热控相变材料熔渗纳米多孔陶瓷的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型航天飞行器在大气层中长航时且以大于6Ma的速度飞行时,遭遇到的气动加热环境极其严重,其表面累计气动加热温度超过800℃。因此,开展高效隔热以及可热控的复合材料研究和设计具有重要的意义。本文首次将相变材料应用到飞行器内部防热系统上,通过利用纳米多孔陶瓷的三维骨架支撑作用,使相变材料比较均匀且充分地分布在多孔陶瓷网状结构之中,开展了热控相变材料熔渗纳米多孔陶瓷的研究。研究表明:多孔陶瓷骨架将75~85wt%的相变材料分成无数个纳米级蓄热小单元,当温度超过相变材料的熔点时,相变材料熔化而吸收热量,延缓了热量的传递,控制了温度的急剧上升,且因陶瓷骨架纳米孔的毛细管力作用,不会使相变材料熔体流出,保持了复合材料的定型结构。论文主要从以下几个方面开展研究工作:
     (1)通过相变材料熔体浸渗多孔陶瓷的力学推导以及计算流体力学软件(CFD/Fluent)的传热模拟,研究了熔渗过程传热传质的动力学机理。
     根据熔渗实验模型与力学基础理论,推导了相变材料熔体熔渗多孔陶瓷过程中的力学方程,导出了复合材料制备工艺中多孔陶瓷基体孔隙半径条件、相变材料熔体渗入多孔陶瓷孔隙的深度条件以及相变材料热物性参数与多孔陶瓷孔隙深度的关系式;根据体积平均理论与热焓法,模拟了熔渗过程中多孔陶瓷内相变材料熔体的压力分布、温度分布以及速度等。理论上确定了复合材料的制备工艺条件:陶瓷基体理论半径宜小于6.8×10~(-5)mm,浸渗温度要大于相变材料的熔点小于多孔陶瓷的烧结温度,浸渗时间依据具体的实验工艺制定。
     (2)依据熔渗制备工艺的研究理论,实验研究了纳米多孔陶瓷的溶胶—凝胶制备工艺和陶瓷基相变复合材料的熔融浸渗制备工艺。
     实验研究表明,多孔陶瓷基体具有相互连通的孔结构,平均孔径约30nm,密度为0.202g/cm~3,孔隙率达90.4%,孔体积为4.39cm~3/g,比表面积为527.8m~2/g。实验过程中发现随乙醇含量增加,样品的孔径增大,即通过乙醇的不同配比可以调节样品的孔尺寸或结构。当乙醇与正硅酸乙酯的摩尔比为10或20时,合成的孔结构特点的陶瓷基体适宜做相变材料的支撑材料,相变材料的浸渗率最大。选用石蜡作为相变材料时,浸渗率达到75wt%,浸渗时间宜为180~210s;选用糖醇作为相变材料时,浸渗率达到85wt%,浸渗时间宜为250~350s。复合材料的浸渗制备温度适宜超过相变材料熔点之上约30℃。
     相变复合材料的性能测试表明:石蜡或糖醇相变材料与多孔陶瓷基体相容性好,熔渗过程中不会发生化学反应;相变复合材料的相变温度范围为50~120℃,蓄热密度最高达到289.9 kJ/kg。石蜡(70#)相变复合材料的抗弯强度为10.1±0.10MPa,屈服强度为0.03MPa,抗压模量为18.8MPa;糖醇(120#)相变复合材料的抗弯强度为25.9±0.10MPa,屈服强度为1.11MPa,抗压模量达到740 MPa。
     (3)测试了多孔氧化物陶瓷隔热复合材料与相变复合材料的热控效果,并进行了相应的传热模拟研究。
     在相同测试条件下,当热面温度为500℃时,单一多孔氧化物陶瓷隔热复合材料的冷面温度为184.2℃;石蜡相变复合材料的冷面温度最低为139.3℃;糖醇相变复合材料的冷面温度最低为86.9℃。表明相变复合材料的热控效果优于单一的多孔氧化物陶瓷隔热复合材料,糖醇相变复合材料的热控效果好于石蜡相变复合材料。
     相变复合材料的传热模拟表明,相变复合材料在接近加热面的位置,相变材料熔化非常快,随着时间的推进,液相区域加长,固-液界面渐渐地向着热流方向扩展,固相区域变短。三种相变复合材料的传热模拟发现,在相同的传热时间,90#相变复合材料(蓄热密度为198kJ/kg)的固-液界面发生距离远小于58#和62#相变复合材料,表明了相变复合材料的蓄热密度是控制温度升高最关键的影响因素。
     (4)采用具有高吸收热值的ZrOCl_2·8H_2O和硼酸为添加剂,首次研究了高热控性能有机-无机复合相变材料,并以陶瓷纤维为基体,制备了高蓄热密度的陶瓷基相变复合材料。
     含ZrOCl_2·8H_2O的石蜡相变复合材料制备研究表明,ZrOCl_2·8H_2O以晶体的形式分布在陶瓷纤维结构之中,相变复合材料分别在56.3℃和96~158℃的温度区域有较大的吸热峰,蓄热密度共计达到536kJ/kg。当ZrOCl_2·8H_2O添加量达到24.5wt%,在样品的加热面,以50℃/min快速升温至600℃并保温1800s时,其冷面温度在114.5~137.6℃范围有个迟缓过程,其延缓时间为840s,热控效果比较显著。
     含硼酸的糖醇相变复合材料制备研究表明,硼酸以晶体的形式分布在陶瓷纤维结构之中;相变复合材料分别在51.9℃、151.2℃和158.6℃有较大的吸热峰,蓄热密度共计达到671kJ/kg。
     当热面温度以50℃/min快速升温至600℃并保温2800s时,含ZrOCl_2·8H_2O的石蜡相变复合材料的冷面温度在115~128℃区间有一个延缓过程,其延缓时间为900s;含硼酸的糖醇相变复合材料的冷面温度在152~163℃区间有一个延缓过程,其延缓时间为1310s。表明高蓄热密度的相变复合材料有优异的热控效果。
Thermal protection systems (TPS) and heat insulation materials are required for a range of hypersonic vehicles ranging from ballistic reentry to hypersonic cruise vehicles, both within Erath’s atmosphere and non-Earth atmospheres. Phase change materials (PCM) are one of the most preferrd methods to thermal control applications that can effctively delay or modify the temperature rise of the surface of the aircrafts subjected to high thermal flux. This work originately put PCMs to use in the internal themal insulated materilas of the hypersonic vehicles. Porous ceramic matrix serves as the supporting material, which provides structural strength and prevents the leakage of melted PCMs; and PCMs acts as thermal absorb material limiting the temperature abruptly rising of the aircrafts. This study demonstrates as below.
     Firstly, thermaldynamics, kinetics and statics equations of melted PCM infiltrated porous ceramic marix are derivated according to experimental model and CFD modeling, and then analyze the influence factors including infiltration temperature and infiltration time and so on. Results indicated the infiltraton temperature in theory is higher than the melt point of the PCM and lower than the sinter temperature of the porous cermic matrix, the calculated radius is less than 6.8×10~(-5) mm. CFD modeling shows the pressure drop of the melted PCM in porous ceramics distinct and centerline velocity becomes lower along the directions. When infiltration time increases, infiltration depth will rise until it reaches equilibrium; and optimum infiltration depth needs to choose comprehesive infiltration conditions.
     Secondly, porous ceramics derived by sol-gel processing. Studies show the pore structure of porous ceramics was connected; its porosity was calculated as 90.4%, and surface area was measured as 527.8 m~2/g and mean radius was measured as 30.3 nm. It indicates that high mesoporosity when the molar ratios of EtOH/TEOS is 2, 3 and 5. The pore size of porous ceramics becomes larger with the increase of EtOH/TEOS molar ratios; the average pore size of the specimen with E=10, 20 silica are 53.1nm and 56.0nm, respectively. Furthermore, PCM-porous ceramic composite were successfully prepared by melt infiltration pressurelessly; PCM and porous ceramics were chosen as thermal absorb material and supporting material, respectively. Compared with 3 types of pore structure porous silica using as supporting materials of the PCM, the mass percentage of the paraffin impregnated E=10, 20 silica matrices reached to 75% and over than those of the E=2 silica matrix, 68%. The E=10, 20 silica matrices are suitable to serve as supporting materials of the PCM for larger thermal absorption. For paraffin, the optimal infiltration time of preparing the composite was range from 180 to 210 seconds while the mass fraction of the paraffin reached to 75 per cent. For erythritol, the optimal infiltration time of preparing the composite was range from 250 to 350 seconds while the mass fraction of the PCM reached to 85 per cent. There was no reaction among the PCM-porous silica ceramic composite according by the structure analysis with SEM and the chemical analysis with FTIR. The measurement of latent heat, melting point of PCM-porous silica ceramic composite were 63~289.9 kJ/kg, 50~120℃respectively. The flexural and compressive properties of 3 types of specimens were investigated by two techniques: 3-piont bending and uniaxial compression. Results indicated the bending strength of the erythritol/ceramic composite is 25.9±0.10MPa and paraffin -ceramic composite is 10.1±0.10MPa. The compressive strength of the erythritol-ceramic composite is 1.11 MPa corresponding 0.15% strain and paraffin-ceramic composite is 0.03 MPa corresponding 0.16% strain.
     Thirdly, experimental and numerical studies are proposed to predict and investigate the thermal absorb characteristics of porous silica infiltrated with phase change materials (PCM) for thermal protection applications. Several types of different solid-liquid phase change composites were introduced into a cylindrical enclosure while it experiences its heat from a heat source setting on the left of the enclosure. Studies show that the cold face temperature of the ceramic aerogel-composite is 184.2℃while the cold face temperatures of the paraffin-porous ceramic and erythritol-porous ceramic are 139.3℃, 86.9℃respectively. The numerical simulation of the porous ceramic composite indicates that transient heat transfer simulation shows good agreement with the experimental data. When heat tranfer time is 600,800,1000 seconds, the numerical caculated temperature is 115.0℃,161.4℃,201.2℃. Thus the simulation method can forecast the experimental conclusions and optimize the geometric structure of the heat insulation composites. The numerical simulation of the phase change compsoite was performed using the volume averaging technique and a finite volume technique was used to discretize the heat diffusion equation while the phase change process was modeled using the enthalpy porosity method. The results are portrayed in terms of temperature distribution and liquid fraction, and the numerical and experimental results showed good agreement. The results illustrated that the higher the latent heat storage capacity the more stability of the thermal performance of the phase change composite.
     Moreover, PCM-ceramic fiber composite were prepared by melt infiltration, particularly, to be embedded within the endotherms, ZrOCl_2·8H_2O or boric acid, to provide for nonreversible heat absorbing applications. Studies indicate endotherms to be in the fiber-PCM as crystal that dispersed in the PCM-ceramic fiber composite and has very large decomposition enthalpy. The thermal capacity of the PCM-ceramic composite embeded with ZrOCl_2·8H_2O is 536 kJ/kg happened at 56.3℃and 96~158℃and the thermal capacity of the PCM-ceramic composite embeded with boric acid is 671kJ/kg happened at 51.9℃,151.2℃and 158.6℃. The thermal protection properties of the fiber-PCM composites were designed in the laboratory conditions via using a thermal measurement setup under a simulated thermal environment of the aircraft. The fiber-PCM composites produces here can be helpful for the thermal protection application and exhibited fairly efficient thermal regulation under very high temperatures and for long periods of time.
引文
[1] MeClinton C R, Rausch V L, Sitz J, et a1. Hyper-X program status. AIAA, 2001,1910-2001
    [2]王浚,王佩广.高超声速飞行器一体化防热与热控设计方法.北京航空航天大学学报, 2006, 32:(11)29-34
    [3]于翘.材料工艺.北京:宇航出版社, 1993,26-56
    [4] Hrubesh L W. Aerogel applications. J. Non-Cryst. Solids, 1998, 225: 335-342.
    [5] Fesmire J E. Aerogel insulation systems for space launch application. Cryogenics, 2006, 46: 111-117
    [6] Reim M , Korner W, Manara J, et al. Silica aerogel granulate material for thermal insulation and daylighting .Solar energy, 2005, 79: 131-139
    [7]沈军,周斌,吴广明等.纳米孔超级绝热材料气凝胶的制备与热学特性.过程工程学报, 2002, 2(4): 341-345
    [8] Carta D, Corrias A, Mountjoy G, et al. Structural study of highly porous nanocomposite aerogels. J. Non-Cryst. Solids, 2007, 353: 1785-1788
    [9]黄素逸.能源科学导论.北京:中国电力出版社, 1999,33-35
    [10] Dincer S D, Li X. Thermal energy storage application from an energy saving perspective. International Journal of Global Energy Issues, 1997, 9 (46): 351-364
    [11] David E G,Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles.15th AIAA Space Planes and Hypersonic Systems and Technologies Conference AIAA,2008-2682
    [12] Aiichiro T,Hiroyuki Y.Advanced Thermal Protection Systems For Reusable Launch VeHcles.AIAA,200l-1909
    [13]曹义.美国金属热防护系统研究进展.宇航材料工艺,2003(3):9-12
    [14] Blosser M L,Chen R R,Schmidt I H,et al.Advanced Metallic Thermal Protection System Development.AIAA, 2002-05-04
    [15]夏刚,秦子增,张晓今.充气防热罩技术发展现状.导弹与航天运载技术,2002(1):12-15
    [16] Hasnain S M. Review on sustainable thermal energy storage technology, Part I: Heat storage materials and techniques.Energy conversion and Management, 1998, 39(11), 1127-1138
    [17] Jean P, Michel F, Cecil V. Thermal storage by latent heat: a viable option for energy conservation in buildings.Energy Sources, 1993, 15(1): 85-93
    [18] Kamil K. Utilization of solar energy and waste heat. Energy Sources, 1999, 21(7): 595-610
    [19] Bascetincelik A, Ozturk H, Paksoy H, Demirel Y. Energetic and exergetic efficiency of latent heat storage system for green house heating. Renewable Energy, 1999, 16(1): 691-694
    [20] Marliacy P, Solimando R, Bouroukba M, Schuffenecker L. Thermo- dynamics of crystallization of sodium sulfate decahydrate in H2O-NaCl-Na2SO4: application to Na2SO4·10H2O-based latent heat storage materials. Thermochimica Acta, 2000, 344: 85-94
    [21] Garg H P, Mullock S C, Bhargava A K. Solar Thermal Energy Storage. Holland: Reidel Publishing Company, 1985,26-35
    [22] Yagi J, Akiyama T. Storage of thermal energy for effective use of waste heat form industries. Journal of Materials Processing Technology, 1995, 48: 793-804
    [23] Dincer B. On thermal energy storage systems and applications in buildings. Energy and Buildings, 2002, 34: 377-388
    [24]何天白,胡汉杰.功能高分子与新材料.第一版.化学工业出版社2001: 178- 191
    [25] Abhat, A. Low temperature latent heat thermal energy storage; Heat Storage Materials. Solar Energy, 1983, 30: 13-332
    [26]徐祖耀.相变原理.科学出版社, 2000: 116-122
    [27] Mavleous M G., Desy J. Power driven lawn sweeper. US Patent 3183653, 1965-5-18
    [28] Telkes M. Composition of mater for the storage of heat. US Patent 2677664, 1951-5-3
    [29] Telkes M. Method for storing and releasing heat. US Patent 2856506, 1958-10-3
    [30] Telkes M. Thixotropic mixture and method of making same. US Patent 3986969, 1976-10-19
    [31] Stephen B M. Glauber's salt heat storage composition, crystal habit modifiers. US Patent 4349446, 1982-9-14
    [32] Telkes M. Thermal storage in salt-hydrates. Solar Materials Science, Academic Press, 1980: 377-404
    [33]葛新石,龚堡,陆维德,王义.太阳能工程-原理和应用.第一版.学术期刊出版社, 1988: 540-546
    [34] Biswas D R. Thermal energy storage using sodium sulfate decahydrate andwater. Solar Energy, 1977, 19(1): 99-100
    [35] Stephen B M. An investigation of the thermal energy storage capacity of Glaubers' salt with respect to thermal cycling. Solar Energy, 1980, 25: 255-258
    [36] Stephen B M. The effect of crystal size on the thermal energy storage capacity of thickened Gauber's Salt. Solar Energy, 1983, 30: 45-49
    [37] Herrick C S. Melt-freeze-cycle life-testing of Glauber's salt in a rolling cylinder heat store. Solar Energy, 1982, 28: 99-104
    [38] Chinyere O, Lynn D R. Experimental investigation physical characteristics of Glauber's salt as a storage medium. Solar Energy, 1984, 33: 465-467
    [39] George A L. Adding strontium chloride or calcium hydroxide to calcium chloride hexahydrate heat storage material. Solar Energy, 1981, 27: 73-75
    [40] Carlsson B, Stymne H, Wettermark G. An incongruent heat-of-fusion system-CaCl2-6H20-made congruent through modification of the chemical composition of the system. Solar Energy, 1979, 23: 343-350
    [41] Carlsson B, Wettermark G. Heat transfer properties of a heat-of-fusion store based on CaCl2-6H20. Solar Energy, 1980, 24: 239-247
    [42] Hoogendoorn C J, Bart G C. Performance and Modelling of latent heat stores. Solar Energy,1992, 48: 53-58
    [43] Rabin Y, Bar-Niv I, Korin E, Mikic B. Integrated solar collection storage system based on a salt-hydrate phase-change material. Solar Energy, 1995,55: 435-444
    [44] Velraj R, Seeniraj R V, Hafner B,et al. Experimental analysis and numerical modeling of inward solidification on a finned vertical tube for a latent heat storage unit. Fuel and Energy Abstracts, 1997, 38: 281-290
    [45] Zhang Y, Steiner D, Groll M. Experimental investigation and modeling of a new kind of latent heat storage system-indirect-contact galisol system. Heat Transfer-Asian Research, 1999, 28: 115-128
    [46] Kilrklii A. Energy storage applications in greenhouse by means of phase change materials (PCMs): a review. Renewable Energy, 1998, 13: 89-103
    [47] Velraj R, Seeniraj R V, Hafner B,et al. Heat transfer enhancement in a latent heat storage system. Solar Energy, 1999, 65: 171-180
    [48] Ali A J, Glenn S W, George A. Performance comparision of high-temperature packed bed operation with PCM and sensible-heat pellets. International Journal of Energy Research, 1997,21: 1039-1052
    [49]聂光华,相变储热材料水合盐的热导率的测定.硕士论文,西北大学,西安,2001, 51-52
    [50]周业涛.相变传热问题的灵敏度分析与优化设计方法.硕士论文,大连理工大学,大连, 2002, 52-53
    [51]陈则韶,葛新石.相变贮热材料的热物性及石蜡的增量与对容积增量的关系.太阳能学报, 1983, 4(l): 9-15
    [52]张寅平,胡汉平,孔祥东.相变贮能-理论和应用.第一版.中国科技大学出版社, 1996: 1-111
    [53]王华,王胜林,饶文涛.高性能复合相变蓄能材料的制备与蓄热燃烧技术.北京.冶金工业出版社. 2006. 42-44
    [54] Mohammed M F, Amar M K, Siddique A K, et al. A review on phase change energy storage: materials and applications. Energy Conversion and Management, 2004, 45: 1597-1615
    [55] Belen Z, Jose M M, Luisa F C, et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Energy, 2003(23): 251-283
    [56] John J M, Penfield N Y. Passive cooling of mirrors. US Patent 4415234, 1983
    [57] Geoffrey O H. Laser system using phase change material for thermal control. US Patent 6307871 B1, 2002-6-4
    [58] Kazunobu S. Presientation situation of PCM thermal energy storage in Japan. IEA Annex 10, Phase change materials and chemical reactions for thermal energy storage First Workshop, 16-17 April 1998, Adana, Turky
    [59]崔海亭,杨锋.蓄热技术及其应用.北京:化学工业出版社, 2004,32-36
    [60]姜勇,丁恩勇,戴国康.相变储能材料的研究进展.广州化学, 1999, 3: 48-54
    [61]宋健,陈磊,李效军.微胶囊化技术及应用.化学工业出版社,北京, 2001, 26
    [62] Ishiguro M. Microcapsules of heat-stpring materials. JP11152466 A2, 1999-9-7
    [63] Ishiguro M. Microcapsules of heat-storage materials. JP 2001040342, 2001-8-26
    [64] Ishiguro M. heat-storage materials and their use. JP 2002045385, 2002-7-6
    [65] Mouri S, Ishiguro M. Method of odor-free microcapsules for heat storage material. JP 2002038136, 2002-4-5
    [66] Matsushita S, Aoki K, Ishiguro M. Latent heat storage type gypsum based building material with microcapsules containing latent heat storage material. JP 2002114560 A2, 2002-6-7
    [67] Fujii N O, Takahiro N Y. Heat-storage materials. JP 2001348566 A2, 2001-8-7
    [68] Ishiguro M. Production of heat-storage material microcapsules. JP 2002080835 A2, 2002-8-9
    [69] Gordon N. Application of microencapsulation in textiles. Internationa Journal of Pharmaceutics, 2002, 242: 55-62
    [70] Jeong S C, Aehwa K, Chang G C. Micorencapsulation ooctadecane as a phase-change material by interfacial polymerization in an emulsion system. Colloid Polym. Sci., 2002, 280: 2620-266
    [71] Cho J S, Kwon A, Cho C G. Microencapsulation of octadecane as a phase-change material by interfacial polymerization in an emulsion systemCollid Polym Sci, 2002, 280: 260-266
    [72] Choi J K, Lee J, Kim J H. Preparation of Microcapsules Containing Phase Change Materials as Heat Transfer Media by In-Situ Polymerization 359 process. J of Indus and Engin Chem, 2001, 7(6): 358-362
    [73] Zhang X X, Fan Y F, Yick K L, et al. Fabrication and properties of microcapsules and nanocapsules containing n-octadecane. Materials chemistry and physics, 2004, 88: 300-307
    [74] Hawlader M N A, Uddin M S, Khin M M. Microencapsulated PCM thermal- energy storage system. Appl Energ, 2003, 74: 195-202
    [75] Hideto H, Masanori Y, Masay Y, et al. Research and Development of Microenca psulated Phase Change Materials. J of Chem Engin of Japan, 2004, 37(9): 1155-116
    [76] Hokoi S, Kuroki T.Use of phase change material to control indoor thermal enviroment. Proc of 7th Inter Conf on Thermal Energy Storage, Sapporo, Japan, 1997: 337-342
    [77]叶宏,程丹鹏,葛新石等.定形相变贮能式地板辐射采暖系统数值模型的实验验证及参数分析.太阳能学报, 2004, 25(2), 189-194
    [78]谭雨非.相变材料在电供暖建筑中的可能性研究.低温建筑技术, 2003, 2: 55-57
    [79]王华,王胜林,饶文涛.高性能复合相变蓄能材料的制备与蓄热燃烧技术.北京.冶金工业出版社. 2006, 120-121
    [80] Sari A, Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Applied Thermal Engineering, 2007, 27: 1271-1277.
    [81]张正国,王学泽,方晓明.石蜡/膨胀石墨复合相变材料的结构与热性能.华南理工大学学报, 2006, 34: 1-5
    [82] Ye H, Ge X. Preparation of polythylene paraffin compound as a form-stable solid-liquid phase change materia. Solar Energy Materials&Solar Cells, 2000,64: 37-44
    [83]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社, 2002,56-89
    [84]秦培煌,周世权.能源材料的研究现状及发展前景.节能, 2002, 5: 51
    [85]林怡辉,张正国,王世平.溶胶-凝胶法制备新型蓄能复合材料.太阳能学报, 2001, 22(3): 334-337
    [86]林怡辉,张正国,王世平.一种新型相变蓄热材料的实验研究.江汉石油学院学报, 2001, 23(4): 81-83. 1
    [87]杨世铭,陶文栓.传热学(第三版).北京:高等教育出版, 1998,33-37
    [88]汤勇,王小伍,曾志新.纤维复合相变材料的传热模型及性能分析.华南理工大学学报, 2001, 29(8): 33-35
    [89]陶文栓.计算传热学的近代进展.北京:科学出版社, 2000,67-87
    [90]刘中良.一维动边界问题的变时间步长方法.华东石油学院学报. 1986, 10(3): 28-40
    [91] Gupta R S, Kumar D. Variable time step methods for one-dimensional Steen problem with mixed boundary condition. Int., J. Heat Mass Transfer. 1981, 24: 251-259
    [92]刘中良,一种求解动边界问题的有限单元有限差分法.华东石油学院学报. 1988, 12(2): 61-70
    [93] Rabin Y, Korin E. efficient numerical solution for the multidimensional solidification (or melting) problem. Int. J. Heat Mass Transfer. 1993, 36(3): 673-683
    [94]张文群,陈林根,张振山.圆环腔内有相变非稳态传热的数值分析.锅炉技术. 2003, 34(4): 30-34
    [95] Crank J. Free and moving boundary problems. Oxford: clarendon press, 1984
    [96] Shamsunelar N, Sparrow E M. Analsis of multidimensional conduction phase change via the enthalpy model. J Heat Transfer, 1975, 97: 333
    [97]刑玉明,崔海亭,袁修干.太阳能吸热器换热管蓄热数值模拟与试验研究.太阳能学报, 2003, 24(3): 325-329
    [98]王华,何方,胡建杭等.新型陶瓷与熔融盐复合蓄热材料放热特性数值模拟.中国稀土学报, 2002, 20: 223-227
    [99] Gong Z X, Mujumdar A S. Finite-element analysis of cyclic heat transfer in a shell and tube latent heat energy storage exchanger. Applied thermal engineering, 1997, 17: 583-591
    [100] Costa M, Oliva A,et al. Numerical simulation of solid-liquid phase change phenomena, Comput. Meth. Appl. Meth. Eng. 1991, 91: 1123-1134
    [101] Akhilesh R, Narasimhan A, Balaji C, Method to improve geometry for heat transfer enhancement in PCM composite heat sinks, Int J Heat and Mass Transf 2005, 48: 2759-2770
    [102] Alawadhi E M,Amon C H, Thermal analyses of a PCM thermal control unit for portable electronic devices: experimental and numerical studies, in: 2002 Inter Society Conference on Thermal Phenomena, 2002, pp. 466-475
    [103] Tan F L, Tso C P, Cooling of mobile electronic devices using phase change materials, Appl Therm Eng. 2004, 24: 159-169
    [104] Krishnan S, Garimella S V. Analysis of a phase change energy storage system for pulsed power dissipation, Proc. IEEETrans. Compon. Packag. Technol. 2004, 27(1): 191-199
    [105] Kulish V V, Lage J L, Diusion with in a porous medium with randomly distributed heat sinks, Int. J. Heat Mass Transf, 2000, 43: 3481-3496
    [106]林瑞泰.多孔介质传热传质引论.北京:科学出版社, 1995,76-80
    [107]贝尔.多孔介质流体力学.北京:中国建筑工业出版社, 1983,33-43
    [108] Huang C L D.Multi-phase moisture transfer in porous media subjected to temperature gradient. Int. J. Heat mass Transfer. 1979, 22 (9): 1295-1307
    [109] Ilic M, Turner I W. Convective drying of a consolidated slab of wet porous material, Int.J Heat Mass Transfer.1989, 32(12): 2351-2362
    [110] Rogers J A, Kaviany M. Funicular and evaporative-front regimes in convective drying of granular beds. Int. J. Heat Mass Transfer. 1992, 35 (2): 469-480
    [111] Wang Z, Chen G. Heat and mass transfer during lox intensity convection drying. Chemical Engineering Science. 1999, 54 (17): 3899-3908
    [112] Patrick P, Turner I W. A 3-D version of TransPore: a comprehensive heat and mass computational model for simulating the drying of porous media Int. J. Heat Mass Transfer. 1999, 42(24): 401-452
    [113]吴人洁.复合材料.天津:天津大学出版社, 2002,23-35
    [114]李荣久,茹红强,孙旭东.陶瓷-金属复合材料.冶金工业出版社,北京, 2002,34-39
    [115] Erkki L, Tapio M, Pasi M. Influence of additives on capillary absorption of aqueous solutions into asymmetric porous ceramic substrate.Joural of Colloid and Inter-face Science, 2001, 234: 28-340
    [116] Marcelo L, Mariela A. Capillary rise in porous media. Journal of Colloid and Interface Science, 2001, 234: 35-43
    [117]徐桂兰.高温用特殊复合材料.冶金工业出版社,北京, 2002.56-67
    [101] Akhilesh R, Narasimhan A, Balaji C, Method to improve geometry for heat transfer enhancement in PCM composite heat sinks, Int J Heat and Mass Transf 2005, 48: 2759-2770
    [102] Alawadhi E M,Amon C H, Thermal analyses of a PCM thermal control unit for portable electronic devices: experimental and numerical studies, in: 2002 Inter Society Conference on Thermal Phenomena, 2002, pp. 466-475
    [103] Tan F L, Tso C P, Cooling of mobile electronic devices using phase change materials, Appl Therm Eng. 2004, 24: 159-169
    [104] Krishnan S, Garimella S V. Analysis of a phase change energy storage system for pulsed power dissipation, Proc. IEEETrans. Compon. Packag. Technol. 2004, 27(1): 191-199
    [105] Kulish V V, Lage J L, Diusion with in a porous medium with randomly distributed heat sinks, Int. J. Heat Mass Transf, 2000, 43: 3481-3496
    [106]林瑞泰.多孔介质传热传质引论.北京:科学出版社, 1995,76-80
    [107]贝尔.多孔介质流体力学.北京:中国建筑工业出版社, 1983,33-43
    [108] Huang C L D.Multi-phase moisture transfer in porous media subjected to temperature gradient. Int. J. Heat mass Transfer. 1979, 22 (9): 1295-1307
    [109] Ilic M, Turner I W. Convective drying of a consolidated slab of wet porous material, Int.J Heat Mass Transfer.1989, 32(12): 2351-2362
    [110] Rogers J A, Kaviany M. Funicular and evaporative-front regimes in convective drying of granular beds. Int. J. Heat Mass Transfer. 1992, 35 (2): 469-480
    [111] Wang Z, Chen G. Heat and mass transfer during lox intensity convection drying. Chemical Engineering Science. 1999, 54 (17): 3899-3908
    [112] Patrick P, Turner I W. A 3-D version of TransPore: a comprehensive heat and mass computational model for simulating the drying of porous media Int. J. Heat Mass Transfer. 1999, 42(24): 401-452
    [113]吴人洁.复合材料.天津:天津大学出版社, 2002,23-35
    [114]李荣久,茹红强,孙旭东.陶瓷-金属复合材料.冶金工业出版社,北京, 2002,34-39
    [115] Erkki L, Tapio M, Pasi M. Influence of additives on capillary absorption of aqueous solutions into asymmetric porous ceramic substrate.Joural of Colloid and Inter-face Science, 2001, 234: 28-340
    [116] Marcelo L, Mariela A. Capillary rise in porous media. Journal of Colloid and Interface Science, 2001, 234: 35-43
    [117]徐桂兰.高温用特殊复合材料.冶金工业出版社,北京, 2002.56-67
    [133] Slattery J C. Flow of viscoelastic fluids through porous media. AICHE. J. 1967, 13: 1066-1071
    [134]邓英尔,刘慈群,黄润秋,等.高等渗流理论与方法.北京:科学出版社, 2004,12-16
    [135] Rnim W K, Ohsaka K. Thermophysical properties measurement of molten silicon by high-temperature electrostatic levitator density, volume expansion, specific heat capacity, emissivity, surface tension and viscosity. Journal of Crystal Growth, 2000, 208: 313-321
    [136]沃丁柱.复合材料大全.北京,化学工业出版社, 2000, 187
    [137] Raj K K. Thermal insulating coating for spacecrafts. US Pat No. 6939610B1, 2005-9-6
    [138] Ichiro M,Yasuyuki N,Yuichi S, et al. Heat control method and heat controller. US Pat No. 7267866B2, 2007-9-11
    [139] Sari A, Karaipekli A.Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage.Solar Energy Materials&Solar Cells ,2009,93: 571-576
    [140]张正国,王学泽,方晓明.石蜡/膨胀石墨复合相变材料的结构与热性能.华南理工大学学报, 2006, 34: 1-5
    [141] Venkateswara R A, Sharad D B. Synthesis and physical properties of TEOS-based silica aerogels prepared by two step (acid-base)sol -gel process. Solid State Sciences, 2004, 6: 945-952
    [142]王娟,张长瑞,冯坚.实验条件对纳米多孔二氧化硅薄膜性能的影响.国防科技大学学报, 2005, 27(3)16-19
    [143]杨大祥,冯坚,周新贵,张长瑞,王娟,张浩.低温下溶胶-凝胶法制备氧化硅气凝胶.稀有金属材料与工程, 2004, 3(33)196-199
    [144] Sing K S W, Everett D H, Haul R A W, et al.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity.Pure Appl. Chem. 1985, 57: 603
    [145]严继民,张启元,高敬琮.吸附与凝聚—固体的表面与孔(第二版).北京:科学出版社, 1986,56-68
    [146] Barrett E P, Joyner LG., Halenda P. The determination of pore volume and area distributions in porous substances: Computations from nitrogen isotherms.J. Am. Chem.Soc. 1951, 73: 373-380
    [147] Gregg S G.,Sing S W. Adsorption surface area and porosity, seconded, Academic Press, NewYork, 1982,33-36
    [148]朱新文,江东亮,谭寿洪.多孔陶瓷的制备,性能及应用.陶瓷学报, 2003, 24(2): 85-91
    [149] Cengel Y A. Heat transfer, A practical approach. (2nd edition). Boston: MCB McGraw-Hill, 2003,22-26
    [150] Lienhard J H, Lienhard J H. A heat transfer textbook, 3rd edition. Cambridge: Phlogiston Press, 2003,12-16
    [151] Incropera F P, DeWitt D P. Fundamentals of heat and mass transfer (6th edition). New York: John Wiley & Sons. 2007,13-25
    [152] Akhilesh R, Narasimhan A, Balaji C, Method to improve geometry for heat transfer enhancement in PCM composite heat sinks, Int J Heat and Mass Transf 2005, 48: 2759-2770
    [153] Alawadhi E M,Amon C H, Thermal analyses of a PCM thermal control unit for portable electronic devices: experimental and numerical studies, in:2002 Inter Society Conference on Thermal Phenomena, 2002, pp. 466-475
    [154] Tan F L, Tso C P,Cooling of mobile electronic devices using phase changematerials, Appl Therm Eng. 2004, 24: 159-169
    [155] Krishnan S, Garimella S V, Analysis of a phase change energy storage system for pulsed power dissipation, Proc.IEEETrans.Compon.Packag. Technol. 2004, 27(1): 191-199
    [156] Kulish V V, Lage J L, Diusion with in a porous medium with randomly distributed heat sinks, Int.J.Heat Mass Transf 2000, 43: 3481-3496
    [157] Fluent Inc., Gambit modeling guide. Fluent Inc., 2003,6-12
    [158] Fluent Inc., Fluent User’s guide. Fluent Inc., 2003,3-6
    [159] AthertonM D, Sutcliffe H.The Azeotropic dehydration and dehydrohlornation of ZrOCl2·8H20. Journal of the less-Common metals, 1988, 138: 63-70
    [160] Wang M L, Liu B L, Shih Z W, Sol synthesis from zirconyl chloride octahydrate in NTA-ammonia solution. Journal of Crystal Growth, 1998, 183: 398-408
    [161] Dey A, Chatterjee M, Naskar M K, Basu K.Near-net-shape fibre-reinforced ceramic matrix composites by the sol infiltration technique. Materials Letters, 2003, 57: 2919-2926
    [162] Naskar M K, Chatterjee M, Dey A, Basu K. Effects of processing parameters on the fabrication of near-net-shape fibre reinforced oxide ceramic matrix composites via sol-gel route. Ceramics International, 2004, 30: 257-265
    [163] Hayes C Q C. Heat absorbing temperature control devices and method. US Patent. No. US6558568B1, 2003-5-23
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.