马尾松板材干燥应力模型及应变连续测量的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木材干燥应力应变是制定最佳木材干燥工艺的理论依据,干燥应力模型可以用数学的方法来描述木材干燥应力的产生原因和发展规律,是实现干燥应力控制技术的理论基础;因此,木材干燥应力模型的研究具有重要理论意义和实际生产指导意义。
     本文以30mm厚马尾松板材为研究对象,把干燥过程中板材实际干缩分为自由干缩应变、瞬时弹性应变、粘弹性应变、机械吸附应变四部分,根据差分原理,对板材干燥时间进行离散,建立马尾松板材干燥应力数学模型,用模型解释了板材内部某层的自由干缩与板材实际干缩之差是该层产生干燥应力的原因;还用模型解释板材干燥过程中的应力变化规律、残余应力产生的原因及粘弹性应变和机械吸附应变对干燥应力的消除作用。模型验证实验表明,本文提出的干燥应力模型可以准确描述木材干燥应力应变变化规律;但此干燥应力模型不能计算和解释调湿处理过程中的干燥应力。
     本文突破传统干燥应力定性分析方法,用数学方法对马尾松板材干燥应力应变规律进行深入研究,研究表明:粘弹性应变和机械吸附应变很大程度上释放了干燥应力。由于内部各层含水率依次低于FSP开始产生自由干缩应变,而受到其它层的制约,板材将由表层到芯层依次产生拉应力。在干燥过程中瞬时弹性应变最小,粘弹性应变与机械吸附应变较大。各层粘弹性应变与瞬时弹性应变比值近似为常数2.49;而机械吸附应变与瞬时弹性应变的比值波动较大,最大机械吸附应变与对应时刻的瞬时弹性应变比值为8.73~45.34;由于机械吸附应变的叠加,在应力转向前机械吸附应变比粘弹性应变大,应力转向后由于机械吸附应变正负叠加,可能使机械吸附应变小于粘弹性应变。
     本文设计制作了一种电阻应变计式木材干缩的传感器,此传感器实现了木材干缩和粘弹性应变的连续测量,从而为木材力学性能和木材干燥应力应变研究提供一种新测量方法。本文还提出一种新的干燥应力连续测量方法,用此法测量马尾松板材表层临界干燥应力,并用表层临界干燥应力作为控制参数对30mm厚马尾松板材进行干燥,结果表明:此法比常规干燥快7.5h,干燥效率提高13.89%,干燥过程中未发现板材表裂,干燥质量达国家二级质量标准。
     本文还得到了马尾松木材物理力学性能,为马尾松木材的深入研究奠定了理论基础。研究表明:温度对马尾松木材全干缩率和自由干缩系数无影响,在FSP以下自由干缩系数与含水率无关。马尾松木材弦向粘弹性系数不受载荷变化的影响,但随含水率和温度的变化而变化;马尾松木材弦向机械吸附系数不受载荷和含水率变化的影响,但随温度的升高而增大。
Wood drying stress and strain is the theoretical basis of making the optimum wood drying schedule. The drying stress model can describe the cause of generation of wood drying stress and it's developing regularity by mathematical method, and it is the theoretical basis which can accomplish the control technology of wood drying; therefore, it is theoretically important and practically significant to study wood drying stress model.The object of this paper was 30mm thick Pinus massoniana boards. The actual shrinkage during the process of drying was divided into four components, including free shrinkage strain, instantaneous strain, viscoelastic strain and mechano-sorptive strain. The mathematical model of drying stress of Pinus massoniana boards was established by diverging wood drying time, the difference between the free shrinkage of one layer in the board and the actual shrinkage of the board could be described using the model, which was the cause that drying stress generates in that layer. The model could also explain the changing regularity of stress, the cause of generation of residual stress during drying and the relievable effect of viscoelastic strain and mechano-sorptive strain on drying stress. The experiment of model verification indicated that the drying stress model presented in this paper could describe the changing regularity of drying stress and strain of wood during drying, but the drying stress model couldn't calculate and explain the drying stress during process of conditioning.In this paper the traditionally analytical method of drying stress was broken through, the study on drying stress and strain of Pinus massoniana board by mathematical method showed that viscoelastic strain and mechano-sorptive strain released the drying stress to a significant extent Because the moisture content of inner layers was orderly below FSP during drying, free shrinkage strain occured in the board, tensile stress took place orderly from outer layer to core layer. The instantaneous strain was the smallest during drying, viscoelastic strain and mechano-sorptive strain were larger. The ratio of viscoelastic strain to instantaneous strain of all layers was 2.49; but that of mechano-sorptive strain to instantaneous strain was in the large range of fluctuantion which was between 8.73 and 45.34; Because of its superimposition, the mechano-sorptive strain was larger than viscoelastic strain before stress reversal, but after that, mechano-sorptive strain might be smaller than viscoelastic strain.In this paper a wood shrinkage sensor of resistance strain was designed and made. The sensor realized the continuous measurement of wood shrinkage and viscoelastic strain and it provided a new measuring method for the study on the mechanical property and drying stress and strain of wood.A new method of continuous measurement for drying stress was also presented in this paper
    and the critical drying stress of the surface layer of Pinus massoniana board was measured by that method. Pinus massoniana board of 30mm thick was dried by regarding the critical drying stress as controEing parameter. The results showed that the drying period was 7.5h faster than that of conventional drying, the drying efficiency was improved by 13.89%. The surface check was not found out during drying, and the drying quality could come up to National second degree drying quality standard.The physical and mechanical properties were obtained in this paper and the theoretical basis of profound research for Pinus massoniana board was established. The research indicated that temperature had no effect on the ratio of total shrinkage and the coefficient for free shrinkage, the coefficient for free shrinkage was irrelevant to moisture content below FSP. The shrinkage coefficient for Pinus massoniana board in tangential direction was not affected by the change of load, but it changed with the change of moisture content and temperature; the tangential mechano-sorptive coefficient was not affected by the change of load or moisture content, but it increased with the increase of temperature.
引文
[1] 陈太安.赤桉干燥预热处理与干燥流变特性的研究.博士学位论文,南京林业大学,2004
    [2] 成俊卿主编.木材学,中国林业出版社,1985
    [3] 常建民.木材干燥应力测试技术现状及展望.世界林业研究,1997,(6):33~37
    [4] 常建民,胡松涛,闰运忠.非接触式测试木材干燥应力的方法的研究.林产工业,1998,25(5):21~24
    [5] 程万里等.木材高温高压蒸汽干燥过程中收缩应力特征初探.第九次全国木材干燥学术讨论会论文集,2003,212~219
    [6] 程万里等.木材在100℃以上过热蒸汽干燥过程中的收缩应力.第九次全国木材干燥学术讨论会论文集,2003,220~225
    [7] 刁海林,梁炳钊等.木材蠕变特性常数研究方法探讨.广西科学,2002,9(2):148~150
    [8] 刁海林,梁炳钊等.马尾松、尾赤桉木材蠕变特性常数的研究.广西科学,2003,10(2):150~153
    [9] 刁秀明,何玲芝.阔叶材干燥应力的研究——温度对干燥应力的影响.林业科技,1994 (2),37~41
    [10] 刁秀明,孟祥柏.杯弯法测试木材干燥应力的研究.林产工业,1995,22(4),16~19
    [11] 高建民.木材干燥应力连续监测方法研究.第八次全国木材干燥学术讨论会论文集,2001,77~84
    [12] 高建民,余雁,刘志军,木材干燥应力连续监测方法的研究.木材工业,2004,18(3):1~4
    [13] 顾炼百.全面理解、正确使用木材的高温干燥.林产工业,1985(1)
    [14] 顾炼百主编.木材加工工艺学.2003.中国林业出版社
    [15] 龚蒙.用电阻应变法测定木材顺纹抗压弹性常数的研究.林业大学,1995,31(2):189~191
    [16] 龚仁梅,王丽宇.汽蒸处理对木材干燥应力的影响.林业科技,1996,21(5):40~42
    [17] 龚仁梅,徐金利,周萍.汽蒸时间对木材弦、径向干缩的影响.林业科技,1997,22(2):41~42
    [18] 郭焰明.南方阔叶树材干燥初期应变特点的研究.木材工业,1995(4):6~11
    [19] 李大纲.蒋本浩,徐永吉.温湿处理对杉木弯曲蠕变性能的影响.建筑人选板,1994(1):9~12
    [20] 李大纲.杨木高温干燥过程中水分迁移及流变特性的研究.博士学位论文.南京林业大学,1998
    [21] 李大纲.意杨木材弯曲蠕变性能的特性的初步研究.四川农业大学学报.木材研究专辑,1998,16 (1):99-101
    [22] 李大纲,顾炼百.杨木高温干燥过程中表层流变特性的研究.林业科学.1999.35 (1):83~89
    [23] 李大纲,顾炼百.木材高温干燥过程中的弹性应变.木材工业,2000,14 (2):15~17
    [24] 李大纲.国内外木材干燥应力应变研究现状及发展趋势.建筑人造板,2001 (2),15~19
    [25] 廖元强.成材室干过程是否存在没有应力阶段.林业科技开发,1991(1),56~57
    [26] 李维桔.木材弹性及木材干燥应力.Ⅱ木材干燥应力.南京林产工业学院学报,1983(2):107~122
    [27] 刘应安.木材干燥应力测试的一种新方法.林业科技开发,1991(3),32~33
    [28] 刘应安.木材干燥应力数学模型.东北林业大学学报,1998,26(5):56~59
    [29] 孙令坤等.用临界含水率梯度控制米锥、锥树木材干燥质量.林产工业.1993,20(3):10~13
    [30] 邵卓平,祝山.电阻应变法测定杉木弹性常数的研究.安徽农业大学学报,2000,28(4):32~35
    [31] 邵卓平.木质材料变参数流变模型的研究.林业科学,2003,39(3):106~110
    [32] 沈观林等编.电阻应变计及其应用[M].清华大学出版社,1983年7月
    [33] 滕通濂.南方阔叶材干燥初期应变特点的研究.林产工业,1995(4):16~19
    [34] 滕通濂.短周期工业材干缩率和干燥应变规律的研究.林产工业,1999(2):17~21
    [35] 涂登云,顾炼百,王雅各,刘军.木材干缩与含水率测量两用传感器.专利号 ZL200420026487.2
    [36] 涂登云,顾炼百等.干燥过程中马尾松板材干燥应变的研究.南京林业大学学报(自然科学版),2004,28(4):23~28
    [37] 王东林等.BLM—1型木材干燥自动控制系统的研制.第八次全国木材干燥学术讨论会论文集,2001,207~212
    [38] 王培元.木材横纹压缩流变参数的测定.林业科学,1985,21(4):404~413
    [39] 王培元.白杨木材横纹压缩流变性能Ⅰ粘弹性.林业科学,1987,23(2):183~190
    [40] 王培元.白杨木材横纹压缩流变性能Ⅱ塑性.林业科学,1987,23(3):356~363
    [41] 王喜明等.木材干燥应力应变模型的研究-1 超微观模型的构筑.第九次全国木材干燥学术讨论会论文集,2003,136~147
    [42] 熊如珍、黄国雄.乾燥材残余应力之研究.台湾林业科学.2000,15(3):441~444
    [43] 于建芬等.木材干燥应力应变模型的研究-2 宏观模型的构筑.第九次全国木材干燥学术讨论会论文集,2003,148~157
    [44] 余雁,高建民,刘志军.木材干燥应力应变研究现状及展望.第八次全国木材干燥学术讨论会论文集,2001,26~31
    [45] 周宝华.木材干燥过程内应力的初步研究.南京林产工业学院学报.1982,(2),76~79
    [46] 张勤丽,张齐生,张彬渊译.木材应用基础.上海科学技术出版社,1986,356~382
    [47] 战剑锋.白桦干燥过程横纹干燥应力的初步研究,第九次全国木材干燥学术讨论会论文集,2003,184~193
    [48] 朱政贤。木材干燥(第二版),中国林业版社,1989
    [49] 德本守彦.水分回复(第1报)材全膨润经过.木材学会誌,1973,19(12):577~584
    [50] 德本守彦.水分回复(第2报)材回复及吸着水分量干湿缲 返 效果.木材学会誌.1973,19(12):585~591
    [51] 德本守彦.木材人工干燥表面硬化(第1报)木材人工干燥过程发生推移.木材学会誌.1989,35(3):175~184
    [52] 德本守彦.木材人工干燥表面硬化(第2报)人工干燥木材表层内部吸湿膨润变勤,木材学会誌.1989,35(3):185~189
    [53] 德本守彦.木材人工干燥表面硬化(第3报)过程木材内外层变化.木材学会誌.1989,35(5):392~399
    [54] 德本守彦.木材水分非平衡状态.木材学会誌.1994,40(11):1157~1164
    [55] 德本守彦.木材吸脱湿下曲.木材学会誌.2001,47(3):189~197
    [56] 德本守彦.木材Ⅰ.木材工业,2001,56(2):48~52
    [57] 德本守彦.木材Ⅱ.木材工业,2001,56(3):100~104
    [58] 饭田生穗 今村佑嗣.压缩处理材液体浸透(第4报)压缩及回复材强度性能.木衣材学会誌.1995,41(12):1165~1172
    [59] 饭田生穗,高山知香子等.压缩处理材液体浸透(第1报)吸液量压缩变形回复影响.木材学会誌.1992,38(3):233~240
    [60] 饭田生穗,则元京等.压缩水分·热回复.木材学会誌.1984,30(5):354~358
    [61] 饭田生穗.日本木材在干燥中的弯曲蠕变.木材工业.1981,36(7):29~32
    [62] 高橋撤,山田正.木材Drying残余变形关研究(第1报)水分非平衡下引张,特荷重依存性.木材学会誌.1966,12(1):6~10
    [63] 久田卓兴.木材干燥(第1报)含水率变化范围異时.1979,25(11):688~696
    [64] 久田卓兴.木材干燥(第2报)引张应力影响.木材学会誌.1979,25:697
    [65] 久田卓兴.木材干燥(第3报)生成应力履曆影响.木材学会誌.1980,26(4):233~240
    [66] 久田卓兴.木材干燥(第4报)压缩应力影响.木材学会誌.1980,26(8):519~526
    [67] 久田卓兴.木材干燥(第5报)干燥温度影响.木材学会誌.1981,27:381~389
    [68] 久田卓興.木材干燥(第6報)幹燥速度影响.木材学会誌.1981,27:390
    [69] 久田卓興.木材干燥關研究.林產試研報.1986,335:31~130
    [70] 浦上弘幸.粘弹性模型在木材弯曲蠕变中的应用及要素常数.木材学会誌,1982,28(7):414~421
    [71] 寺沢真.木材乾燥簡易決定法.木材工業,1965(20),216
    [72] 藤田晋輔.干燥割研究(第3報)引張荷重下乾燥中2.3舉動溫度影響.木材学会誌,1966,12(6):267~271
    [73] 藤田晋輔.干燥割研究(第5報)乾燥中引張荷重变化伴舉動.木材学会誌,1969,15(4):51~55
    [74] 西尾茂.法木材乾燥應力推定(第5報).木材志.1978(1)
    [75] 西尾茂.法木材乾燥應力推定.木材工業.1972(12)
    [76] 喜多山繁.木材幹燥AE.木材工業.1985,40(10):14~19
    [77] 小林功久田卓興.木材幹燥表面測定管理適用.木材工業.1998,(2),69~73
    [78] 小玉泰義,河崎弥生.柱材幹燥应力簡易推定法.木材工业,1994,49(3):120~123
    [79] 有馬孝禮.温度变動過程木材(第1報)温度一定,上升,下降過程.木材学会誌.1972,18(7):349~113
    [80] 有馬孝禮.温度变動過程木材(第2報)温度变動下及履曆效果.木材学会誌.1972,18(8):377~380
    [81] 植原平,绵引诚,西野吉颜,作野友康.正角材高温干燥内部割抑制:用计测内部内部割关系.木材学会誌,2004,50(5):310~315
    [82] 竹村富男.放湿過程木材記憶效果(第3報)乾燥應力预测.木材学会誌.1972,18(3):105~113
    [83] 竹村富男.放湿過程木材記憶效果(第3報)乾燥應力预测原理.木材学会誌.1972,18(1):1~6
    [84] Akerfelds I, Verdins G. Stresses and Deformation in Pine(Pinus Sylvesris) Sawn Timber During the Initial Phase of Drying. 8th International IUFRO Wood Drying Conference, Brasov, Rmania, 2003: 87~92
    [85] Alexiou, P. N. Accelerating the kiln drying of regrowth E. piluaris Sm. IUFRO wood drying symposium, Washington, USA, 1989a, 116~125
    [86] Behnke C. & K. -E. Militzer. A simulation model for timber drying checked by measurements at technical kilns. Drying Technology, 1994, 12(8): 1841~1862
    [87] Booker, J. D. Acoustic emission related to instantaneous strain in Tasmamian eucalypt timber during seasoning. Wood Science and Technology, 1994a, 28: 249~259
    [88] Booker, J. D & P. E. Doe. Acoustic emission related to strain energy during drying of Eucalypyus regnans boards. Wood Science and Technology, 1995, 29: 145~156
    [89] Brooker A, S & Langrish T. A. G. The simulation of stresses aand strains in the drying of Pinus radiata sapwood: the effects of board geometry. Computers chem.. Engng , 1997, 21(11): 1271~1281
    [90] Cai Zhiyong. Y. et al. Creep and creep and creep-recovery models for wood under high stress levels. Wood and Fiber, 2002, 34(3): 425~433
    [91] Carrington. A. M. High-temperature seasoning of softwood boards: determination of mechanical properties at elevater temperatures. ME Thesis, Department of Chemical and Process Engineering, University of Canterbury, New Zealand, 1996
    [92] Carrington, A. M; R. B. Keey; J. C. F. Walker. Free shrinkage of Pinus radiata at an elevated temperature. New Zealand Journal of Forestry Science, 1995, 25(3): 348~357
    [93] Chahud E. The longitudinal modulus of elasticity of wood. Proceeding 7 of the second RILEM Symposiu, Salvador Bahia Brazil, 1990: 248~254
    [94] Chen G, Keey R. B, Walker C. F. Stress relief for sapwood Pinus radiata boards by cooling and steam-conditioning processes. Holz als Roh-und Workstoff, 1997, 55: 351~360
    [95] Chen G. Keey R. B, Walker C. F. The drying stress and check development on high-temperature kiln seasoning of sapwood Pinus radiata boards(Ⅰ). Holz als Roh-und Workstoff, 1997, 55: 59~64
    [96] Chen G, Keey R. B, Walker C. F. The drying stress and check development on high-temperature kiln seasoning of sapwood Pinus radiata boards(Ⅱ). Holz als Roh-und Workstoff, 1997, 55: 169~173
    [97] Cheng, W. &T. Morooda & M. Norimoto. The stress occurring in wood under high temperature steam. 7th International IUFRO Wood drying Conference, Tsukuba, Japan, 2001: 256~261
    [98] Dahlblom, O, et al. Numerical simulation of the development of deformation and stress in wood during drying. Proc 4th IUFRO Int Wood Drying Conf, Rotorua, New Zealand, 1994: 165~172
    [99] Dinwooddie J. M. Timber, its nature and behavior. Van Nostrand Reinhold. New York, 1981, 190pp
    [100] Erickson, R. W. Mechano-sorptive phenomena in drying red oak. IUFRO wood drying symposium, Washington, usa, 1989, 79~91
    [101] Erickson, R. W & R. T. Seavey. Energy quantification and mechano-sorptive behavior in the kiln drying of 2.5mm thick red oak lumber. Drying Technology, 1992, 10(5): 1183~1206
    [102] Erickson, R. W. The effect of drying temperature on the mechano-sorptive of red oak luber. Drying Technology, 1994, 12(8): 1943~1961
    [103] Fuller, J. Lumber drying stress development and prong test implications. Doctor dissertation of North Carolina State University. 1993
    [104]Fuller.Conditioning stress development and factors that influence the prong test.Res.Rap.FPL-RP-537.Madison,WI:U.S.department of agriculture ,Forest Service .Forest Products Laboratory, 1995a
    [105]Fuller.Kiln control based on changing shrinkage rate.United States Patent, Feb.23, 1999, Patant Number: 5,873,182
    [106]Fuller.Modeling prong test response during conditioning of red oak lumber . Res. Rap. FPL-RP-537. Madison,WI:U.S.department of agriculture ,Forest Service .Forest Products Laboratory, 1995b
    [107]Ganowica,R. & L.Muszynski. Simulation of drying stresses in wood . Proc 4~(th) IUFRO Int Wood Drying Conf ,Rotorua,New Zealand, 1994:211-220
    [108]Hanhijarvi Antti.Ddformation kinetics based rheological model dor the time-dependent and moisture induced deformation of wood. Wood Science and Technology,1995.29(3):191~199
    [109]Hanhijarvi, A.& D.Hunt Experimental indiction of interaction between viscoelastic and mechano-sorptive creep.Wood Science and Technology, 1998,32:57-70
    [110]Hanhijarvi Antti.Deformation properties of Finnish spruce and pine wood in tangential and radial directions in association. Holz als Roh-und Workstoff,2000,58:211-216
    [111]Haque M.N.etc.Model fitting for visco-elastic creep of Pinus radiata during kiln drying.Wood and Technology,2000,34:447~457
    [112]Hardtke H-J,Grimsel M.,Militzer K-E.Drying stress in wood and the demands of continuum mechanics.Proc5~(th) IUFRO Int Wood Drying Conf Quebec City Canada 1996,111-115
    [113]Hill,J.L.&Lessard,R.Z.Automated kiln drying systems of the third kind.Proc.4734.5 Eastern Hardwoods:the resource,the industry and the markets. For. Prod. Res. Society. 1986: 104 -114
    [114]Hunt,D.G limber mechano-sorptive creep of beech wood.J.Inst. Wood Science, 1982, 9(3): 163-168
    [115]Hunt,D.G. Creep trajectories for beech during moisture changes under load.J.master Sci,1984,19:1456~1467
    [116]Hunt,D.G;Shelton CF.Progress in the analysis of creep in wood during concurrent moisture changes.J.master Sci, 1987,22:313-320
    [117]Hunt,D.G. The prediction of long-time viscoelastic creep from short-time data. Wood Science & Technology,2004,38:480-492
    [118]Ito,Y.Stress release method of kiln-dried hardwood lumber :relief of the stress occurring in wood during drying. 7th International IUFRO Wood drying Conference, Tsukuba, Japan, 2001:110-113
    [119]Kang Wook, Park Byung-Dae Park, et al. Analytical modeling of rheological postbuckling behavior of wood-based composite panels under cyclic hygro-loading. Wood and Fiber science ,2003,35(3):409-420
    [120]Kang Wook, et al. Simple analytical methods to predict one-two-dimensional drying stresses and deformations in lumber. Wood Science & Technology,2004,38:417-428
    [121]Keep.L.B.The determination of time-dependent strains in Pinus radiata under kiln-drying conditions,ME Thesis,University of Canterbury,Christchurch,NZ, 1998
    [122]Kobayashi,I.& T.hisada .Application of surface strain measuring for wood drying.7~(th) international IUFRO Wood drying Conference.Tsukuba.Japan,2001:344-347
    [123]Kojima Yoichi ,Yamamoto Hiroyuki. Effect of microfibril angle on the longitudinal tensile creep behavior of wood. wood science 2004,50:301-306
    [124]Leicester R.H.A rheological model for mechano-sorptive of beams.Wood Science & Technology, 1971,5:211 -220
    [125]Leicester R.H.A Lateral deflections of timber beam-columns during drying.Wood Science & Technology, 1971,5:221-231
    [126] Li Chengyuan & Lee Nam-Ho. Effect of compressive load on shrinkage of larch blocks during radio-frequency vacuum heating . Wood and fiber science, 2004,36(l):9~16
    [127]Liltle R .Weight-Based kiln control system.Forest Prod.J, 1997,47(6): 14
    [128]Lu,W.& R.W.Erickson.Mechano-sorptive behavior of solid wood stressed in compression perpendicular to the grain.Forest Prod.J. 1996,46(4):63~68
    [129]Lu,W.& R.W.Erickson.Mechano-sorptive effects on timber creep.Wood Science and Technology,1997,31:331-337
    |130]Martensson .A & Svensson.S.Stress-Strain Relationship of Dring Wood :Part 1: Development of a Constitutive Model. Holzforschung, 1997.51(5):472~478
    [131]Martensson .A & Svensson.S.Stress-Strain Relationship of Dring Wood :Part 2:Verification of a One-Dimensional Model and Development of a Two-Dimensional Model . Holzforschung, 1997.51(6):565~570
    [132]Mcmilen J .M.Drying stress in Red Oak.Forest Products Journal.l955.5(l):71
    [133]Mcmilen J. M.Drying stress in Red Oak: Effect of temperature .Forest Products Journal. 1955.5(4):230
    [134]Milota MR.,Wu QingLin.Resolution of the stress and strain components during of softwood in:Rudolph V,Keey RB(ed) Drying'Proc9~(th) Int Drying Symp Gold Coast, 1994, Australia Vol 8:735-743
    [135]Moren T.J. Check formation during low temperature drying on Scots pine: theoretical consideration and some experimental results. IUFRO Wood drying symposium, Washington, USA, 1989:97-100
    [136]Moren T.J.Creep response to drying of timber boards of Scots pine, Forest Prod.J, 1993(10):58~64
    [137]Morgan K., et al.Numerical modeling of stress reversal in timber drying .Wood Science ,1982. 15(2): 139-149
    [138]Muszynski L et al.An optical method for characterization of basic hygromechanical properties of solid wood in tension . 8th International IUFRO Wood Drying Conference, 8rasov,Rmania.2003:77~82
    [139]Northway,R.L.An assessment of techniques to monitor drying stresses and dimensional changes in timber from plantation-grown eucalyptus for kiln schedule development and kiln control.7~(th) International IUFRO Wood drying Conference, Tsukauba, Japan,2001:54-59
    [140] Oliver A.R.A model of the behavior of wood as it dries with special reference to eucalyptus materials .Research report CM91-1 Civil and Mechanical Engineering Department ,Australia Univ Tasmania, Hobart ,1991
    [141]Ormarsson,S.;O.Dahlblom;H.Petersson. A numerical study of the shape stability of sawn timber subjected to moisture variation.Partl: theory. Wood science and technology ,1998,32:325-334
    [142]Ormarsson,S.;O.Dahlblom;H.Petersson. A numerical study of the shape stability of sawn timber subjected to moisture variation .Part2:simulation of drying board .Wood science and technology ,1999,33:407-423
    [143]Palka,L.C.Predicting the effect of specific gravity moisture content temperature and strain rate on the elastic properties of softwoods. Wood science and Techology , 1973,7:127-141
    [144]Pang S.Modeling of stress development during drying and relief during steaming in Pinus radiata Lumber .Drying Technology,2000,18(8): 1677-1696
    [145]Pang S.Modeling of stress and deformation of radiata pine lumber during drying. 7~(th) International IUFRO Wood Drying Conference, Tsukuba, Japan, 2001:238—245
    [146]Perre P. & J Passard. A control-volume procedure compared with the Finite-Element method for calculating stress and strain during wood drying. Drying Technology, 1995,13(3):635-660
    [147]Ranta-Maunus A. The visco-elastic of wood at varying moisture content .Wood Science and Technology, 1975,9:189-205
    [148]Ranta-Maunus A. Impact of mechano-sorptive creep to the long-term strength of timb.r Holz als Roh-und Workstoff, 1990,48:67-71
    [149]Rice R.W, Youngs R.L..The mechanism and development of creep during drying of red oad.Holz als Roh-und Workstoff, 1990,48:73-79
    [150]Ranta-Maunus,A.Rheological behaviour of wood in directions perpendicular to the grain.Materials and Structures. 1993,26:362-369
    [151]Salin,J.-GPrediction of checking surface discoloration and final moisture content by numerical methods.Proc2~(an)IUFRO Int Wood Drying Conf Seattle Washington DC, 1989,71-78
    [152]Salin,J.-G Numerical predication of checking during timber drying and a new mechano-sorptive creep model. Holz als Roh-und Workstoff, 1992,50:195-200
    [153]Schniewind,A.P.Concise encyclopedia of wood and woodbased materials. Oxford, 1989: Pergamon Press
    [154]Skarr.C, W.T.Simpson and R.M.Honeycutt.Use acoustics emission to identify high levels of stress during oak drying.Forest products journal.1980,30(2):21-22
    [155]Staffan Svensson.Strain and Shrinkage Force in Wood under Kiln Drying Conditions:
     Ⅰ .Measuring Strain and Shrinkage Under Controlled Climate Conditions.Equipment and Preliminary Results.Holzforschung. 1995,49(54):363~368
    [156]Staffan Svensson.Strain and Shrinkage Force in Wood under Kiln Drying Conditions: Ⅱ .Strain,Shrinkage and Stress Measruements under Controlled Climate Conditions, Holzforschung.l996,50(5):463~469
    [157]Staffan Svensson,A.Martenson.imulation of drying stresses in wood(part 1). Holz als Roh-und Workstoff, 1999,57:129-136
    [158]Stamm A.J. & Nelson R.M.. Comparison between measured and theoretical drying diffusion coefficients for southern pine .For. Prod. J. 1961,11:536-543
    [159]Sohr H.P. and Pretoria. Shrinkage differential as a method for drying determination. Wood Science and Techology.l988,22:121~128
    [160JUgolev B.N.General laws of wood deformation and rheological properties of hardwood .Wood Science and Technology ,1976,10:169-181
    [161]Ugolev B.N.& Skuatov N.V.Stress-strain state of wood at kiln drying .Wood Science and Technology ,1992,26:209-217
    [162]Welling J. A model for the determination of drying stresses during kiln drying of lumber. Holz als Roh-und Werkstoff, 1988,46:295-245
    [163] Wang, Z.& E.T.Choong;V.K.Gopu.Effect of presteaming on drying stresses of red oak using a coating and bending method.Wood and Fiber Science, 1994,26(4):527~535
    [164] Wang Hsiu Hwa and Youngs Robert L.. Drying stress and check development in th wood of two oaks. LAWA Journal, 1996.17(1): 15-30
    [165]Wu QingLin .An investigation of some problems in drying of Tasmanian eucalypt timbers.MEngSci Thesis,University Tasmania,Hobart,1989
    [166]Wu Qinglin.Rheological behavior of Doglas-fir as related to the process of drying.PhD Thesis,Oregon State University,Corvalis OR.America,1993
    [167]Wu,Q.& M.R. Millota.Effect of creep and mechano-sorptive effect on stress development during drying.Drying technology, 1994,12(8) :2057-2085
    [168]Wu Qinglin & Milota R.Michael.Rhelolgical behavior of Douglas-fir perpendicular to the grain at elevated temperatures.Wood and Fiber Science, 1995,27(3):285~295
    [169]Wu Qinglin & Milota R.Michael.Mechano-sorptive deformation of Douglas Fir specimens undere tangential temsile stress during moisture adsorption.Wood and Fiber Science,1996,28(1): 128-132
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.