麦草及其三种主要组分的热解规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质已被公认为是可再生能源的潜在来源,可以用来替代矿物燃料资源的枯竭。随着化石燃料的消耗和人类对环保的关注,生物质资源的利用已日益引起全世界关注。热解是一种重要的生产能源和交通燃料的热化学转化技术。本实验以麦草为研究对象,通过研究麦草及其三种主要组分在不同热解条件下的热解规律,为实现目标产物的合理调控提供理论指导。
     本文对麦草中的半纤维素、纤维素和木素的结构分别进行了表征。本实验分离的半纤维素保留了β-D-木糖基、α-L-呋喃阿拉伯糖基结构单元和少量的葡萄糖醛酸;纤维素中主要含有纤维素Iα、纤维素Iβ和少量准晶态纤维素,其结晶度为33.42%;木素是一种具有β-O-4'结构的愈创木酚基-紫丁香基-对羟苯基型木素,其中愈创木酚基结构单元含量较高,而且含有β-5'、β-β'、β-1'和5-5'四种缩合结构单元以及乙烯基醚结构。
     利用热重分析的方法分别研究了不同升温速率下麦草及其三种主要成分的热解特性,研究结果表明半纤维素比纤维素容易分解,并且两者的热解分别集中在不同的范围内,DTG曲线均只有两个失重峰;而木素的热解发生在一个相当宽的范围内,DTG曲线上出现三个失重峰。当温度超过400℃以后,麦草的热解主要是以木素为主。通过利用Py-GC-MS对麦草及其三种主要成分在四个温度段下的热解产物进行分析,然后初步提出了半纤维素热解形成糠醛以及木素热解形成几种酚型化合物的路径。利用TG-FTIR联用技术,研究了慢速升温速率下麦草及其三种主要成分在热解过程中挥发性气体的释放规律,发现麦草中的半纤维素、纤维素和木素的热解并非是独立地进行的。
     分别采用Kissinger法、Ozawa法和和分布活化能(DAEM)法对麦草及其三种主要组分热解活化能进行了计算,结果表明:Kissinger法和Ozawa法计算的活化能和频率因子结果比较相近并且Ozawa法的计算结果略高于Kissinger法,但是Kissinge法计算半纤维素和木素动力学参数的拟合程度好于Ozawa法。分布活化能(DAEM)模型不适用于木素的热解动力学分析。
     本实验利用实验室自行设计的管式炉对麦草及其三种主要组分进行400℃、500℃、600℃、700℃、800℃和900℃的热解研究;通过对气体GC分析表明热解气体主要以H_2、CO、CO_2和CH_4为主,C_2H_4和C_2H_6在一定温度下才存在。GC-MS检测了400℃、600℃和800℃麦草及其三种主要组分热解焦油的主要成分。随着热解温度的提高,除木素外,麦草、半纤维素和纤维素热解焦油的成分差异较大并且热解焦油种类随着热解温度的提高逐渐减少。以600℃热解的固体产物为例,对麦草及其三种主要组分的焦炭进行对比分析。研究结果表明麦草焦炭中的成分主要是以木素热解固体残余物为主
     本文通过比较三种预处理方法对麦草快速热解特性的影响发现麦草经过热水预处理后热解产物中的苯系物减少同时有利于低分子量化合物的形成。
Biomass has been recognized as a potential source for the renewable energy to substitute the declining fossil fuel resources. With the depletion of fossil fuel and the concern of environmental protection, the utilization of biomass resources has attracted increasing worldwide interest. Pyrolysis is a vital thermochemical conversion route for energy and transport fuel production. In this experiment, wheat straw as the research object, theoretical guidance is supplied with studying pyrolysis law of the straw and its three major components in the different pyrolysis conditions to achieve reasonable regulation and control of the target products.
     In the work, the structural characterization of hemicellulose, cellulose and lignin from was investigated, separately. Hemicellulose isolated in the experiment preserved theβ-D-Xylp andα-L-Araf units as well as a little of glucuronic acid existed, cellulose mainly contained cellulose Iα, cellulose Iβand a few quasi-crystalline cellulose, The lignin was a GSH-lignin withβ-O-4' structures and several condensed units (β-5',β-β',β-1', 5-5') and vinyl ether moieties.
     The thermal decomposition characteristics of the wheat straw and its three major components at different heating rates were explored, which showed that the degradation of hemicellulose was easier than cellulose, both their decomposition focused on different range and only two weight loss peaks appeared in DTG profiles. At pyrolysis temperatures over 400℃, the influence of lignin in wheat straw on wheat straw was obvious during pyrolysis, lignin pyrolysis dominating over that of wheat straw. The pyrolysis products of wheat and its major three components at four phases were analyzed through Py-GC-MS, the pyrolysis pathway of furfura and some kinds of phenol compounds from hemicellulose and lignin, respectively, were also researched. The thermal degradation of hemicellulose, cellulose and lignin in wheat straw was not carried out independently, but there could be interactions, nonetheless the mechanism was not very clear according to the releasing orderliness of volatile gas produced by wheat and its major three components at slow heating rate with TG-FTIR technique.
     The active energy of wheat straw and its major three components in pyrolysis was determined by Kissinger, Ozawa and DAEM methods, respectively. The activation energy and frequency factor of reckoned by Kissinger and Ozawa formulas were similar and the result of Ozawa method was slightly higher than Kissinger one, while the fitting degree of the Kissinger technique which deduced the active energy of hemicellulose and lignin was better than of the Ozawa one. Distribution of activation energy (DAEM) model did not apply to the thermal decomposition kinetic of lignin.
     The pyrolysis of wheat straw and its major three components at 400、500、600、700、800 and 900℃was tested on a laboratory-designed tubular furnace.
     The pyrolysis gas mainly included H_2, CO, CO_2, and CH_4, C_2H_4 and C_2H_6 existed only at certain temperature with GC analysis. The major components of pyrolysis tar from wheat straw and its major three components were detected at 400, 600 and 800℃. As the pyrolysis temperature increased, with the exception of lignin, the pyrolysis tar of wheat straw, hemicellulose and cellulose composition was quite diverse and the sorts of pyrolysis tar gradually reduced. A comparative analysis of coke from wheat straw and its three major components was performed in the case of solid products in pyrolysis at 600℃. Solid residues of pyrolysis from lignin dominated over the main mixture of coke in wheat straw.
     Benzene series decreased and low molecular weight compounds increased in the pyrolysate after hot water pretreatment of wheat straw were proved by comparing the three kinds of pretreatment methods on fast pyrolysis characteristics of wheat straw.
引文
[1] Hrayshat E S. Analysis of renewable energy situation in Jordan [J]. Renewable &Sustainable Energy Reviews, 2007, 11(8): 1873-1887
    [2] Fang Z. ABiomass Pyrolysis Gasifier Application in China Rural [J].Fuel Science andTechnology, 1993, 11(1):37-43
    [3] Demirbas A. Combustion systems for biomass fuels [J]. Energy Sources Part A:, 2007,29(4):303-12
    [4] Demirbas A. Global renewable energy resources [J]. Energy Sources Part A: Recovery,Utilization, and Environmental Effects, 2006, 28(8):779-792
    [5] Balat M. Biomass energy and biochemical conversion processing for fuels andchemicals [J].Energy Sources Part A: Recovery, Utilization, and Environmental Effects,2006, 28(6):517-525
    [6] Balat M, Bozbas K. Wood as an energy source: potential trends, usage of wood, andenergy politics [J]. Energy Sources Part A: Recovery, Utilization, and EnvironmentalEffects, 2006, 28(9):837-844
    [7] Zeng X Y, Ma Y T, Ma L Y. Utilization of straw in biomass energy in China [J].Renewable and Sustainable Energy Reviews, 2007, 11(5):976-987
    [8] Wang X H, Feng Z M. Biofuel use and its emission of noxious gases in rural China [J].Renewable and Sustainable Energy Reviews, 2004, 8(2): 183-192
    [9] Demirbas A. Products from lignicellulosic materials via degradaion processes [J].Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 2008,30(l):27-37
    [10]魏学峰,罗婕,田学达.生物质燃料的开发利用现状与展望[J].冶金能源,2004,23 (6):45—49
    [11] Rocha PAD, Cerrella E G, Bonelli B R, Cukierman A L. Pyrolysis of hardwoodresidues: on kinetics and chars characterization[J]. Biomass & Bioenergy, 1999,16(l):79-88
    [12] Mohan D, Pittman C U, Steele P H. Pyrolysis of wood/biomass for bio-oil: a criticalreview [J]. Energy & Fuels, 2006, 20(3):848-889
    [13] Antal M J, Allen S G, Dai X, Shimizu B, Tarn M S, Gronli M. Attainment of theteoretical yield of carbon from biomass [J]. Industrial & Engineering ChemistryResearch, 2000, 39(ll):4024-4031
    [14] KaragOz S, Bhaskar T, Muto A, Sakata Y Comparative studies of oil compositionsproduced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment [J].Fuel, 2005, 84, (7-8): 875-884
    [15] Demirbas M F, Balat F, Balat H. Potential contribution of biomass to the sustainableenergy development [J]. Energy Conversion and Management, 2009, 50(7): 1746-1760
    [16] Ramadhas A S, Jayaraj S, and Muraleedharan C. Use of vegetable oils as I.C. enginefuels-A review [J]. Renewable Energy, 2004, 29(5): 727-742
    [17]赵廷林,王鹏,邓大军,舒伟,曹冬辉.生物质热解研究现状与展望[J].农业工程技术(新能源产业),2007,1(5):54—60
    [18] Yang Y B, Phan A N, Ryu C, Sharifi V N, Swithenbank J. Mathematical modelling ofslow pyrolysis of segregated solid wastes in a packed-bed pyrolyser[J]. Fuel 2007,86(26): 169-180
    [19] Zhurinsh A, Zandersons J, Dobele G. Slow pyrolysis studies for utilization ofimpregnated waste timber materials [J]. Journal of Analytical and Pyrolysis 2005,74(1-2):439-444
    [20] Phan A N, Ryu C, Sharifi V N, Swithenbank J. Characterisation of slow pyrolysisproducts from segregated wastes for energy production [J]. Journal of Analytical andPyrolysis 2008, 81(1):65-71
    [21] Acikgoz C, Kockar O M. Characterization of slow pyrolysis oil obtained from linseed(Linumusitatissimum L.) [J]. Journal of Analytical and Pyrolysis 2009, 85(1-2):151-154
    [22] Ucar S, KaragOz S. The slow pyrolysis of pomegranate seeds: The effect oftemperature on the product yields and bio-oil properties [J]. Journal of Analytical andPyrolysis 2009, 84(2): 151-156
    [23] Abdullah H, Wu Hongwei. Biochar as a Fuel: 1. Properties and grindability of biocharsproduced from the pyrolysis of mallee wood under slow-heating conditions [J]. Energy& Fuels 2009, 23(8):4174-4181
    [24] Bridgwater A V, Meier D, Radlein D. An overview of fast pyrolysis of biomass [J].Organic Geochemistry 1999, 30(12): 1479-1493
    [25] Acikgoz C, Onay O, Kockar O M. Fast pyrolysis of linseed: product yields andcompositions [J]. Journal of Analytical and Pyrolysis 2004, 71(2):417-429
    [26] Kang B-S, Lee K H, Park H J, Park Y-K, Kim J-S. Fast pyrolysis of radiata pine in abench scale plant with a fluidized bed: Influence of a char separation systemandreaction conditions on the production of bio-oil [J]. Journal of Analytical andPyrolysis 2006, 76(1-2):32-37
    [27] Tsai W T, Lee M K, Chang Y M. Fast pyrolysis of rice husk: Product yields andcompositions [J]. Bioresource Technology 2007, 98(1):22-27
    [28] Lede J, Broust F, Ndiaye F-T, Ferrer M. Properties of bio-oils produced by biomass fastpyrolysis in a cyclone reactor[J]. Fuel, 2007, 86 (12-13): 1800-1810
    [29] Zheng Ji-Lu. Pyrolysis oil from fast pyrolysis of maize stalk [J]. Journal of Analyticaland Pyrolysis, 2008, 83(2):205-212
    [30] Zanzi R, SjOstrOm K, BjOrnbom E. Rapid pyrolysis of agricultural residues at hightemperature [J]. Biomass and Bioenergy, 2002, 23(5):357-366
    [31] Li S, Xu S, Liu S, Yang C, Lu Q. Fast pyrolysis of biomass in a free-fall reactor forhydrogen-rich gas [J]. Fuel Processing Technology 2004, 85(8-10):1201-1211
    [32] Dupont C, Commandre J-M, Gauthier P, Boissonnet G, Salvador S, Schweich, D.Biomass pyrolysis experiments in an analytical entrained flow reactor between 1073 Kand 1273 K [J]. Fuel, 2008, 87(7): 1155-1164
    [33] Dufour A, Girods P, Masson E, Rogaume Y, Zoulalian A. Synthesis gas production bybiomass pyrolysis: Effect of reactor temperature on product distribution[J].International Journal of hydrogen Energy, 2009, 34(4): 1726-1734
    [34] Couhert C, Commandre M, Salvador S. Failure of the component additivity rule topredict gas yields of biomass in flash pyrolysis at 950°C [J]. Biomass and Bioenergy,2009, 33(5):316-326
    [35]中华人民共和国国家发展计划委员会基础产业发展司.中国能源与可再生能源1999白皮书[R].北京:中国计划出版社,2000
    [36] Kaya D. Renewable energy policies in Turkey. Renewable and Sustainable EnergyReviews [J].2006, 10(2): 152-163
    [37]佚名.生物质能概述[DB/OL].http://www.newenergy.org.cn/proceeding/biomass/inde-1.htm,2010,01,10
    [38] Zhang Q, Chang J, Wang TJ, Xu Y. Review of biomass pyrolysis oil properties andupgrading research [J]. Energy Conversion and Management 2007, 48(1):87-92
    [39] Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass:chemistry, catalysts, and engineering [J]. Chemical Reviews, 2006, 106(9):4044-4098
    [40] Mohan D, Pittman C U, Steele P H. Pyrolysis of wood/biomass for bio-oil: a criticalreview [J]. Energy & Fuels, 2006, 20(3):848-889
    [41] Meir D. New Methods for chemical and physical characterization and round robintesting [A]. Bridgwater A V. Fast pyrolysis of biomass: a handbook[C]. Newbury, UK:CPL Press, 1999:92-101
    [42] Scholze B, Meier D. Characterization of water-insoluble fraction from pyrolysis oil(pyrolytic lignin). Part I. PY-GC/MS, FTIR, and functional groups [J]. Journal ofAnalytical and Pyrolysis 2001; 60(10):41-54
    [43] Bayerbach R, Nguyen VD, Schurr U, Meier D. Characterization of water insolublefraction from fast pyrolysis liquid (pyrolytic lignin). Part III. Molar mass characteristicsby SEC, MALDI-TOF-MS, LDI-TOF-MS, and PY-FIMS [J]. Journal of Analytical andPyrolysis 2006, 77(2):95-101
    [44]谭扬.两种工业木素的化学结构及热解规律研究[D].广州:华南理工大学,2009
    [45]王少光.三种秸秆木素的化学结构与热裂解特性研究[D].广州:华南理工大学,2007
    [46] Jaaskelainen A S, Sun Y, Argyropoulos D S, Tamminen T, Hording B. The effect ofisolation methods on the chemical structure of residual lignin [J]. Wood Science andTechnology, 2003, 37(2):91-102
    [47] Xu F, Jiang J X, Sun R C, Tang J N, Sun, J X Su Y Q. Fractional isolation andstructural characterization of mild ball-milled lignin in high yield and purity fromEucommia ulmoides Oliv [J]. Wood Science and Technology, 2008, 42 (3): 211-226
    [48] Sun R C, Fang J M, and Tomkinson J. Characterization and Esterification ofHemicelluloses from Rye Straw [J]. Journal of Agricultural and Food Chemistry, 2000,48(4): 1247-1252
    [49] Timell T E and Jahn E C. A study of the isolation and polymolecularity of paper birchholocellulose [J]. Svensk Papperstidn, 1951, 54(24):831-846
    [50] Xu F, Liu C F, Geng Z C. Sun J X, Sun R C, Hei B H, Lin L, Wu S B, Je J.Characterisation of degraded organosolv hemicelluloses from wheat straw [J]. PolymerDegradation and Stability, 2006, 91(8); 1880-1886
    [51] Kacurakova M, Belton P S, Wilson R H, Hirsch J, Ebringerova A. Hydration propertiesof xylan-type structures: an FTIR study of xylooligosaccharides [J]. Journal of theScience Food and Agricultural, 1998, 77(1):38-44
    [52] Blakeney A B, Harris P J, Henry R J. A simple and rapid preparation of alditol acetatesfor monosaccharide analysis [J]. Carbohydrate Research, 1983, 113(2):291-299
    [53] Sun R C, Lawther J M, Banks W B. Fractional and structural characterization of wheatstraw hemicelluloses [J]. Carbohydrate Polymers, 1996, 29(4):325-331
    [54] Sun J X, Sun X F, Sun R C, Su Y Q. Fractional extraction and structuralcharacterization of sugarcane bagasse hemicelluloses [J]. Carbohydrate Polymers, 2004,56(4): 195-204
    [55] Subba Rao M V S S T, Muralikrishna G. Structural analysis of arabinoxylans isolatedfrom native and malted finger millet (Eleusine coracana, ragi) [J]. CarbohydrateResearch, 2004, 339 (14):2457-2463
    [56] Kawagishi H, Kanao T, Inagaki R, Mizuno T, Shimura K, Ito H, Hagiwara T,Nakamura T. Formolysis of a potent antitumor (l-6)-beta-d-glucan protein complexfrom Agaricus blazei fruiting bodies and antitumor-activity of the resulting products [J].Carbohydrate Polymers, 1990, 12(4):393-403
    [57]佚名. WATER STRUCTURE AND SCIENCE [DB/OL].http://wwwl.lsbu.ac.uk/water/hyara.html, 2009, 12, 02
    [58] Xu F, Geng Z C, Sun J X, Liu C F, Ren J L, Sun R C, Fowler P, Baird M S. Fractionaland structural characterization of hemicelluloses from perennial ryegrass (Loliumperenne) and cocksfoot grass (Dactylis glomerata) [J]. Carbohydrate Research, 2006,341(12):2073-2082
    [59] Sun R C, Fang J M, Tomkinson J, Geng Z C, Liu J C. Fractional isolation,physico-chemical characterization and homogeneous esterification of hemicellulosesfrom fast-growing poplar wood [J]. Carbohydrate Polymers, 2001, 44(1):29-39
    [60] Sun J X, Xu F, Sun X F, Xiao B, Sun R C. Physico-chemical and thermalcharacterization of cellulose from barley straw [J]. Polymer Degradation and Stability,2005, 88(3):521-531
    [61] Sun J X, Sun X F, Zhao H, Sun R C. Isolation and characterization of cellulose fromsugarcane bagasse [J]. Polymer Degradation and Stability, 2004, 84(2):331-339
    [62] Colom X, Carrillo F. Crystallinity changes in lyocell and viscose-type fibres by caustictreatment [J]. European Polymer Journal, 2002, 38 (11):2225-2230
    [63] Oh S Y, Yoo D I, Shin Y, Kim H C, Kim H Y, Chung Y S, Park W H, Youk J H.Crystalline structure analysis of cellulose treated with sodium hydroxide and carbondioxide by means of X-ray diffraction and FTIR spectroscopy [J].CarbohydrateResearch,2005,340(15):2376-2391
    [64] Sun X F, Sun R C, Sun Y Q, Sun J X.Comparative study of crude and purified cellulosefrom wheat straw [J]. Journal of Agricultural and Food Chemistry, 2004, 52(4):839-947
    [65] Reddy N, Yang Y Q. Structure and properties of high quality natural cellulose fibersfrom cornstalks [J]. Polymer, 2005, 46(15):5494-5500
    [66] Park C H, Kang Y K, Im S S. Biodegradability of cellulose fabrics [J]. Journal ofApplied Polymer Science, 2004, 94 (1):248-253
    [67] Liu R G, Yu H and Huang Y. Structure and morphology of cellulose in wheat straw [J].Cellulose, 2005, 12 (1):25-34
    [68] Gumtiskaya E, Usta M, Kirci H. The effects of various pulping conditions oncrystalline structure of cellulose in cotton linters [J]. Polymer Degradation and Stability,2003, 81(3):559-564
    [69] Larsson P T, Wickholm K, Iversen T. A CP/MAS 13C NMR investigation of molecularordering in cellulose [J]. Carbohydrate Research, 1997, 302(1-2): 19-25
    [70] Hult E L, Larsson P T, Iversen T. A CP/MAS 13C-NMR study of supermolecularchanges in the cellulose and hemicellulose structure during keraft pulping [J]. NordicPulp & Paper Research Journal, 2001, 16(l):36-39
    [71] Sun X F, Sun R C, Fowler P, and Baird M S. Extraction and characterization of originallignin and hemicelluloses from wheat straw [J]. Journal of Agricultural and FoodChemistry, 2005; 53 (4): 860-870
    [72] Tahmil N, Mirzalar F, Sirkecioglu O, Odabas S. Synthesis of new functional dioxepinpolymer [J]. Reactive and Functional Polymers, 1999, 40 (30):289-293
    [73] Jayakumar R, Balaji R, Najundan S. Studies on copolymers of 2-(N-phthalimido) ethylmethacrylate with methyl methacrylate [J]. European Polymer Journal, 2000, 36(8):1659-1666
    [74]陈嘉翔,余家鸾.植物纤维化学结构的研究方法[M].广州:华南理工大学出版社,1989:112—132
    [75] Yuan T Q, He J, Xu F, Sun R C. Fractionation and physico-chemical analysis ofdegraded lignins from the black liquor of Eucalyptus pellita KP-AQ pulping [J].Polymer Degradation Stability, 2009, 84(7): 1142-1150
    [76] Argyropoulos DS. Quantitative phosphorus-31 NMR analysis of lignin: a new tool forthe lignin chemist [J]. Journal of Wood Chemistry and Technology, 1994, 14(1): 45-63
    [77] Jiang Z H, Argyropoulos D S, Granata A. Correlatation analysis of 31P-NMR chemicalshifts with substituent effects of phenols [J]. Magnetic Resonance in Chemistry, 1995,33(5):375-382
    [78] Faix o, Argyropoulos D S, Robert D, Neirinck V. Determination of Hydroxyl groups inlignins evaluation of 1H-, 13C-, 31P-, FTIR and wet chemical methods [J].Holzforschung, 1994, 48(5): 387-394
    [79] Argyropoulos D S, Li H y, Gaspar A R, Smith K, Lucia L A, Rojas O J.Quantitative31P-NMR detection of oxygen-centered and carbon-centered radical species [J].Bioorganic & Medicinal Chemistry, 2006, 14(12): 4017-4028
    [80] Sannigrahi P, Ragauskas A J, Miller S J. Effects of two-stage dilute acid pretreatmenton the structure and composition of lignin and cellulose in loblolly pine [J]. BioenergResource, 2008, 1(3-4): 205-214
    [81] He Z Q, Mao J D, Honeycutt C w, Ohno T, Hunt J F, CadeMenun B J. Characterizationof plant-derived water extractable organic matter by multiple spectroscopic techniques[J]. Biology and Fertility of Soils 2009, 45(6): 127-131
    [82] Hon D N-S, Shiraishi N. Wood and Cellulosic Chemistry [M]. New York: Dekker, 1991:113-175
    [83] Ralph S, Ralph J, Landucci L. NMR Database of Lignin and Cell Wall ModelCompounds [DB/OL]. http://www.dfrc.wisc.edu/software.html, 2009, 12, 01
    [84] Balakshin M Y, Capanema E A, Chen C L, Gracz H S. Elucidation of the structures ofresidual and dissolved pine kraft lignins using an HMQC NMR technique [J]. Journalof Agricultural and Food Chemistry, 2003, 51(21): 6116-6127
    [85] Evtuguin D V, Neto C P, Silva A M S, Domingues P M, Amado F M L, Robert D, FaixO. Comprehensive study on the chemical Structure of dioxane lignin from plantationeucalyptus globulus wood [J]. Journal of Agricultural and Food Chemistry, 2001, 49(9):4252-4261
    [86] Karhunen P, Rummakko P, Sipila J, Brunow G, Kilpelainen, I. Dibenzodioxocins-anovel type of linkage in softwood lignins [J]. Tetrahedron Letters, 1995, 36(1): 169-170.
    [87] Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz P F, Marita J M, Hatfield R D,Ralph S A, Christensen J H, Boerjan W. Lignins: natural polymers from oxidativecoupling of 4-hydroxyphenylpropanoids [J]. Phytochemistry Reviews 2004a,3(1-2):29-60
    [88] Sun R C, Sun X F, and Wen J L. Fractional and structural characterization of ligninsIsolated by alkali and alkaline peroxide from barley straw [J]. Journal of Agriculturaland Food Chemistry, 2001, 49(11): 5322-5330
    [89] Lu F C, Ralph J. Preliminary evidence for sinapyl acetate as a lignin monomer in kenaf[J]. Chemical Communications. 2002, 7(1): 90-91
    [90] Chum H L, Black S K, Johnson D K, Sarkanen K V, Robert D. Organosolvpretreatment for enzymatic hydrolysis of poplars: isolation and quantitative structuralstudies of lignins [J]. Clean Technologies and Environmental Policy. 1999, 1(3):187-198
    [91] Raveendran K, Ganesh A, Khilar K C. Pyrolysis characteristics of biomass and biomasscomponents [J]. Fuel, 1996, 75(8):987-998
    [92] Manya J J, Velo E, Puigjaner L. Kinetics of Biomass Pyrolysis: a ReformulatedThree-Parallel-Reactions Model [J]. Industrial & Engineering Chemistry Research,2003, 42 (3):434-441
    [93] Orfao J J, M Antunes F J A, Figueiredo J L. Pyrolysis kinetics of lignocellulosicmaterials-three independent reactions model [J]. Fuel, 1999, 78 (3):949-358
    [94] Shafizadeh F, Stevenson T T. Saccharification of douglas-fir wood by a combination ofprehydrolysis and pyrolysis [J]. Journal of Applied Polymer Science, 1982, 27(12):4577-4585
    [95] Masuka C P, Vuory A, B-son Bredenberg J. Thermal Reactions of the Bonds in Lignin.I. Thermolysis of 4-Propylguaiacol [J]. Holzforschung, 1988, 42 (6):361-368
    [96] Goheen, D W. Lignin Structure and Reactions [J].Advance in Chemistry Series, 1966,59 (l):205-225
    [97] Jakab E, Faix O, Till F. Thermal decomposition of milled wood lignins studied bythermogravimetry/mass spectrometry [J]. Journal of Analytical and Applied Pyrolysis,1997,40-410:171-186
    [98]陈炜,罗永浩,陆方等.生物质热解机理研究进展[J].工业加热,2006,35(5):4—8
    [99] Yang H P, Yan R, Chen H P, Zheng C G, Lee D H, Liang D T. In-Depth Investigation of Biomass Pyrolysis Based on Three Major Components: Hemicellulose, Cellulose and Lignin [J]. Energy & Fuels, 2006, 20(1):383-393
    [100]宋春财,胡浩权.秸秆及其主要组分的催化热解及动力学研究[J].煤炭转化,2003,26(3):91—97
    [101] Biagini, E, Barontini F and Tognotti L. Devolatilization of biomass fuels and biomasscomponents Studied by TG/FTIR technique [J]. Industrial & Engineering ChemistryResearch, 2006, 45(13): 4486-4493
    [102] Shen D K, Gu S. The mechanism for thermal decomposition of cellulose and its mainproducts [J]. Bioresource Technology, 2009, 100(24):6496-6504
    [103] Koullas D P, Lois E, Koukios EG. Effect of physical pretreatment on the prepyrolyticbehaviour of lignocellulosics. Biomass and Bioenergy [J]. Biomass and Bioenergy,1991, 1(4): 199-206
    [104] Arseneau D F. Competitive reaction in the thermal decomposition of cellulose [J].Canadian Journal of Chemistry, 1971, 49(4):632-638
    [105] Maschio G, Koufopanos C, Lucchesi A. Pyrolysis, a promising route for biomassutilization [J]. Bioresource Technology, 1992, 42 (3): 219-231
    [106] Yang H P, Yan R, Chen H P, Lee H D, Zheng C G. Characteristics of hemicellulose,Cellulose and Lignin pyrolysis[J] .Fuel, 2007, 86 (12-13): 1781-1788
    [107] Ball R, Mclntosh A C, Brindley J. Feedback processes in cellulose thermaldecomposition: implications for fire-retarding strategies and treatments [J].Combustion Theory Modeling, 2004; 8 (2):281-291
    [108] BlazsO M. Recent trends in analytical and applied pyrolysis of polymers [J]. Journal ofAnalytical and Applied Pyrolysis, 1997, 39 (1):1-25
    [109] Zhu P, Sui S Y, Wang B, Sun K, Sun G. A study of pyrolysis and pyrolysis products offlame-retardant cotton fabrics by DSC, TGA, and PY-GC-MS [J]. Journal of Analyticaland Applied Pyrolysis, 2004, 71(2):645-655
    [110] Perng L H, Tsai C J, Ling Y C. Thermal decomposition characteristics ofpoly[diethyl-2-(methacryloyloxy)ethyl phosphate] using thermogravimetricanalysis/mass spectrometry [J]. Journal of Applied Polymer Science, 2002, 85(4):821-830
    [111] Perng L H. Thermal decomposition characteristics of poly (phenylene sulfide) bystepwise Py-GC/MS and TG/MS techniques [J]. Polymer Degradation and Stability,2000, 69 (3):323-332
    [112] Perng L H. Comparison of thermal degradation characteristics of poly (arylenesulfone)s using thermogravimetric analysis/mass spectrometry [J]. Journal of AppliedPolymer Science, 2001, 81 (10):2387-2398
    [113] Richards GN.Glycoaldehyde from pyrolysis of cellulose [J]. 1987, 10(2):251-255
    [114] Ranzi E, Cuoci A, Faravelli T, Frassoldati A, Migliavacca G, Pierucci G, Sommariva S.Chemical Kinetics of Biomass Pyrolysis [J]. Energy & Fuels, 2008, 22(6): 4292-4300
    [115] Li S, Lyons-Hart J, Banyasz J, Shafer K. Real-time evolved gas analysis by FTIRmethod: an experimental study of cellulose pyrolysis [J]. 2001, 80 (12):1809-1817
    [116] Zabaniotou A, Ioannidou O, Skoulou V. Rapeseed residues utilization for energy and2nd generation biofuels [J]. Fuel, 2008, 87(8-9): 1492-1502
    [117] Manya J J, Arauzo J. An alternative kinetic approach to describe the isothermalpyrolysis ofmicro-particles of sugar cane bagasse [J]. Chemical Engineering Journal,2008, 139(3): 549-561
    [118]曾凡阳,刘朝,王文钊,闫丽云.生物质热重实验及动力学分析[J].工业加热,2008,37(3):6—8
    [119]王伟,蓝煜昕,李明.TG—FTlR联用下生物质废弃物的热解特性研究[J].农业环境科学报,2008,27(1):0380—0384
    [120] Kissinger H F. Reaction kinetic indifferential thermalanalysis [J]. Analytical Chemistry,1957, 29(11):1702-1706
    [121] OzawaT. A new method of analyzing thermogravimetric data [J]. Bulletin of theChemical Society of Japan, 1965, 38 (11): 1881-1886
    [122]刘旭光,李保庆.分布活化能模型的理论分析及其在半焦气化和模拟蒸馏体系中的应用[J].燃料化学学报,2001,29(1):542—591
    [123] Manya J J, Velo E, Puigjaner L. Kinetics of biomass pyrolysis: a reformulatedthree-parallel-reactions model [J]. Industrial & Engineering Chemistry Research, 2003,42(3):434-441
    [124] Hosoya T, Kawamoto H, Saka S. Influence of inorganic matter on wood pyrolysis atgasification temperature [J]. Journal of Wood Science, 2007, 23 (4):351-357
    [125] Jensen A, Johansen K D. TG-FTIR study of the influence of potassium chloride onwheat straw pyrolysis [J]. Energy & Fuels 1998, 12(5):929-938
    [126] Bradbury A G W, Sakai Y, Shafizadeh F. A kinetic model for pyrolysis of cellulose [J].Journal of Applied Polymer Science, 1979, 23 (11):3271-3280
    [127] Hsisheng T, Chou W Y. Thermogravimetric studies on kinetics of rice hull pyrolysisand the influence of water treatment [J]. Industrial and Engineering ChemistryResearch, 1998, 37(10):3806-3811
    [128] Raveendran K, Gansh A, Khilar K C. Influence of mineral matter on biomass pyrolysischaracteristics [J]. Fuel, 1995, 74(12): 1812-1822
    [129] Czernik S, Bridgwater A V. Overview of application of biomass fast pyrolysis oil [J].Energy Fuels, 2004, 18 (2):590-598
    [130] Bridgewater A V. Renewable fuels and chemicals by thermal processing of biomass [J].Chemical Engineering Journal, 2003, 91(2-3):87-102
    [131] Nowakowski D J, Jones M J. Uncatalysed and potassium-catalysed pyrolysis of thecell-wall constituents of biomass and their model compounds [J]. Journal of Analytical& Applied Pyrolysis, 2008, 83 (1): 12-25
    [132] Lu Q, Li W Z, Zhang D Zhu X F. Analytical pyrolysis-gas chromatography/massspectrometry (Py-GC/MS) of sawdust with Al/SBA-15 catalysts [J]. Journal ofAnalytical & Applied Pyrolysis, 2009, 184 (2):131-138
    [133] Fahmi R, Bridgewater A V, Thain S C, Donnison I S, Morris P M, Yates N. Prediction of Klason lignin and lignin thermal degradation products by Py-GC/MS in a collection of Lolium and Festuca grasses [J]. Journal of Analytical & Applied Pyrolysis, 2007, 80 (1):16-23
    [134] Yang Q, Wu S B. Thermogravimetric characteristics of wheat straw lignin [J]. Cellulose Chemistry & Technology, 2009, 43(4-6) 131-140
    [135] Ghetti P, Ricca L, Angelini. L. Thermal analysis of biomass and corresponding pyrolysis products [J]. Fuel, 1996, 75 (5):565-573
    [136] Varhegyi G, Szabo P, Antal, M J Jr. Reaction kinetics of the thermal decomposition of cellulose and hemicellulose in biomass materials [A]. Bridgwater A V. Advances in Thermochemical Biomass Conversion [C]. London: Blackie Academic and Professional, 2008:760-771
    [137] Zhu Y H, Demange R, Vogel P. Convergent syntheses of C(l—>3)-linked disaccharides starting from isolevoglucosenone [J]. Tetrahedron: Asymmetry, 2000, 11(1): 263-282
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.