. Chinese Journal of Aeronautics. 2006, 19:s5-s8
    33 J.C.Han, Y.Li, X.D.He, S.H.Meng, G.Zeng, H.P.Chen. Preparation and mechanical properties of NiCoCrAlY/NiCr laminates by electron beam physical vapor deposition. Transaction of Nonferrous Metals Society of China. 2005, 15(s3):53-56
    34 Y.Li, J.P.Zhao, G.Zeng, C.L.Guan, X.D.He. Ni/Ni3Al microlaminate composite produced by EB-PVD and the mechanical properties. MaterialsLetters. 2004, 58(10):1629-1633
    35 H.R.Smith, Jr.K.Kennedy, F.S.Boericks. Metallurgical Characteristics of Titanium-Alloy Foil Prepared by Electron-Beam Evaporation. The Journal of Vacuum Science and Technology. 1970, 7(6):s48-s51
    36 A.V.Korzh, A.F.Belyavin, D.B.Snow. Low temperature superplasticity in EB-PVD titanium alloys. Materials Science Forum. 1997, 243-245:603-608
    37 C.L.Guan, X.D.He, Y.Li. Preparation and mechanical properties of Ni-Cr-Al alloy by EB-PVD. Transactions of Nonferrous Metals Society of China.2005, 15(2):275-279
    38 C.L.Guan, Z.X.Li, X.D.He. Mechanical properties and oxidation formation of EB-PVD deposited Ni-Cr-Al alloy. Transactions of Nonferrous Metals Society of China. 2005, 15(s3):61-65
    39 C.L.Guan, Z.X.Li, X.D.He. Mechanical properties and oxide formation of EB-PVD deposited Ni-Cr-Al alloy. Transaction of Nonferrous Metals Society of China. 2005, 15(3):61-65
    40 G.Q.Chen, X.H.Li, S.H.Meng, J.C.Han, Q.F.Li. Research on sheet metal of a new Ni-based superalloy prepared by EB-PVD. Materials Science Forum. 2007, 546-549:1313-1318
    41 X.Lin, Y.Sun, G.P.Song, X.D.He. Microstructure of Fe-Based ODS High-Temperature Alloy Sheet Prepared by EBPVD. Key Engineering Materials. 2007, 353-358:1637-1640
    42 F.D.Lemkey, B.A.Movchan. Synthesis of Porous and Dense Elements of SOFC by Electron Beam Physical Vapor Deposition (EBPVD).Proceedings of the NATO Advanced Research Workshop on Fuel Cell Technologies: State and Perspectives. Kyiv, 2004:73-80
    43 T.H.Shin, J.H.Yu, S.W.Lee, I.S.Han, S.K.Woo, B.K.Jang, S.H.Hyun. Preparation of electrolyte for SOFC by electron beam PVD. Key Engineering Materials. 2006, 317-318:913-916
    44 T.H.Shin, J.H.Yu, S.W.Lee, I.S.Han, S.K.Woo, B.K.Jang, S.H.Hyun. Fabrication of YSZ thin film for SOFC applied by electron beam PVD. Materials Science Forum. 2006, 510-511:1114-1117
    45 H.Y. Jung, K.S. Hong, H. Kim, J.K. Park, J.W. Son, J.S. Kim, H.W. Lee, J.H. Lee. Characterization of thin film YSZ deposited Via EB-PVD technique inanode-supported SOFCs. Journal of the Electrochemical Society. 2006, 153(6):A961-A966
    46 X.F.Bi, J.J.Wang, W.H.Lan, S.K.Gong, H.B.Xu. Concentration dependence of microstructure and soft magnetic properties in the FeSi-ZrO2 granular films. Journal of Magnetism and Magnetic Materials. 2004, 281(2-3):290-294
    47 X.F.Bi, W.H.Lan, S.Q.Qu, S.K.Gong, H.B.Xu. Magnetic and electrical properties of FeSi/FeSi-ZrO2 multilayers prepared by EB-PVD. Journal of Magnetism and Magnetic Materials. 2003, 261(1-2):166-171
    48 X.F.Bi, S.Q.Qu, S.K.Gong, H.B.Xu. Nano-crystallization and magnetic properties in the highly resistive Fe-Si-Zr-O films prepared by EB-PVD. Materials Science and Engineering. 2003, A344:74-78
    49金雪松,徐惠彬,宫声凯. Fe/Cu纳米多层材料的电导行为.中国科学(E辑). 2000, 30(5):386-390
    50 X.S.Jin, H.B.Xu, S.K.Gong. The electrical conductivity characteristics of Fe/Cu nano-scale multilayer materials. Science in China (series E). 2001, 44(1):83-88
    51 X.D.He, J.Yi, Y.Sun, Y.Li. Thermodynamic analysis of EB-PVD preparing SiC coating. Key Engineering Materials. 2007, 353-358:1663-1666
    52 J.Yi, X.D.He, Y.Sun, M.W.Li. Influence of remaining C on hardness and emmisivity of SiC/SiO2 nanocomposite coating. Applied Surface Science. 2007, 253:7100-7103
    53 J.Yi, X.D.He, Y.Sun, Y.Li. Electron beam-physical vapor deposition of SiC/SiO2 high emmisivity thin film. Applied Surface Science. 2007, 253:4361-4366
    54 N.Tsuya, K.I.Arai. Magnetostriction of ribbon-form amorphous and crystalline ferromagnetic alloys. Journal of Applied Physics. 1979, 50(3):1658-1663
    55 H.Haiji, K.Okada, T.Hiratani, M.Abe, M.Ninomiya. Magnetic properties and workability of 6.5% Si steel sheet. Journal of Magnetism and Magnetic Materials. 1996(160):109-114
    56 M.Komatsubara, K.Sadahiro, O.Kondo, T.Takamiya, A.Honda. Newly developed electrical steel for high-frequency use. Journal of Magnetism andMagnetic Materials 2002:242-245
    57杨劲松,谢建新,周成. 6.5%Si高硅钢的制备工艺及其发展前景.功能材料. 2003, 34(3):244-246
    58 Y.Takada, M.Abe, S.Masuda, J.lnagaki. Commercial scale production of Fe-6.5wt.%Si sheet and its magnetic properties. Journal of Applied Physics. 1988, 64(10):5367-5369
    59 K.Fujita, M.Namikawa, Y.Takada. Magnetic properties and workability of 6.5%Si steel sheet manufactured by siliconizing process. Journal of Material Science and Technology. 2000, 16(2):137-140
    60蔡千华摘译.含硅6.5%高硅板在高速电机中的应用. .中小型电机. 1994, 21(1):60-62
    61刘艳. Fe—6.5wt.%Si合金薄板磁性能的研究.北京科技大学2007:8-10
    62钟太彬,林均品,陈国良, Fe3Si基合金的制备及应用研究进展.功能材料.1999,30(4):337-339
    63 M.V.P.Altoó, M.S.Lancarotte, R.Cohen, F.P.Missell. Magnetic properties of Fe-6.4 wt% Si ribbons. IEEE Transactions on Magnetics. 1991, 27(6):5325-5327
    64 F.Fiorillo, L.Ferrando C.Appino. Magnetic Losses and Mechanical Properties of Fe-4to7.8wt% Rapidly Quenched alloys. IEEE Transactions on Magnetics. 1997, 33(5)
    65 G.E.Fish, C.F.Cang, R.Bye. Frequency dependence of core loss in rapidly quenched Fe-6.5wt% Si. Journal of Applied Physics. 1988, 64(10):5370-5372
    66 C.F.Chang, R.L.Bye, V.Laxmanan, S.K.Das. Texture and magnetic properties of rapidly quenched Fe-6.5wt% Si ribbon IEEE Transactions on Magnetics. 1984, 20(4):553-558
    67 K.Moras, W.Riehenna. Texture and magnetic properties of double-roller meltspun FeSi6.5wt% ribbons. Journal of Magnetism and Magnetic Materials. 2003, 254-255:29-31
    68 I.Ibarrondo, S.Surinach, J.Gonzalez. Influence of manufacturing process parameters on magnetic characteristics of high-FeSi crystalline rapidly quenched ribbons. Journal of Magnetism and Magnetic Materials. 1992, 112:232-234
    69 K.I.Arai, K.Ohmori, T.Satoh, Y.Yamashiro. Very low core loss high silicon-iron ribbons. IEEE Transactions on Magnetics. 1987, 23(5):3221-3226
    70 K.l.Arai, Y.Yamashiro. Annealing effect on grain texture of cold-rolled 4.5%Si-Fe ribbons prepared by a rapid quenching method. Journal of Applied Physics. 1988, 64(10):5373-5375
    71谢建新等.材料加工新技术与新工艺.冶金工业出版社.2004:38-39
    72杨春楣,周守则,丁倍道.双辊连铸硅钢薄板研究现状.材料导报. 1999, 13(1):24-26
    73邹冰梅,阮晓丰.双辊薄板连铸工艺生产硅钢技术.钢铁研究. 2003, 5:59-63
    74刘海明,彭长平,李玉国.高硅电工钢片的开发.金属材料研究. 1993, 19(2):23-29
    75牛长胜,王艳丽,林均品,林志,陈国良. Fe3Si基合金的动态再结晶机制.材料热处理学报. 2003, 24(1):28-32
    76牛长胜,黄新发,王艳丽,林均品. Fe3Si基合金的温挤压工艺.北京科技大学学报. 2006, 28(7):641-644
    77宋洪伟,林栋樑,单爱党,陈家光,王聪.定向凝固Fe-6.5%Si合金室温三点弯曲过程中的滑移.上海交通大学学报. 2001, 35(3):466-468
    78王聪,林栋樑,单爱党,陈家光,曹涵清,陈英颖.热轧退火态Fe-6.5%Si合金的力学行为及变形机制.上海交通大学学报. 2002, 36(5):601-611
    79王聪,林栋樑,单爱党,陈家光,曹涵清,宋洪伟. Fe-6.5Si合金热轧板显微组织的TEM观察.金属学报. 2002, 38(5):517-520
    80王聪,单爱党,林栋樑,陈家光,曹涵清.温度对退火态6.5% Si-Fe热轧合金磁性的影响.材料科学与工程. 2002, 20(1):51-60
    81宋洪伟,陈家光,王聪,林栋樑,单爱党,姜东涛.晶界设计和控制及其在Fe-6.5%Si合金中的应用.宝钢技术. 2001(4):40-44
    82王聪,单爱党,林栋樑,陈家光,曹涵清.中温拉伸Fe-6.5Si合金变形机制的实验观察.理化检验-物理分册. 2001, 37(2):47-49
    83林均品,叶丰,陈国良,王艳丽,梁永锋,金吉男,刘艳. 6.5 wt%Si高硅钢冷轧薄板制备工艺、结构和性能.前沿科学. 2007(2):13-25
    84 J.Barros, B.Molengier, R.V.Keeper, Y.Houbaert. Modeling silicon and aluminum diffusion in electrical steel. Journal of Phase Equilibria and Diffusion. 2005, 26:417-422
    85 T.Ros-Yanez, D.Ruiz, J.Barros, Y.Houbaert. Advances in production of high-silicon electrical steel by thermomechanical processing and by immersion and diffusion annealing. Journal of Alloys and Compounds. 2004, 369:125-130
    86 T.Ros-Yanez, M.D.Wulf, Y.Houbaert. Influence of the Si and Al gradient on the magnetic properties of high-Si electrical steel produced by hot dipping and diffusion annealing. Journal of Magnetism and Magnetic Materials. 2004, 272-276:e521-e522
    87 J.B.Lorenzo, T.Ros-Ya?ez, M.Dewulf, Y.Houbaert. Magnetic properties of electrical steel with Si and Al concentration gradients. IEEE Transactions on Magnetics. 2004, 40(4):2739-2741
    88 J.BArros, J.Schneider, Y.Houbaert. Assessment of Si and Al diffusion for the production of high Si and Al electrical steel. Journal of Magnetism and Magnetic Materials. 2008, 328:e389-e392
    89胡广勇,左良,武保林,王刚,梁志德.沉积-扩散法制取Fe-6.5%Si薄板的织构研究.金属学报. 1998, 34(5):506-510
    90 L.Zuo, G.Y.Hu, Y.H.Sha. Texture evolutions in Fe-6.5%Si produced by rapid solidification and chemical vapor deposition. Journal of Material Science and Technology. 2002, 18(6):516-518
    91王文明,潘复生等.喷射成形技术的发展概况及展望.重庆大学学报. 2004, 27(1):101-106
    92杨林,田冲,陈桂云,张永昌,叶恒强.喷射扎制Fe-4.5%Si硅钢片的组织和性能.材料科学与工艺. 2002, 10(1):55-58
    93 C.Bolfarini, P.P.Gusson, M.C.A.Silva, C.Shyinti. Magnetic properties of spray formed Fe-3Si, Fe-5Si and Fe-6.5Si. Materials Science Forum. 2003, 416-418:113-118
    94 M.C.A.Silva, C.Bolfarini, C.S.Kiminami, R.Machado, M.J.Kaufman. Magnetic properties of spray formed Fe-6.wt% Si alloy. Key Engineering Materials. 2001, 189-191:643-648
    95 A.H.Kasama, R.Machado, A.R.Yavari, G.Vaughan, C.Bolfarini. Order/disorder transformations in spray formed FeSiAl alloys. Journal of Metastable and Nanocrystalline Materials. 2004, 20-21:553-556
    96 M.C.A.Silva, C.Bolfarini, C.S.Kiminami. Microstructure and magneticproperties of Fe-6.5 wt% Si alloy obtained by spray forming process. Materials Science Forum. 2005, 498-499:111-118
    97杨林,田冲,张永昌,叶恒强.喷射成形硅钢板坯的工艺研究.粉末研究技术. 2001, 19(6):354-357
    98 E.V.Walker, J.howard. The production of Silicon-iron Magnetic Strip with the (110) [001] Texture by Cold Rolling from Sintered Compacts. Powder Metallurgy. 1959(4):32-43
    99 W.F.Wang. Rolling Compaction, Magnetic Properties and Microstructural Development during Sintering of Fe-Si. Powder Metallurgy. 1995, 38(4):289-293
    100 W.J.Yuan, J.G.Li, Q.Shen, L.M.Zhang. A study on magnetic properties of high Si steel obtained through powder rolling processing. Journal of Magnetism and Magnetic Materials. 2007, 320(1-2):76-80
    101 R.Li, Q.Shen, L.M.Zhan, T.Zhang. Magnetic properties of high silicon iron sheet fabricated by direct powder rolling. Journal of Magnetism and Magnetic Materials. 2004, 281:135-139
    102员文杰,沈强,张联盟.粉末轧制法制备Fe-6.5%Si硅钢片的研究.粉末冶金技术. 2007, 25(1):32-34
    103 Q.Shen, Y.Zhou, J.G.Li, W.J.Yuan, L.M.Zhang. Sintering behavior of Fe-Si composite powder by DPR technique. Key Engineering Materials. 2007, 336-338:2344-2346
    104 L.M.Zhang, W.J.Yuan, Q.Shen, D.M.Zhang. Formation of Fe-6.5 wt% Si sheets by powder rolling and sintering. Key Engineering Materials. 2005, 280-283:1713-1715
    105 Q.Shen, R.Li, L.M.Zhan. Local graded structure in 6.5 wt% Si-Fe alloy and the effect on ductility. Materials Science Forum. 2005, 492-493:59-62
    106 J.G.Li, W.J.Yuan, Y.Zhou, L.M.Zhou. Effect of Sn on the sintering of Fe-Si alloys. Key Engineering Materials. 2008, 368-372:1591-1592
    107 W.J.Yuan, R.Li, Q.Shen, L.M.Zhang. Characterization of the evaluation of the solid solubility of Si in sintered Fe–Si alloys using DSC technique. Materials Characterization. 2007, 58:376-379
    108周树青.等离子体化学气相沉积法(PCVD)制6.5%硅钢片的研究.武汉科技大学硕士学位论文.2000:18-19
    109夏先平,吴润,陈大凯,吴新杰. PCVD法制取高硅钢的研究.武汉冶金科技大学学报. 1996, 9(4):429-431
    110王营,周树清,陈大凯. PCVD法制取高硅钢的研究.热加工工艺. 2000, 6:46-47
    111吴润,陈大凯.高硅钢的PCVD制造工艺及电磁性能.钢铁研究学报. 1997, 9(4):42-45
    112王蕾,周树青,吴新杰,李平生,高莹,陈大凯. PCVD法渗6.5%Si的动力学问题研究.武汉科技大学学报. 2000, 23(4):344-346
    113蔡宗英,张莉霞,李运钢.电化学还原法制备Fe-6.5%Si薄板.湿法冶金. 2005, 24(2):83-87
    114李兴华,潘惠彬.密度计量.中国计量出版社, 1989:34-36
    115 B.A.Movchan, A.V.Demchishin. Study of structure and properties of thick vacuum condensates of Nickel, Titanium, Tungsten, Aluminium oxide and Zirconium dioxide. Fiz metal metalloved. 1969,28:83-90
    116梁英教,车荫昌,刘晓霞,李乃军.无机物热力学数据手册.东北大学出版社, 1993:513-518
    117戴永年,赵忠.真空冶金.冶金工业出版社, 1988:615-641
    118 C.Wagner. Passivity during the oxidation of Silicon at elevated temperature. Journal of Applied Physics. 1958, 29(9):1295-1297
    119 M.Balat. Oxidation of aluminum nitride at high temperature and low pressure. Calphad. 1996, 20(2):161-170
    120 E.D.Erikson. Thickness distribution of a metal-alloy from a high-rate electron-beam source. Journal of Vacuum Science and Technology. 1973, 11(1):366-370
    121 Y.C.Shan, X.D.He, M.W.Li, Y.Li. Thickness distribution of large scale metallic sheet by EB-PVD on rotating substrate. Transactions of Nonferrous Metals Society of China. 2005, 15(s3):232-235
    122 U.Schulz, S.G.Terry, C.G.Levi. Microstructure and texture of EB-PVD TBCs grown under different rotation modes. Materials Science and Engineering A. 2003, 360:319-329
    123 R.Nimmagadda, R.F.Bunshah. Temperature and Thickness Distribution on the Substrate during High-Rate Physical Vapor Deposition of Materials. The Journal of Vacuum Science and Technology. 1971, 8(6):VM85-VM94
    124 R.F.Bunshah. Structure/property relationships in evaporated thick films and bulk coatings. Journal of Vacuum Science & Technology, A: Vacuum, Surfaces, and Films. 1974, 11(4):633-638
    125 I.Petrov, P.B.Barna, L.Hultman, J.E.Greene. Microstructural evolution during film growth. Journal of Vacuum Science & Technology, A: Vacuum, Surfaces, and Films. 2003, 21(5):s117-s128
    126 J.Singh, D.E.Wolfe. Nano and macro-structured component fabrication by electron-beam physical vapor deposition (EB-PVD). Journal of materials science. 2005, 40:1-26
    127 S.Schiller, U.Heisig, S.Panzer. Electron Beam Technology. John Wiley and Sons 1982:156-158.
    128虞觉奇,易文质,陈邦迪,陈宏编译.二元合金状态图集.1987:559
    129 K.Wada, M.Yoshiya, et.al. Texture and microstructure of ZrO2-4mol%Y2O3 layers obliquely. Surface & Coatings Technology. 2006, 200:2725-2730
    130单英春. EB-PVD薄板沉积的多尺度模拟.哈尔滨工业大学博士论文.2006:75-80
    131 S.G.Terry. Evolution of microstructure during the growth of thermal barrier coatings by electron beam physical vapor deposition. P.H.D Dissertation, University of California .2001:22-25
    132 T.Ros-Yanez, D.Ruiz, D.Lopez, T.Hilgert, L.Dupre, R.E.Vandenberghe, Y.Houbaert. Influence of ordering phenomena on the magnetostriction of high Si alloys for electrical applications. Journal of Applied Physics. 2005, 97:10F901-10F903
    133 T.Ros, D.Ruiz, Y.Houbaert, R.E.Vandenberghe. Study of ordering phenomena in high silicon electrical steel (up to 12.5at%) by M?ssbauer spectroscopy. Journal of Magnetism and Magnetic Materials. 2002, 242-245:208-211
    134 E.Rabkin, B.Straumal, V.Semenov, W.Gust, B.Predel. The influence of an ordering transition on the interdiffusion in Fe-Si alloys. Acta Metallurgica et Materialia. 1995, 43(8):3075-3083
    135 J.H.Yu, J.S.Shin, J.S.Bae, Z.H.Lee, T.D.Lee, H.M.Lee, E.J.Lavernia. The effect of heat treatments and Si contents on B2 ordering reaction in high-silicon Steels. Materials Science & Engineering, B: Solid-State Materials forAdvanced Technology. 2001, 307:29-34
    136 T.Ros, D.Ruiz, Y.Houbaert, R.E.Vandenberghe. Study of ordering phenomena in high silicon electrical steel (up to 12.5 at%) by M?ssbauer spectroscopy. Journal of Magnetism and Magnetic Materials. 2002, 242-245:208-211
    137 D.Ruiz, T.Ros-Ya?ez, L.Vandenbossche, L.Dupre, R.E.Vandenberghe, Y.houbaert. Influence of atomic order on magnetic properties of Fe-Si Alloys. Journal of Magnetism and Magnetic Materials. 2005, 290-291:1423-1426
    138 D.Ruiz, T.Ros-Yanez, E.D.Grave, R.E.Vandenberghe, Y.Houbaert. Room and 'in situ' high-temperature Mossbauer study of ordering in Fe-Si (0-22at %) alloys. Journal of Magnetism and Magnetic Materials. 2004, 272-276:e1663-e1665
    139 P.W.Jang, B.H.Lee, G.B.Chot. Order-disorder transition and magnetic properties of Fe-6.5Si alloy powder cores. Physic Status Solidi A. 2007, 204(12):4108-4112
    140 L.F.Kiss, D.Kaptás, J.Balogh, L.Bujdosó, J.Gubicza, T.Kemény, I.Vincze. Magnetic properties of ball-milled FeAl nanograins. Physica Status Solidi a. 2004, 201(15):3333-3337
    141 N.Randrianantoandro, E.Gaffet, J.Mira, J.M.Greneche. Magnetic hyperfine dependence in Fe-Si crystalline alloys State Solid Communications. 1999, 111:323-327
    142 D.Ruiz, R.E.Vandenberghe, T.Ros-Ya?ez, E.Degrove, Y.Houbaert. Characterizing the ordering of thermomechanically processed high-Si steel by M?ssbauer effect techniques. Hyperfine Interactions. 2006, 168:1037-1040
    143 E.Jartych. Local atomic order in nanocrystalline Fe-based alloys obtained by mechanical alloying. Journal of Magnetism and Magnetic Materials. 2003, 265:176-188
    144梁志凯,田世藩,赵先国,任立平,李周.热等静压对喷射成形高温合金组织和性能的影响.材料工程. 1996(07):24-25
    145袁武华,詹美燕,徐海洋,夏伟军,傅定发.耐热铝合金的致密化工艺与材料性能.材料开发与应用. 2003, 18(3):18-21
    146 Y.G.Wei, B.Q.Xiong, Y.A.Zhang, H.W.Liu, F.Wang, B.H.Zhu.Microstructures variation of spray formed Si-30Al alloy during densification process Transaction of Nonferrous Metals Society of China. 2006, 16:s1570-1573
    147李振豪,王忠华,李琳,菩朝光,杨培志.快速退火对PZT铁电薄膜结构的影响.人工晶体学报. 2006, 35(2):415-419
    148苏学军,李岩.快速退火工艺对BTO薄膜结构的影响.新技术新工艺. 2002(11):29-30
    149刘宏伟,张永安,朱宝宏,王锋,魏衍广,熊柏青.喷射成型70SiAl电子封装材料致密化处理及组织性能研究.稀有金属. 2007, 31(4):446-450
    150 R.W.Smith, D.J. Srolovitz. Void formation during film growth: A molecules dynamic simulation study. Journal of Applied Physics. 1995, 79(3):1448-1457
    151 J.Chao, S.G.Terry, R.Lesar, C.G.Levi. A kinetic Monte Carlo simulation of film growth by physical vapor deposition on rotating substrates. Materials Science and Engineering A. 2005, 391:390-401
    152何忠治.电工钢.冶金工业出版社, 1997:23-24.
    153 J.S.Shin, J.S.Bae, H.J.Kim, H.M.Lee, T.D.Lee, E.J.Lavernia, Z.H.Lee. Ordering-disordering phenomena and micro-hardness characteristics of B2 phase in Fe-(5-6.5%) Si alloys. Materials Science and Engineering A. 2005, 407:282-290
    154 O.Kubaschewski. Phase diagrams of binary iron alloys. Asm international materials park, 1993:380-381
    155周建强,艾兴,李兆前,邓建新.残余应力对陶瓷/硬质合金复合片硬度的影响.无机材料学报. 1998, 13(4):625-628
    156 G.Bertotti, F.Fiorillo, G.P.Soardo. Dependence of power losses on peak magnetization and magnetization frequency in grain-oriented and non-oriented 3%SiFe. IEEE Transactions on Magnetics. 1987, 23(5):3520-3522
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.