非木材纤维木素在不同热化学条件下的产物形成规律与调控途径
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质热化学转化利用的技术和设备一直在快速地发展和更新,其向绿色能源燃料和高附加值化学品转化的高值化利用研究也已全面展开。生物质中木素大分子的化学结构最为复杂,其热解过程和反应途径也相对较为复杂。因此,对生物质原料中木素组分的分离、分级定向转化过程是必然途径,深入地研究木素的热裂解特性和反应途径的调控,为实现生物质热解的目标产物的合理调控提供理论指导。
     以禾本科植物中具有代表性的毛竹和稻草为原料,采用比较成熟的纤维素酶酶解/温和酸解法进行木素的分离,对分离后得到的高纯度和高得率的木素进行热解规律和热解产物进行深入研究。
     1.采用元素分析、凝胶色谱(gel chromatography,GPC)、傅里叶红外光谱(Fourier transform infrared spectrometer,FT-IR)、氢谱(~1H),碳谱(~(13)C)和定量磷谱(~(31)P)核磁共振(nuclear magnetic resonance,NMR)等精密分析技术对木素的物理化学性质进行了全面表征。分析结果表明,分离得到的酶解/温和酸解木素(enzymatic hydrolysis/mild acidolysis lignin,EMAL)在分离过程中的结构破坏程度较小,具有原本木素的大分子结构。毛竹和稻草EMAL中主要存在愈疮木基(guaiacyl,G)丙烷和紫丁香基(syringyl,S)丙烷结构单元,并含有少量的对羟基苯基(para-hydroxyphenyl,p-H)丙烷结构单元。其中,稻草EMAL结构中愈疮木基单元占有主要地位,而毛竹EMAL中紫丁香基结构单元的含量相对较多;β-O-4型芳基醚键联接是毛竹和稻草EMAL结构单元的一个重要特征,除此之外,稻草EMAL还含有较多的β-β、β-5、α-O-4型联接,而毛竹EMAL则含有较多的β-1、α-O-4和β-5型联接。
     2.借助于热重分析法(thermogravimetric analysis,TGA)、热解气质联用技术(pyrolysis-gas chromatopraphy/mass spectrometry,Py-GC/MS)和小型管式炉热解技术等对木素热裂解的反应途径以及产物的形成规律进行深入研究。TGA实验结果表明木素的热解反应发生在一个较长的温度范围,主热解反应主要集中在400~600℃温区;依据热失重数据进一步求算出木素热解动力学参数,并建立动力学一级反应模型。热重-傅里叶红外联用(TG-FT-IR)技术揭示了毛竹和稻草EMAL在热解过程中小分子气体的释放规律,在300~500℃的主反应温区各小分子气体产物大量生成,CO_2的产率明显高于其他气体分子。在毛竹和稻草EMAL的管式炉热裂解试验中,液体焦油的得率明显高于焦炭和气体,且500℃时达到最高。随着热解温度的升高,气体得率显著增加,焦炭得率逐渐减少,并且焦炭的芳香性和微晶结构特征逐渐增强。木素在高温热解时产生较多的CO、H_2和CH_4。研究还发现,稻草EMAL热裂解的产物得率与G-型木素模型物相近,由此印证了木素的自身结构与其热解行为和热解产物分布规律有着密切的关系。
     3.酚类化合物是木素热裂解的典型特征产物,其含量最高约占热解产物的60%。一般地说,总酚的相对含量在600℃时达到最高;随着热解温度的升高,产物中G-型酚和S-型酚的相对含量逐渐减少,p-H-型酚逐渐增加;尤其苯酚和4-甲基苯酚在600~800℃时生成量迅速增加,这是由G-型酚和S-型酚在高温时发生二次裂解所致。催化剂金属盐和人造沸石的添加,加深了木素分子结构的裂解程度,使G-和S-型酚类化合物结构上的官能团(如甲氧基、羧基、羰基及醇羟基)分裂更加彻底,生成更多小分子化合物、苯系物、苯酚和烷基取代苯酚。催化剂的添加对改善生物质热裂解产物的组分有着重要意义。
Thermochemical conversion techniques and equipments for biomass has been developing quickly, and an ever increasing attention has been paid to the high-value utilization of biomass applied to green bio-energy and high value-added chemicals. The structure of lignin are the most complicated macromolecules in biomass constitute, thus pyrolysis and reaction pathways of lignin are relatively more complex. Therefore, it is truly necessary to separate lignin from the biomass feedstock and then grade pyrolysis for directional conversion. To in-depth deliberate pyrolysis characteristic and reaction pathways of lignin would be required, which provided the theoretical guidance for the control of the desired products on line.
     Feedstock of bamboo and straw were representative in grass plants, enzymatic hydrolysis/mild acidolysis method was used to isolated lignin from feedstock, the obtained enzymatic hydrolysis/mild acidolysis lignin (named EMAL) had a higher purity and yield. The behavior of EMAL pyrolysis and pyrolytic products distribution were highlighted in this thesis.
     The physical and chemical characteristics of EMAL were comprehensively investigated in this paper by using elemental analysis, GPC, FT-IR, ~1H-NMR, ~(13)C-NMR, quantitative ~(31)P-NMR and other sophisticated analytical techniques. The results revealed that EMAL with an unbroken molecular structure was in close proximity to original lignin; EMAL contained main guaiacyl propane unit (G-type), syringyl propane unit (S-type) and a handful of para-hydroxyphenyl propane unit (p-H-type), moreover, G-type unit was superior in structural units of rice straw EMAL and S-type unit was major in bamboo EMAL.β-O-4 ether linkage is an important feature of structural units in bamboo and rice straw EMAL. In addition, rice straw EMAL contained someβ-β,β-5 andα-O-4 bonds and banboo EMAL also possesedβ-1,α-O-4 andβ-5 bonds.
     The reaction path of lignin pyrolysis and the formation of pyrolyzate were revealed by means of thermogravimetric analysis (TGA), pyrolysis coupled with gas chromatopraphy/ mass spectrometry (Py-GC/MS) and small tube furnace pyrolysis apparatus. TGA studies showed that lignin pyrolysis took place in a long temperature range, and the sharp pyrolysis reactions mainly concentrated at temperature from 400℃to 600℃. Besides, kinetic parameters of lignin pyrolysis was obtained according to TGA data, and a dynamic order reaction model for lignin pyrolysis was established. TG-FT-IR was applied to detect release rules of gas products from bamboo and rice straw EMAL pyrolysis, which confirmed that most of the gas products were released within a temperature range from 300℃to 500℃, and CO_2 production was significantly higher than other gas molecules. Bamboo and rice straw EMAL were pyrolyzed on a tube furnace pyrolyzing furnace to collect bio-oil, char and gas products. the yield of obtained bio-oil was significantly higher than that of char and gas, to the highest 60% at 500℃. As the pyrolysis temperature increased, the gas yield increased significantly yet char yield decreased, and the aromaticity of char gradually heightened. Besides, lignin pyrolysis at high temperature also produced more CO, H_2 and CH_4. It was also discoverded that pyrolysate yield from rice straw EMAL agreed with that from G-type lignin model, which affirmed that the pyrolysis behaviors and products were closely related to lignin structure.
     Phenolic compounds were the characteristics products from lignin pyrolysis, accounted for 60% around. In general, the relative content of total phenolics reached maxima at 600℃. As the pyrolysis temperature increased, G- and S-type phenol content decreased yet p-H-type phenol content gradually increased; in particular, phenol and 4-methylphenol formed rapidly during 600~800℃, which resulted from the secondary cracking of G- and S-type phenol at high temperature. Catalysts of metal salts and permutite added to lignin pyrolysis enhanced the cleavage levels of lignin structure, and caused a thorough split of functional groups (methoxyl, carboxyl, and carbonyl group) from G- and S-type phenolics to produce more small molecules, i.e. the gaseous, benzenes, phenol and alkyl-phenols. It was a great significance for catalytic pyrolysis improved pyrolysate components from biomass pyrolysis.
引文
[1] Mohanty A K, Misra M, et al. Biofibres, biodegradable polymers and biocomposites: An overview [J]. Macromolecular Material and Engineering, 2000, 276(3): 1-24
    [2] Mohanty A K, Misra M, et al. Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world [J]. Journal of Polymers and the Environment, 2002, 10(1-2): 19-26
    [3] Bridgewater A V, Peacocke G V C. Fast pyrolysis processes for biomass [J]. Renewable & Sustainable Energy Reviews, 2000, 4(2): 71-73
    [4] Manya J J, Velo E, Puigjaner L. Kinetics of biomass pyrolysis: a reformulated three-parallel-reactions model [J]. Ind Eng Chem Res. 2003, 42: 434-441
    [5] Pratik N, Sheth, et al. Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier [J]. Bioresource Technology, 2009, 100(12): 3127-3133
    [6] Beenackers A A C M. Solar energy R&D in the European Community series E advanced gasification [M]. London : D. Reidel Publishing Company, 1986
    [7] Islam M N, Zailani R, Ani F N. Pyrolytic oil from fluidised bed pyrolysis of oil palm shell and its characterization [J]. Renew Energy, 1999, 17: 73-84
    [8] Horne P A, Williams P T. Influences of temperature on the products from the flash pyrolysis of biomass [J]. Fuel, 1996, 75:1051-9
    [9] Yu Q Z, Brage C, Chen G X, et al. Temperature impact on the formation of tar from biomass pyrolysis in a free-fall reactor [J]. Anal Appl Pyrol, 1997, 40: 481-489
    [10]吴汉靓.生物油特性研究进展.第二届全国研究生生物质能研讨会会议论文集[C],中国科学院广州能源所,广州, 2007, pp69
    [11]陈冠益,方梦祥,骆仲泱,等.生物质固定床热解特性的试验研究与分析[J].太阳能学报, 1999, 20(2): 122-129
    [12]刘荣厚.生物质闪速热裂解特性及闪速热裂解试验研究[D].沈阳农业大学, 1997
    [13] Storm C, Rudiger H, Spliethoff H, et al. Co-pyrolysis of coal/biomass and coal/sewage sludge mixtures[J]. Journal of Engineering for Gas Turbines and Power, 1999, 121(1): 55-63
    [14]阎维平,陈吟颖.生物质混合物与煤共热解的协同特性[J].中国电机工程学报, 2007, 27(2): 80-85
    [15]鲁敏,吕鹏梅,袁振宏.生物质气化焦油催化裂解技术研究进展.第二届全国研究生生物质能研讨会会议论文集[C],中国科学院广州能源所,广州, 2007, pp81
    [16]杨海平.油棕废弃物热解的实验及机理研究[D].华中科技大学,武汉, 2005
    [17]宋春财,胡浩权.秸秆及其主要组分的催化热解及动力学研究[J].煤炭转化, 2003, 26(3): 91-97
    [18]王树荣,廖艳芬,骆仲泱,等.氯化钾催化纤维素热裂解动力学研究[J].太阳能学报, 2005, 26(4): 452-457
    [19]谭洪.生物质热裂解机理研究[D].浙江大学,杭州, 2005
    [20]廖翠萍,颜涌捷,吴创之.生物质中元素分布特征的聚类分析研究[J].煤炭转化, 2004, 27(1): 89-95
    [21] Seiichi Yasuda, Kyoko Asano. Preparation of strongly acidic cation-exchange resins from gymnosperm acid hydrolysis lignin [J]. J Wood Sci, 2000, 46: 477-479
    [22]王明峰,蒋恩臣.我国生物质热解技术研究进展[C].第二届全国研究生生物质能研讨会会议论文集,中国科学院广州能源所,广州, 2007, pp100-102
    [23]中野准三编,高洁等译.木素的化学—基础与应用[M].北京:轻工业出版社, 1988
    [24]刘书钗.制浆造纸分析与检测[M].北京:化学工业出版社, 2004
    [25]王少光.三种秸秆木素的化学结构与热裂解特性研究[D].华南理工大学,广州, 2007
    [26]陈嘉翔,余家鸾.植物纤维化学结构的研究方法[M].华南理工大学出版社, 1989, pp142-149
    [27] Anna Stiina J??skel?inen. The effect of isolation methods on the chemical structure of residual lignin, confidential to paprican member companies [R]. PGRLR, 2001, 4: 781
    [28] Spyros A, Dais P. 31P NMR spectroscopy in food analysis [J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 2009, 54(3-4): 195-207
    [29] Gisela Marques, Ana Gutiérrez, et al. Chemical composition of lignin and lipids from tagasaste (Chamaecytisus proliferus spp. palmensis) [J]. Industrial Crops and Products, 2008, 28(1): 29-36
    [30] Lund M, Ragauskas A J. Enzymatic modification of kraft lignin through oxidative coupling with water-soluble phenols [J]. Applied Microbiology and Biotechnology, 2001, 55: 145-149
    [31] Feng X, Jian X J, et al. Fractional isolation and structural characterization of mild ball-milled lignin in high yield and purity from Eucommia ulmoides Oliv [J]. WoodScience and Technology, 2008, 42: 178-180
    [32]张齐生,关明杰,纪文兰.毛竹材质生成过程中化学成分的变化[J].南京林业大学学报(自然科学版). 2002, 26(2): 7-9
    [33]史仲平,华兆哲译.生物质和生物能源手册[M].化学工业出版社,北京, 2006
    [34]蔡明招,邱玉桂,江哄.十种植物造纸原料中金属离子的含量研究[J].广西植物. 2001, 21(1): 91-94
    [35]朱平平,杨海洋,何平笙.值得商榷的聚合物分子量分布宽度指数表达式[J].高分子通报, 2003, 5: 80-82
    [36] Ko Jae Jung, Yoshihisa Shimizu, et al. Biodegradation of high molecular weight lignin under sulfate reducing conditions: Lignin degradability and degradation by-products [J]. Bioresource Technology, 2009, 100(4): 1622-1627
    [37] Zhou M S, Qiu X Q, et al. High-performance dispersant of coal–water slurry synthesized from wheat straw alkali lignin [J]. Fuel Processing Technology, 2007, 88(4): 375-382
    [38] Tasuku Nakai, Nami Kartal S, et al. Chemical characterization of pyrolysis liquids of wood-based composites and evaluation of their bio-efficiency [J]. Building and Environment, 2007.3, 42(3): 1236~1241
    [39]谭扬.两种工业木素的化学结构及热解规律研究[D].华南理工大学,广州, 2009
    [40] Pérez J M, Oliet M, et al. Cure kinetics of lignin–novolac resins studied by isoconversional methods [J]. Thermochimica Acta, 2009, 487(1-2): 39-42
    [41] Boonstra M G, Pizzi A, et al. Chemical modification of Norway Spurce and scots pine [J]. Holzforschung, 1996, 50: 215-220
    [42] Jiang Z H, Argyropoulos D S, et al. Correlatation analysis of 31P-NMR chemical shifts with substituent effects of phenols [J]. Magn Reson Chem, 1995, 33: 375-382
    [43] Oskar Fair, Dimitris S A, Danielle Robert, et al. Determination of Hydroxyl groups in lignins evaluation of 1H-, 13C-, 31P- NMR, FT-IR and wet chemical methods [J]. Holzforschung, 1994, 48: 387-394
    [44]蔡正千.热分析[M].北京:高等教育出版社, 1993
    [45] Williams P T, Besler S. The pyrolysis of rice husks in a thermogravimetric analyser and static batch reactor [J]. Fuel, 1993, 72: 151-159
    [46] Joaquin Reina, Enrique Velo, et al. Kinetic Study of the Pyrolysis of Waste Wood [J]. Ind. Eng. Chem. Res., 1998, 37: 4290-4295
    [47] Valerio cozzani, Aldo Lucchesi, et al. Method to determine the composition of biomass by thermogravimetric analysis [J]. The Canadian journal of chemical engineering, 1997,75: 127-133
    [48] Xie Xinfeng, Goodell Barry, et al. Characterization of carbons derived from cellulose and lignin and their oxidative behavior [J]. Bioresource Technology, 2009.5, 100(5): 1797-1802
    [49] Grammelis P, Basinas P, et al. Pyrolysis kinetics and combustion characteristics of waste recovered fuels [J]. Fuel, 2009, 88(1): 195-205
    [50]孔晓英.麦草、蔗渣的热化学裂解特性与液化机理的基础研究[D].华南理工大学, 2002, 6: 23-29
    [51] Martinez A T, et al. Studies on wheat lignin degradation by Pleurotus species using analytical pyrolysis [J]. Journal of Analytical and Applied Pyrolysis, 2001, 58-59: 401-411
    [52] Steven G. Combustion of pyrolysis liquids [J]. Pyrolysis Network for Europe, 1997, 3: 12-15
    [53]陈定一.分析化学[M].上海:上海科学技术出版社, 1985, pp162
    [54] Cao R, Naya S, et al. Logistic approach to polymer degradation in dynamic TGA [J]. Polymer Degr adation and Stability, 2004, 85(1): 667-674
    [55] Reina J, Velo E, et al. Kinetic study of the pyrolysis of waste wood [J]. Industrial & Engineering Chemistry Research, 1998, 37(11): 4290-4295
    [56] Bilbao R, Mill A, et al. Kinetics of weight loss by thermal decomposition of different lingo-cellulosic materials: Relation between the results obtained from isothermal and dynamic experiments [J]. Thermochimica Acta, 1990, 165(1): 103-112
    [57] Nunn T R, Howard J B. Product compositions and kinetics in the rapid pyrolysis of milled wood lignin [J]. Ind Eng Chem Process Des Dev, 1985, 24: 844-853
    [58]姚燕,王树荣,郑赟,等.基于热红联用分析的木素热裂解动力学研究[J].燃烧科学与技术, 2007, 13(1): 50-54
    [59] Bassilakis R, et al. TG-FTIR Analysis of Biomass Pyrolysis [J]. Fuel, 2001, 80(12): 1765-1786
    [60] De Jong W, Pirone A, Wójtowicz M A. Pyrolysis of Miscanthus Giganteus and Wood Pellets: TG-FTIR Analysis and Reaction kinetics [J]. Fuel, 2003, 82(9): 1139-1147
    [61] Koufopanos C A, Maschio G, et al. Kinetic Modeling of the Pyrolysis of Biomass and Biomass Components [J]. Canadian Journal of Chemical Engineering, 1989, 67(1): 75-84
    [62] González Alriols M, Tejado A, et al. Agricultural palm oil tree residues as raw material for cellulose, lignin and hemicelluloses production by ethylene glycol pulping process [J].Chemical Engineering Journal, 2009.3, 148(1): 106-114
    [63] Wang S R,Wang K G, Liu Q, et al. Comparison of the pyrolysis behavior of lignins from different tree species [J]. Biotechnology Advances, 2009, 27 (5): 562-567
    [64] Yang H P, Yan R, Chen H P, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis [J]. Fuel, 2007, 86(12): 1781-1788
    [65] Liu Q, Wang S R, Zheng Y, et al. Mechanism study of wood lignin pyrolysis by using TG-FT-IR analysis[J]. Analytical Applied Pyrolysis, 2008, 82 (1): 170-177
    [66] Braun J L, Holtman K M, Kadla J F. Lignin based carbon fibers: oxidative thermo stabilization of Kraft lignin [J]. Carbon, 2005, 43(2): 385-394
    [67] Bassilakis R, Carangelo R M, Wójtowicz M A. TG-FTIR analysis of biomass pyrolysis [J]. Fuel, 2001, 80(12): 1765-1786
    [68]宋春财,胡浩权.秸秆及其主要组分的催化热解及动力学研究[J].煤炭转化, 2003, 26(3): 91-97
    [69] Kissinger H F. Reaction kinetic indifferential thermalanalysis [J]. Analytical Chemistry, 1957, 29(11): 1702-1706
    [70]余春江,唐艳玲,方梦祥,等.稻秆热解过程中碱金属转化析出过程试验研究[J].浙江大学学报(工学版), 2005, 39(9): 1435-1438
    [71]马孝琴,方梦祥,骆仲泱,等.添加剂对秸秆燃烧过程中碱金属行为的影响[J].浙江大学学报(工学版), 2006, 40(4): 600-604
    [72] Fahmi R, Bridgwater A V, et al. Prediction of Klason lignin and lignin thermal degradation products by Py-GC/MS in a collection of Lolium and Festuca grasses [J]. Journal of Analytical and Applied Pyrolysis, 2007, 80(1): 16-23
    [73] JoséC del Río, Ana Gutiérrez, et al. Composition of non-woody plant lignins and cinnamic acids by Py-GC/MS, Py/TMAH and FT-IR [J]. J. Anal. Appl. Pyrolysis, 2007, 79: 39-46
    [74] Camarero S, Bocchini P, et al. Compositional changes of wheat lignin by a fungal peroxidase analyzed by pyrolysis-GC-MS [J]. Journal of Analytical and Applied Pyrolysis, 2001, 58-59: 413-423
    [75]孔晓英.麦草、蔗渣的热化学裂解特性与液化机理的基础研究[D].华南理工大学,广州, 2002
    [76] Martinez A T, et al. Studies on wheat lignin degradation by Pleurotus species using analytical pyrolysis [J]. Journal of Analytical and Applied Pyrolysis, 2001, 58-59: 401-411
    [77] Steven G. Combustion of pyrolysis liquids [J]. Pyrolysis Network for Europe, 1997, 3: 12-15
    [78]陈定一.分析化学[M].上海:上海科学技术出版社, 1985
    [79] Lou R, Wu S B, Lv G J. Fast pyrolysis of bamboo lignin [J]. Bioresources. 2010, 5: 827-837.
    [80]陆强,朱锡锋,李文志,等.生物质快速热解产物在线催化提质研究[J].科学通报, 2009, 54(8): 1139-1146
    [81] Nunn H R, Howard J B, John P. Product compositions and kinetics in the rapid pyrolysis of sweet gum hardwood [J]. Ind. Eng. Chem. Process Des. Dev., 1985, 24 (3): 836-844
    [82] Olazar M, Aguado R, Bilbao J. Pyrolysis of sawdust in a conical spouted-bed reactor with a HZSM-5 catalyst [J]. AIChE J, 2000, 46: 1025-1033
    [83] Gayubo A G, Aguayo A T, Atutxa A, et al. Deactivation of a HZSM-5 zeolite catalyst in the transformation of the aqueous fraction of biomass pyrolysis oil into hydrocarbons [J]. Energ Fuel, 2004, 18: 1640-1647
    [84] Vitolo S, Bresci B, Seggiani M, et al. Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: behaviour of the catalyst when used in repeated upgrading-regeneration cycles [J]. Fuel, 2001, 80: 17-26
    [85]李学军,查庆芳,杨小军,等.催化裂解油浆富芳烃馏分的组成及其炭化行为[J].石油化工, 2007, 36(11): 1104-1109
    [86]胡德生.焦炭微晶结构特性研究[J].钢铁, 2006, 41(11): 10-12
    [87]吴晓英.烟煤高温焦炭微晶结构的X衍射研究[J].西安矿业学院学报, 1999, 2: 158-160
    [88]陶著.煤化学[M].北京:冶金工业出版社, 1984
    [89]余春江,骆仲泱,张文楠,等.碱金属及相关无机元素在生物质热解中的转化析出[J].燃料化学学报, 2000, 28(5): 420-425
    [90] MAHALLY KUDSY, Hidehiro Kumazawa. Pyrolysis of Kraft lignin in the presence of molten ZnCl2-KCl mixture [J]. The Canadian Journal of Chemical Engineering, 1999, 77: 1176-1184
    [91]刘江燕.木素及其模型物在不同热化学环境下的解构[D].华南理工大学,广州, 2010
    [92]谭洪.生物质热裂解机理试验研究[J].浙江大学,杭州, 2005
    [93]刘鸿斌.木素结构和热解机理的量子化学研究[D].华南理工大学,广州, 2009
    [94]沈文浩,陈小泉,刘鸿斌,等.木素模型物愈疮木酚结构和热解机理的量子化学研究[J].造纸科学与技术, 2010, 29(3): 73-78
    [95] Demirbas A. Mechanisms of liquefaction and pyrolysis reactions of biomass [J]. Energy Conversion & Management, 2000, 41: 633-646.
    [96] Nunn T R, Howard J B, Longwell J P, et al. Product Compositions and kinetics in the rapid pyrolysis of Milled Wood Lignin [J]. Ind. Eng. Chem. Process. Des. Dev., 1985, 24: 844-853
    [97] Kai Sipila, Eeva Kupppala, Leena and Anja oasmaa. Characterization of biomass-based flash pyrolysis oils [J]. Biomass and Bioenergy, 1998, 14(2): 103-113
    [98] Sada E, Kumazawa H, Kudsy M. Pyrolysis of Lignin in Molten Salt Media [J]. Industrial & Engineering Chemistry Research, 1992, 31: 612-616
    [99]杨淑慧.植物纤维化学(第三版) [M].北京:中国轻工业出版社, 2001
    [100] Haruo Kawamoto, Masakazu Ryoritani, Shiro Saka. Different pyrolytic cleavage mechanisms of ?-ether bond depending on the side-chain structure of lignin dimers [J]. J. Anal. Appl. Pyrolysis, 2008, 81: 88-94
    [101] Demirba? A. Mechanisms of liquefaction and pyrolysis reactions of biomass [J]. Energy Conversion & Management, 2000, 41: 633-646
    [102] Phillip F Britt, Buchanan A C, III, et al. Pyrolysis mechanisms of lignin: surface-immobilized model compound investigation of acid-catalyzed and free-radical reaction pathways [J]. Journal of Analytical and Applied Pyrolysis, 1995, 33:1-19
    [103] Scurlock J M O, Dayton D C, Hames B. Bamboo: an overlooked biomass resource?, Environmental Sciences Division Publication, 2000, 4963
    [104]张齐生,关明杰,纪文兰.毛竹材质生成过程中化学成分的变化[J].南京林业大学学报(自然科学版), 2002, 26(2): 7-9
    [105] PONDER G R,RICHARDS G N. Thermal synthesis and pyrolysis of a xylan [J]. Carbohydrate Research, 1991, 218: 143-155
    [106] Osman, E. A. A Study of the Effects of Ash Chemical Composition and Additives on Fusion Temperature in Relation to Slag Formation During Gasification of Biomass [D]. University of California, 1982
    [107] Ganesh, A. Studies on Characterisation of Biomass for Gasification [D]. Indian Institute of Technology, New Delhi, 1990
    [108] Shafizadez, F. Pyrolysis and combustion of cellulosic materials [J]. Adv. Carbohydrate Chemistry, 1968, 23: 419-474
    [109] Feldmann H F, Chol P S, Conkle H N, et al. Biomass as a Non Fossil Fuel Source (Ed. D. L. Klass), American Chemical Society, Washington, DC, 1981, 144
    [110] Gray M R, Corcoran W H, Gavalas G R. Pyrolysis of a wood-derived material: Effects of moisture and ash content [J]. Ind. Eng. Chem. Res., 1985, 24: 646-652.
    [111] Essig M, Richards G N, Schenck E. Cellulose and Wood-Chemistry and Technology (Ed. Schuerch) [M], Wiley, New York, 1989
    [112] Raveendran K, Anuradda Ganesh, Kartic C. Khilart Influence of mineral matter on biomass pyrolysis characteristics [J]. Fuel, 1995, 74(12): 1812-1822
    [113] Colomba Di Blasi, Gabriella Signorelli, Carlo Di Russo. Product distribution from pyrolysis of wood and agricultural residues [J]. Ind. Eng. Chem. Res., 1999, 38: 2216-2224
    [114] Anvar U Buranov, Mazza G. Lignin in straw of herbaceous cropsindustrial crops and products [J]. 2008, 28: 237-259
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.