栗壳基生物质炭材料的制备及结构性能演变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
板栗壳的大量废弃及直接燃烧,己造成了一定程度的环境污染和资源浪费。对板栗壳的资源化利用,具有一定的社会效益、经济效益和环境效益。
     本论文针对板栗壳自身具有的碳含量及燃烧热值较高的特点,以及内部多孔分层结构,利用预氧化、炭化工艺在有无催化剂两种情况下制备出了具有较高燃烧热值的栗壳基生物质炭材料,并通过多种分析测试方法对板栗壳的热裂解情况及在制备过程中的结构性能演变做了研究。
     本论文利用热重分析仪和气相色谱-质谱联用仪对板栗壳热裂解行为进行了研究,发现板栗壳热解过程存在三个失重区,随升温速率增加,热解滞后。加入催化剂后,相同升温速率下热解提前,热解区变宽;随裂解温度上升,裂解产物中CO2比重增大,乙酸和左旋葡聚糖的出峰时间提前,呋喃类化学物有较明显下降,催化剂的加入抑制了板栗壳裂解过程中左旋葡聚糖的产生,升高温度后呋喃类化合物增加。
     本论文利用元素分析仪、红外光谱仪和X-ray衍射仪研究了有无催化剂两种情况下板栗壳在预氧化、炭化过程中各温度阶段的元素组成、基团和晶型演变。随着温度升高,C元素含量逐步增加,碳网结构逐渐增大,催化剂的加入,改变了各阶段的元素组成含量,H、O元素更多地以H20的形式脱除,产物提前形成碳网结构。
     本论文利用扫描电子显微镜研究了板栗壳在有无催化剂两种情况下预氧化、炭化过程中各温度阶段微观结构的演变。随着温度升高,样品表面孔洞变得萎缩,断面孔隙率增大,网络结构逐渐规整,催化剂的加入,使断面网络结构规整化提前,并使表面出现龟壳现象。
     本论文进一步研究了有无催化剂两种情况下预氧化、炭化过程中各温度阶段样品的得率及密度变化,并通过氧弹量热仪研究了燃烧热值的变化。样品得率随温度升高明显下降,密度随温度升高呈波浪形变化,预氧化阶段燃烧热值缓慢上升,进入炭化阶段之后,燃烧热值有了大幅增加。在750。C制备出得率为38.17%、燃烧热值为30.75MJ/Kg的生物质炭;催化剂的加入,提高了各阶段的样品得率,燃烧热值也有了进一步提升,在750℃制备出得率为44.31%、燃烧热值为35.48MJ/Kg的生物质炭。
The discarding and directly burning of a large number of chestnut shell, have caused some environmental pollution and resources waste, so it will be benefit to our society, economy and environment to make good use of the abandoned chestnut shell. Chestnut shell based biochar with high calorific value has been made through pre-oxidation and carbonization in two cases, without and with catalyst, according to the innate advantages of chestnut shell at carbon content and calorific value. The pyrolysis behaviors and the transmutation of both the structure and properties during the carbonization were investigated.
     The pyrolysis behaviors of chestnut shell have been studied by TG and GC-MS. Results show that there are three stages of pyrolysis of the chestnut shell and the TG curve slightly shifts to higher temperature as the heating rate increases. With catalyst, the TG curve slightly shifts to low temperature at the same heating rate. With the pyrolysis temperature increasing, the weight proportion of CO2 in pyrolysis products goes up, acetic acid and levoglucosan emerge earlier, while furans decrease obviously. The catalyst restrains the levoglucosan's generation, and helps furans increase when temperature goes up.
     The transmutation of elements composition, groups and crystalline structure in pre-oxidation and carbonization have been investigated by element analysis tester, FT-IR and XRD respectively. As the process temperature increases, carbon element content increases gradually and carbon network grows up. When adding catalyst, element contents of every stage change, hydrogen and oxygen eliminate more often by the form of H2O, and the carbon network forms earlier.
     The microstructure of samples, without or with catalyst, in pre-oxidation and carbonization has been studied by SEM. As the process temperature increases, the holes on surface shrinks and the porosity of cross section become bigger, while network structure grows to be regular. The catalyst makes the network structure of cross section emerge earlier and the surface becomes turtle shell shape.
     The yield and density of samples in pre-oxidation and carbonization, without or with catalyst, have been studied, and the transmutation of calorific value has been investigated by oxygen bomb calorimeter. Results show that the yield decreases as the process temperature increases, and the transformation of density is undulation. Calorific value goes up slowly in pre-oxidation process, while in carbonization, it increases quickly. The chestnut shell based biochar with 38.17% yield and 30.75MJ/Kg calorific value has been prepared at 750℃. Adding catalyst has improved the density, yield and calorific value. With the catalyst, the chestnut shell based biochar with 44.31% yield and 35.48MJ/Kg calorific value has been obtained at 750℃.
引文
[1]庄贵阳,低碳经济-中国之选.中国石油石化,2007,13:13-15.
    [2]张雷,经济发展对碳排放的影响.地理学报,2003,58(4):23-25.
    [3]马晓微,我国经济发展与能源消费关系实证研究.中国能源,2007,29(5):32-35.
    [4]魏一鸣,刘兰翠,范英,等.中国能源报告(2008).北京:科学出版社,2008:287-293.
    [5]陈英姿,李雨潼,低碳经济与我国区域能源利用研究.吉林大学社会科学学报,2009,49(2):13-16.
    [6]韩宝瑞,沈宗麟,秦万丰,生物质炭的开发与应用.吉林林学院学报,1998,14(4):236-237.
    [7]吕文,王春峰,王国胜,等.中国林木生物质能源发展潜力研究.中国林业产业,2006,1:6-11.
    [8]王国胜,吕文,刘金亮,等.中国林木生物质能源资源培育与发展潜力调查.中国林业产业,2006,1:12-21.
    [9]张彩虹,张大红,徐剑琦,等.中国林木生物质能源发展经济分析与可行性研究.中国林业产业,2006,1:35-45.
    [10]李顺龙,王耀华,宋维明,发展林木生物质能源对二氧化碳减排的作用.东北林业大学学报,2009,37(4):83-85.
    [11]徐学勤,齐涛,林木生物质能源开发和利用.四川林业科技,2007,28(1):106-108.
    [12]刘志坤,邵千钧,余养伦,等.竹材加工剩余物综合利用研究.竹子研究汇刊,2003,22(3):45-61.
    [13]张无敌,宋洪川,丁琪,等.沼气发酵残留物防治农作物病虫害的效果分析.农业现代化研究,2001,22(3):168-170.
    [14]蒋剑春,生物质能源应用研究现状与发展前景.林产化学与工业,2002,22(2):76-80.
    [15]于文吉,生物质资源农作物秸秆应用于人造板工业的可行性分析.木材工业,2006,20(2):41-44.
    [16]胡东南,农林废弃物生物质压块燃料.广西科学院学报,1994,10(2):69-74.
    [17]蒋剑春,刘石彩,戴伟娣,等.林业剩余物制造颗粒成型燃料技术研究.林产化学与工业,1999,19(3):26-30.
    [18]熊素敏,左秀凤,朱永义,稻壳中纤维素、半纤维素和木质素的测定.粮食与饲料工业,2005,8:56-59.
    [19]宁平,杨月红,彭金辉,等.椰壳热解炭化热分析研究.林产化学与工业,2006,26(1):29-33.
    [20]韩宝瑞,沈宗麟,秦万丰,生物质炭的开发与应用.吉林林学院学报,1998,14(4):237-238.
    [21]费子文,徐大铨,中国冶金百科全书-炭素材料.北京:冶金工业出版社,2004:151-163.
    [22]黄律先,木材热解工艺学.北京:中国林业出版社,1996:221-232.
    [23]林兰英,陈志林,傅峰,木材炭化与炭化物利用研究进展.世界林业研究,2007,20(5):22-26.
    [24]Gao J., Tang L.G., Cellulose Science. Beijing:Science Press,1996:123-135.
    [25]Zugenmaier P., Conformation and packing of various crystalline cellulose fibers. Prog. Polym. Sci.,2001,26:1341-1417.
    [26]Klemm D., Heublein B., Fink H.P., et al. Cellulose:fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed.,2005,44:3358-3393.
    [27]Ye D.Y., Montane D., Farriol X., Preparation and characterization of methylcellulose from Annual cardoon and Juvenile eucalyptus. Carbohyd. Polym.,2005,61(4):446-454.
    [28]Ye D,Y, Montane D., Farriol X., Preparation and characterization of methylcellulose from Miscanthussinensisl. Carbohyd. Polym.,2005,62(3): 258-266.
    [29]Ye D.Y., Farriol X., Improving accessibility and reactivity of celluloses of annual pulps for the synthesis of methycellulose. Cellulose,2005,12(5):507-512.
    [30]叶代勇,黄洪,傅和青,等.纤维素化学研究进展.化工学报,2006,57(8):134-140.
    [31]Atalla R.H., Vander H.D.L., Native cellulose:a composite of two distinct crystalline forms. Science,1984,223:283-285.
    [32]Jarvis M., Cellulose stacks up. Nature,2003,426:611-612.
    [33]Kawamoto H., Murayama M., Saka S., Pyrolysis behavior of levoglucosan as an intermediate in cellulose pyrolysis:polymerization into polysaccharide as a key reaction to carbonized product formation. J. Wood Sci.,2003,49:469-473.
    [34]顾伟,潘鼎,粘胶基碳纤维.新型炭材料,1996,11(3):78-82.
    [35]贺福,赵建国,王润娥.粘胶基碳纤维.化工新型材料,1997,1:116-121.
    [36]王树荣,廖艳芬,骆仲映,等.氯化钾催化纤维素热裂解动力学研究.太阳能学报,2005,26(4):23-26.
    [37]Blasi C.D., Compasion of Semi-Global Mechanisms for Primary Pyrolysis of Lignocellulosic Fuels. J. Anal. Appl. Pyrol.,1998,47(1):43-64.
    [38]刘倩,王琦,王健,纤维素热解过程中活性纤维素的生成研究.工程热物理学报,2007,28(5):897-899.
    [39]邱卫华,陈洪章,木质素的结构、功能及高值化利用.纤维素科学与技术,2006,16(1):23-26.
    [40]蒋挺大,木质素.北京:化学工业出版社,2001:134-140.
    [41]陶用珍,管映亭,木质素的化学结构及其应用.纤维素科学与技术,2003,11(1):42-55.
    [42]Orlandi M., Canevali C., Rindone B., et al. Biomimetic approach to lignin degradation:A mechanistic study of Metallosalen catalysed oxidation of lignin and lignin model compounds.7th European Workshop on Lignocellulosics and Pulp,2002,5:369-373.
    [43]洪树楠,刘明华,范娟,等.木质素吸附剂研究现状及进展.造纸科学与技术,2004,23(2):38-43.
    [44]Gosselink R.J.A., Snijder M.H.B., Kranenbarg A., et al. Characterisation and application of Nova Fiber lignin. Ind. Crop. Prod.,2004,20:191-203.
    [45]Schmidt J.A., Rye C.S., Gurnagul N., Lignin inhibits autoxidative degradation of cellulose. Polym. Degrad. Stabil.,1995,49:291-297.
    [46]刘志坤,叶黎佳.生物质炭化材料制备及性能测试.生物质化学工程,2007,41(5):28-32.
    [47]江茂生,黄彪,陈学榕,等.木材炭化机理的FT-IR光谱分析研究.林产化学与工业,2005,25(2):113-120.
    [48]黄彪,陈学榕,江茂生,等.不同炭化条件下炭化物的结构与性能表征.光谱学与光谱分析,2006,26(3):45-51.
    [49]周根土,张均,安徽板栗产销状况及发展前景与对策探讨.经济林研究,2003,21(3):98-100.
    [50]丁之恩,许成林,胡芳名,加快安徽省板栗产业发展的思考.经济林研究,2002,20(2):100-102.
    [51]陶亮.安徽金寨板栗生产情况调查分析.经济林研究,1998,16(3):62-63.
    [52]李云雁,彭亚勤,宋光森,等.从板栗壳中分离乙醇木质素.西北农业学报,2007,16(3):200-203.
    [53]杨志斌,胡云三,宫晓华,等.板栗壳生产固型炭的技术研究.湖北林业科技,2005,2:63-66.
    [54]周建斌,邓丛静,张齐生,农作物秸秆炭制备速燃炭的研究.生物化学工程,2008,42(3):13-16.
    [55]矫常命,何芳,玉米秸秆热解液体产物热值的测定.山东理工大学学报,2006,20(2):11-13.
    [56]Didem O., Rsoy-Mericboyu y., A study on the carbonization of grapeseed and chestnut shell. Fuel Process. Technol.,2008,89:1041-1046.
    [57]左宋林,江小华,磷酸催化竹材炭化的FT-IR分析.林产化学与工业,2005,25(4):22-25.
    [58]Paiterp C., Sobkowiak M., Youtcheff J. FT-IR study of hydrogen bonding in coal. Fuel,1987,66:973-978.
    [59]Vazquez G., Fontenla E., Santos J., et al. Antioxidant activity and phenolic content of chestnut shell and eucalyptus bark extracts. Ind. Crop. Prod.,2008,28: 279-285.
    [60]吴琪琳,龚静华,张志海,等.催化处理Lyocell纤维在热解过程中的结构与性能变化.新型炭材料,2007,22(1):48-52.
    [61]Liu R.G., Hu X.C., Zhang T.L., Transformation of crystalline structure of linter pulp during dissolving in NMMO·H2O. Journal of China Textile University,1998, 24(4):7210-7215.
    [62]Rodrigue S.T., Bernard J., Aristide G.A., et al. Preliminary survey of the interfacial bonding of some tropical hardwoods towards succinic anhydride and 2-octen1ylsuccinic anhydride molecules:Impact of lignin and carbohydrat epolymers structure on the chemical reactivity. Ind. Crop. Prod.,2007,26(2): 173-184.
    [63]廖朝东,黄祖强,梁兴唐,花生壳在机械活化过程中结晶结构的变化. Food Machin.,2009,25(4):28-30.
    [64]曲雯雯,夏洪应,彭金辉,等.核桃壳热解特性及动力学分析.农业工程学报,2009,25(2):195-197.
    [65]Paris O., Zollfrank C., Zickler G.A., Decomposition and carbonization of wood biopolymers amicrostructural study of soft wood pyrolysis. Carbon,2005,43(1): 53-66.
    [66]Lai Y.H., Lv M.X., Ma C.Y., et al. Research on pyrolysis characteristics of agricultural residues under liner heating temperature. Combust. Sci. Technol., 2001,7(3):245-248.
    [67]Byme C.E., Nagle D.C., Carbonization of wood for advanced materials applications. Carbon,1997,35(2):259-266.
    [68]Houska C.R., Warren B.E., X-Ray study of the graphitization of carbon Black. J. Appl. Phys.,1954,25(12):1503-1509.
    [69]Fujimoto H., Theorectical X-ray scattering intensity of carbons with turbostratic stacking and AB stacking structures. Carbon,2003,41(8):1585-1592.
    [70]Greil P., Biomorphous ceramics from lignocellulosics. J. Eur. Ceram. Soc.,2001, 21:105-118.
    [71]Tzeng S.S., Chr Y.G., Evolution of microstructure and properties of phenolic resin-based carbon/carbon composites during pyrolysis. Mater. Chem. Phys., 2002,73(2):162-169.
    [72]Babu B.V., Chaurasia A.S., Heat transfer and kinetics in the pyrolysis of shrinking biornass particle. Chem. Eng. Sci.,2004,59(10):1999-2012.
    [73]Jakab E., Faix O., Till F., Thermal decomposition of milled wood lignins studied by thermogravimetry/mass spectrometry. J. Anal. Appl. Pyrolysis,1997,40: 171-186.
    [74]吴逸民,赵增立,吴文强,等.基于裂解气质联用分析的生物质逐级热解研究.燃料化学学报,2010,38(2):169-173.
    [75]Emirbas A., Gullu D., Biomass to methanol via pyrolysis process. Energy Convers. Manage.,2001,42(11):1349-1356.
    [76]Riehards G.N., Glycoaldehyde from pyrolysis of cellulose. J. Anal. Appl. Pyrol., 1987,10(3):251-255.
    [77]Tan H., Mechanism study of biomass pyrolysis. Zhejiang:Zhejiang University, 2005.
    [78]Shafizadeh F., Lai Y.Z., Thermal degradation of 1,6-Andydm-β-D-glucopyranose. J. Org. Chem.,1972,37(2):278-284.
    [79]左宋林,于佳,车颂伟,热解温度对酸沉淀工业木质素快速热解液体产物的影响.燃料化学学报,2008,36(2):145-148.
    [80]Demirbas A., Gullu D., Acetic acid, methanol and acetone from lignacellosics by pyrolysis. Energy Educ. Sci.,1998,1(1):111-116.
    [81]常胜,赵增立,郑安庆,杉木分级催化热解气质联用实验分析.农业机械学报,2010,41(6):94-97.
    [82]Diamente L.M., Munro P. A., Mathem atical modelling of hot air drying of sweet potato slices. Int. J. Food Sci. Tech.,1991,26(1):99-109.
    [83]Liu Y.H., Zhu W.X., Ma H.L., Model of vacuum in frared radiation drying on Rehm anniae. Transactions of the Chinese Society for A gricultural Machinery, 2010,41(1):122-126.
    [84]Kleen M., Gellerstedt G., Influence of inorganic species on the formation of polysaccharide and lignin degradation Products in the analytical pyrolysis of Pulps. J. Anal. Appl. Pyrol.,1995,35(1):15-41.
    [85]Christopher H. V., The molecular composition of lignin in spruce decayed by white-rot fungi using pyrolysis-GC-MS and thermochemolysis with tetramethylammonium hydroxide. Int. Biodeterior. Biodegrad.,2003,51:67-75.
    [86]赵旭晨,陈惠芳,王二轲,等.硫酸尿素催化体系对黏胶纤维热解行为的影响.宇航材料工艺,2009,1:73-79.
    [87]Rio J. C., Gutierrez A., Hernando M., et al. Determining the influence of eucalypt lignin composition in paper pulp yield using Py-GC-MS. J. Anal. Appl. Pyrolysis, 2005,74:110-115.
    [88]Greenwood P. F., Heemst J. D.H., Guthrie E. A., et al. Laser micropyrolysis GC-MS of lignin. J. Anal. Appl. Pyrolysis,2002,62:365-373.
    [89]Britt P.F., Buchanan A.C., Thomas K.B., et al. Prolysis mechanism of lignin: Surface-immobolized model compound investigation of acid-catalyzed and free-radical reaction pathways. J. Anal. Appl Pyrol.,1995,33(1):1-19.
    [90]Rio J. C., Speranza M., Gutierrez A., et al. Lignin attack during eucalypt wood decay by selected basidiomycetes:a Py-GC/MS study. J Anai Appl Pyrolysis, 2002,64:421-431.
    [91]Basak B. U., Esin A. V., Funda A., et al. Synthetic fuel production from tea waste: characterisation of bio-oil and bio-char. Fuel,2010,89:176-184.
    [92]Ishimaru K., Hata T., Bronsveld P., et al. Spectroscopic analysis of carbonization behavior of wood, cellulose and lignin. J. Mater. Sci.,2007,42:122-129.
    [93]Keiluweit M., Nico P. S., Johnson M. G., et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol.,2010,44: 1247-1253.
    [94]涂建华,张利波,彭金辉,木质陶瓷的x射线衍射和拉曼光谱研究.无机材料学报,2006,21(4):987-992.
    [95]Cheng H.M., Endo H., Okabe T., et al. Graphitization behavior of wood ceramics and bamboo ceramics as determined by X-ray diffraction. J. Porous Mat.,1999, 6(3):233-237.
    [96]Qian J.M., Jin Z.H., Wang J.P., Structure and basic properties of woodceramics made from phenolic resin-basswood powder composite. Mater. Sci. Eng., A, 2004,368:71-79.
    [97]Dae Y. K., Yoshiharu N., Masahisa W., et al. High-yield carbonization of cellulose by sulfuric acid impregnation. Cellulose,2001,8:29-33.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.