北部湾石油降解菌的多样性分析与咸水球形菌(Salinisphaera)的系统进化及烷烃降解基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,海洋的石油污染正日趋加剧,海上溢油事故的频繁发生对海洋环境和生态系统造成了长期和恶劣的影响。生物修复已经成为治理海洋石油污染的重要方向。因此,开展烷烃降解菌的研究对于认识和利用海洋微生物在油污清除过程中的作用具有非常重要的意义。
     本论文研究了北部湾2008年受海底溢油污染的13个站位样品(其中一个样品为水样,其他均为沉积物)的石油降解菌多样性。经过富集筛选,共得到80株不同的细菌,分属于31个属。16S rRNA基因序列系统进化分析表明,它们主要属于变形菌纲变形菌门、放线菌类群放线菌门、拟杆菌门以及厚壁菌门的细菌,其中尤以变形菌纲α和γ亚群以及放线菌类群居多。这些菌株中包括17株潜在的新种,并对其中一株细菌F44-8进行系统的分类鉴定,结果显示菌株F44-8为黄杆菌属的一个新种,命名为北部湾黄杆菌(Flavobacterium beibuense)。
     本文还对分离自不同海域的12株咸水球形菌属(Salinisphaera)细菌和该属三株模式菌株,通过16S rRNA基因、gyrB基因和BOX-PCR聚类分析的方法,进行了系统的比较分析,发现这15株菌总体进化关系较一致,与其它属种相比较独立成一分支。通过16S rRNA基因分析,这些菌株在属内被区分为4个小分支;gyrB基因将它们分成6个小分支;BOX-PCR分析将它们分成8个小分支。进一步,对这些菌株的烷烃羟化酶(alkB)基因进行了克隆与系统进化分析,发现该属的烷烃降解基因(alkB)具有丰富多样的特征。此外,生理生化特性分析表明,这15株细菌的生理生化特性各异,突出特点是都具有烷烃降解能力,降解范围从C5-C38,大多数菌株对中长链烷烃的降解率达到50%以上。
     在系统进化分析基础上,选取降解效果较好的菌株Salinisphaera sp. C84B14作代表进行了全基因组测序,获得了框架图。结果显示,该菌基因组大小为3.85M,G+C含量为63.35 mol%,拼接成61个Scaffolds,预测有3872个开放阅读框。初步分析发现,该菌共有5个潜在的烷烃单加氧酶基因。RT-PCR分析表明其中的2个功能基因即一个烷烃单加氧酶(Alkane 1-monooxygenase)基因和一个依赖FMNH2的单加氧酶(FMNH2-dependent monooxygenase)基因在中长链烷烃的诱导下有上调表达的现象,表达量比非诱导对照提高2-3倍。此外,对这两个单加氧酶基因的排布进行了分析,发现基因上下游含有许多与烷烃降解相关的醇脱氢酶基因和醛脱氢酶基因。
     综上,本论文一方面对北部湾13个站位的石油降解微生物进行了多样性的分析,获得了大量的石油降解细菌资源并鉴定了一株石油降解细菌新种。此外,初步研究了15株Salinisphaera属细菌的系统进化关系和烷烃羟化酶基因的多样性;测定了其中一株菌的全基因组框架图,并对其2个烷烃单加氧酶基因的诱导表达水平进行了RT-PCR分析。这些结果对于认识海洋降解微生物多样性及其环境作用具有参考价值。
Nowadays, intensified marine oil pollution and the frequent occurrence of oil spill accidents lead to persistent and serious pollution on marine environments and ecosystems. Bioremediation has been used widely to administer upon marine oil pollution. Additionally, one of the most important environmental bioremediation technologies is making the use of microbial degradation. Thus, the isolation and identification of oil-degrading bacteria and study of their degradation genes (alkane hydroxylase) are very important and necessary, which has very important significance in today’s removing marine oil pollution process.
     Analysis of oil degrading bacteria in 13 samples (one is sea water sample, the other are all sediment samples) of Beibu Gulf oil spill pollution area was studied. After enrichment and screening, 80 different strains belonging to 31 genera were isolated. They belonged to Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes, among which theα-, g-Proteobacteria and Actinobacteria consisted of the majority. Additionally, there were 17 potential novel strains. Results of systematic classification and identification of strain F44-8 showed that it represents a novel species in the genus Flavobacterium, of which the name Flavobacterium beibuense sp. nov. is proposed.
     Also analysis of phylogenetic evolution of 12 strains (salinisphaera) isolated from different marine area and three type strains based on 16S rRNA gene, gyrB gene and BOX-PCR clustering showed that they had consistent evolution and formed an independent branch from other genera. However, these strains were divided in genus by 16S rRNA gene, gyrB genes and BOX-PCR, which divided the 15 strains into 4, 6 and 8 small branches respectively. Phylogenetic analysis based on alkB genes from 15 strains of the genus salinisphaera showed that the genus had a great diversity of alkB genes. In addition, these strains had different physiological and biochemical characteristics and had wide range of alkane degradation (C5-C38). The degradation ability of most strains have got to more than 50%.
     The whole genome sequencing of strain salinisphaera sp. C84B14 with excellent degradation effect was carried out. The genome is about 3.85M, consisted of 61 Scaffolds and containing about 3872 ORFs. The content of G+C mol% is 63.35 mol%. After preliminary analysis of alkane-degradation genes, 5 potential functional genes for alkane-degradation were found. Then the experiments of induction and expression with n-alkanes were conducted using RT-PCR, and preliminary analysis suggested there were two functional genes, named Alkane 1-monooxygenase gene and FMNH2-dependent monooxygenase which have the phenomenon of regulated expression during the induction and expression with n-alkanes and the quantity is twice or three times of the control. Finally, gene cluster arrangement of the two functional genes indicated that there were a lot of alcohol dehydrogenase genes and aldehyde dehydrogenase genes ralated with alkane degradation in the upstream and downstream of the two functional genes.
     In sum, research on the diversity of oil-degrading microorganism of 13 samples from oil pollution area in Beibu gulf was carried out and a large number of oil-degrading bacteria were gained and a novel strain was identified; a lot of degrading gene resources were gained in preliminary studies on systematical evolution and alkane-degradation functional genes of these 12 strains of genus salinisphaera and three type strains. These results have reference value in understanding of marine oil-degrading microorganism and environmental function.
引文
[1]陈建秋.中国近海石油污染现状、影响和防治[J].节能与环保, 2002, (3): 15-17.
    [2]高振会,杨建强,崔文林等.海洋溢油对环境与生态损害评估技术及应用[M].北京:海洋出版社. 2005.
    [3]闫峰,张鹰.江苏省海洋石油污染的现状和对策[J].南京师大学报(自然科学版). 2004, 27(1): 94-97.
    [4]龙绍桥.海上溢油行为与归宿数值模拟及其对环境的影响研究[D].中国海洋大学, 2006.
    [5] Ian M, Head D, Martin J and Wilfred FMR. Marine microorganisms make a meal of oil [J]. Natr Rev Microbiol, 2006, 4(3): 173-183.
    [6]方曦,杨文.海洋石油污染研究现状及防治[J].环境科学与管理, 2007, 1673-1212 .
    [7]尚生龙,孙茜,徐恒振,徐学仁.海洋石油污染与测定[J].海洋环境科学, 1997.
    [8] Ocean affairs board.Petroleum in the marine environment.National academy of Washington. DC,1975.
    [9] Hicks BN and Caplan JA. Bioremediation: A natural solution [M]. Pollution Engineering, 1993, 25 (2): 30~33.
    [10] Bragg JR, Prince RC, Harner EJ, et al. Effectiveness of bioremediation for the Exxon Valdez oil spill [J]. Nature, 1994, 368: 413-418.
    [11] Swannell RP, Lee K and McDonagh M. Field evaluation of marine oil spill bioremediation [J]. Microbiol. Review. 1996, 60: 342-365.
    [12] Head IM and Swannell RPJ. Bioremediation of potroleum hydrocarbon contaminants in marine habitats [J]. Curr. Opin. Biotech., 1999, 10: 234-239.
    [13]千田,千弘,佶井上,彭伟欣,张维德.海洋油污染的微生物处理.海洋石油, 2000, 103(1):59-62.
    [14] Juhasz and Naidu. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene[J]. International Biodeterioration & Biodegradation, 2000, 45: 57-88.
    [15]黄胜和,赵珂.生物修复在治理海洋环境污染中的应用.环境保护和循环经济[J].2010,1674-1021.
    [16]王绍玲,熊运实,向兰等.石油及其它有机污染的生物治理法[J].油气田环境保护, 1994,4: 33-38.
    [17] Oh YS. Effects of nutrients on crude oil biodegradation in the upper intertidal zone [J]. Mar.Pollut.Bull., 2001, 42(12): 1367-1372.
    [18] Prichard PH, Costa CF. EPA’s Alaska oil spill bioremediation project [J]. Environ SciTechnol, 1991, 25(3): 372-379.
    [19] Ward DM, Santegoeds CM, Nold SC, et al. Biodiversity within hot spring microbial mat communities: molecular monitoring of enrichment cultures [J]. Antonie Leeuwenhoek, 1997, 71: 143–150.
    [20] Amann RI, Luding E and Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation [J]. Microbiol. Rev., 1995, 59(1): 143–169.
    [21]薛超波,王金良,金珊等.海洋微生物多样性研究进展[J].海洋科学进展, 2004, 22: 377-384.
    [22] Hosein SG, MiUette D, Batler BJ, et al. Catabolicgene probe analysis of art aquifer microbial e0mmunity degrading creosate—related polycyclic aromatic and heterocyclic compounds[J]. Micorbiol Ecot, 1997, 34(2): 81-89.
    [23]张纪忠,黄静娟,盛宗斗等.微生物分类学[M].上海:复旦大学出版社, 1990.
    [24]谢冰,徐亚同.环境微生物的分子生物学研究方法[J].世界科技研究与发展, 2003, 4: 48-52.
    [25] Sykes PJ, Neoh SH, Brisco MJ, et al. Quantification of targets for PCR by use of limiting dilution [J]. Bio Techniques, 1992, 13: 444–449.
    [26] Bond PL, Hugenholtz P, Keller J, et al. Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors [J]. Appl Environ Microbiol, 1995, 61: 1910–1916.
    [27]张海龙,石竹.分子生物学技术在土壤微生物多样性研究中的应用[J].山东教育学院学报, 2006(6): 145-148.
    [28] Gonzalez JM and Moran MA. Numerical dominance of a group of marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater[J]. Appl Environ Microbiol, 1997, 63: 4237–4342.
    [29] Muyzer G, de Waal EC and Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J]. Appl Environ Microbiol, 1993, 59: 695–700.
    [30]张振冬,王淑芬,曹宇峰. DGGE技术及其在海洋环境微生物多样性研究中的应用[J].海洋环境科学, 2008, 27(3): 297-300.
    [31]蕈拥灵.分子生物学技术及其在环境污染治理中的应用研究进展[J].河池学院学报, 2005,25(2):24-29.
    [32]王海舟,张小波.分子生物学在微生物生态学中的应用[J].萍乡高等专科学校学报, 2009, 6(26): 72-75.
    [33]李凤,刘世贵.分子生物学技术在环境微生物研究中的应用[J].世界科技研究与进展, 2003, 25(4): 88-91.
    [34] Duarte GF, Rosado AS, Seldin L, et a1. Extraction of ribosomal RNA and genomicDNA from soilfor studying the diversity of the indigenous bacterial community[J]. Microbiology Methods,1998,32:21-29.
    [35]孙寓姣,王勇,黄霞.荧光原位杂交技术在环境微生物生态学解析中的应用研究[J].环境污染治理技术与设备, 2004,5(11):15-20.
    [36]王晓慧,文湘华. MAR-FISH技术及其在环境微生物群落与功能研究中的应用[J].微生物学通报, 2009, 36(1): 42-148.
    [37]叶亚新,黄通,王金虎.分子生物学技术在环境微生物多相分类中的应用[J].苏州科技学院学报(自科版), 2004, 21(4): 47-53.
    [38] Giovannoni SJ, Britschgi TB, Moyer CL, et al. Genetic diversity in Sargasso Sea bacterioplankton[J]. Nature, 1990, 345: 60-63.
    [39] Okami Y. Marine microorganisms as a source of bioactive agents[J]. Microbiol Ecol 1986, 12: 65-78.
    [40] Sonhgen NL. Benzin, Petroleum, Paraffinol und Paraffin als Kohlenstoff- und Energiequelle für Mikroben. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1913, II 37: 595–609 (in German).
    [41] Yakimov MM, Timmis KN, Golyshin PN. Obligate oil-degrading marine bacteria [J]. Curr Opin Biotech, 2007, 18: 257-266.
    [42] Yuki K, Hideo K. Predominent growth of Alcanivorax strains in oil-contaminated andnutrient-supplemented sea water. Environ Microbiol, 2002, 4(3): 141-147.
    [43] Dyksterhouse SE, Gray JP, Herwig RP, et al. Cycloclasticus pugetii gen. nov., sp. nov. an aromatic hydrocarbon-degrading bacterium from marine sediments [J]. Int J Syst Bacteriol, 1995, 45: 116-123.
    [44] Golyshin PN, Chernikova TN, Abraham WR, et al. Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligatory utilizes hydrocarbons [J]. Int J Syst Evol Microbiol, 2002, 52: 901-911.
    [45] Yakimov MM, Giuliano L, Golyshin PN, et al. Oleispira Antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarcticcoastal sea water [J]. Int J Syst Evol Microbiol, 2003, 53: 779-785.
    [46] Yakimov MM. Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol, 2004, 54, 141-148.
    [47] Gauthier MJ, Lafay B, Christen R, et al. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new extremelyhalotolerant, hydrocarbondegrading marine bacterium[J]. Int J Syst Bacteriol, 1992, 42: 568-576.
    [48] Hedlund BP, Geiselbreche AD, Bair TJ, et al. Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov. [J]. Appl Environ Microbiol, 1999, 65: 251-259.
    [49] Engelhardt MA, Daly K, Swannell RPJ, et al. Isolation and characterization of a novel hydrocarbon-degrading, Gram-positive bacterium, isolated from intertidal beach sediment, and description of Planococcus alkanoclasticus sp. nov. J Appl Microbiol, 2001, 90, 237–247. .
    [50] Melcher RJ, Apitz SE and Hemmingsen BB. Impact of irradiation and polycyclic aromatic hydrocarbon spiking on microbial populations in marine sediment for future aging and biodegradability studies[J]. Appl Environ Microbiol, 2002, 68: 2858-2868.
    [51] Zhuang WQ, Tay JH, Maszenan AM, et al. lsolation of naphthalenedegrading bacteria from tropical marine sediments[J]. Water Sci Technol, 2003, 47: 303-308.
    [52] Gilewicz M, Nimatuzahroh T, Nadalig H, et al. lsolation and characterization of a marine bacterium capable of utilizing 2-methylphenanthrene[J]. Appl Microbiol Biotechnol, 1997, 48: 528-533.
    [53] Crespo-Medina M, Chatziefthimiou A, Cruz-Matos R, et al. Salinisphaera hydrothermalis sp. nov., a mesophilic, halotolerant, facultatively autotrophic, thiosulfate-oxidizing gammaproteobacterium from deep-sea hydrothermal vents, and emended description of the genus Salinisphaera[J]. Int J Syst Evol Microbiol, 2009, 59: 1497-503.
    [54] Wang L, Wang W, Lai Q, et al. Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean[J]. Environ Microbiol, 2010 12: 1230–1242.
    [55] Antunes A, Eder W, Fareleira P, et al. Salinisphaera shabanensis gen. nov., sp. nov., a novel,moderately halophilic bacterium from the brine–seawater interface of the Shaban Deep, Red Sea[J]. Extremophiles, 2003, 7: 29–34.
    [56] Bae GD, Hwang CY, Kim HM, et al. Salinisphaera dokdonensis sp. nov., isolated from surface water of the East Sea, Korea[J]. Int J Syst Evol Microbiol, 2009, 60: 680-685.
    [57]周德庆.微生物学教程[M].高等教育出版社, 2002, 355.
    [58]陈文新.细菌系统发育[J].微生物学报, 1998, 38 (3): 240.
    [59]周煜. 16S rRNA序列分析法在医学微生物鉴定中的应用[J].生物技术通讯, 1999.
    [60] Vandamme P, Pot B, Gillis M, et al. Polyphasic taxonomy, a consensus approach to bacterial systematics[J]. Microbiol. Rev. 1996, 60: 407-438.
    [61] Yamamoto S, Harayama S. Phylogenetic analysis of Acinetobacter strains based on the nucleotide sequences of gyrB genes and on the amino acid sequences of their products[J]. Int J Syst Bacteriol ,1996 ,46 (2): 506-511.
    [62] Yamamoto S, Harayama S. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains[J]. Appl Environ Microbiol, 1995, 61(3): 1104-1109.
    [63] Kasai H, Ezaki T, Harayama S. Differentiation of phylogenetically related slowly growing mycobacteria by their gyrB sequences[J]. J clin Microbiol. 2000, 38(1): 301-308.
    [64] Fukushima M, Kakinuma K, Hayashi H, et al. Detection and identification of mycobacterium species isolates by DNA microarray[J]. J Clin Microbiol, 2003 ,41(6): 2605-2615.
    [65] Troesch A, Nguyen H, Miyada CG, et al. Mycobacterium species identification and rifampin resistance testing with high-density DNA probe arrays[J]. J Clin Microbiol, 1999, 37(1): 49-55.
    [66] Yamamoto S, Harayama S. Phylogenetic relationships of pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes[J]. Int J Syst Bacteriol, 1998, 48(Pt 3): 813-819.
    [67] Suzuki M, Nakagawa Y, Harayanas S, et al. Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov.[J]. Int J Syst Evol Microbiol, 2001, 51: 1639-1652.
    [68] Dauga C. Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae: a model molecule for molecular systematic studies. Int J Syst Evol Microbiol, 2002, 52: 531-547.
    [69] Sundh I, Nilsson M, Borga P. Variation in Microbial Community Structure in Two Boreal Peatlands as Determined by Analysis of Phospholipid Fatty Acid Profiles. Appl Environ Microbiol, 1997, 63(4): 1476-1482.
    [70] Tighe SW, de Lajudie P, Dipietro K, et al. Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol, 2000, 50(2): 787-801.
    [71]刘志恒等.现代微生物学[M].科学出版社, 2002, 46-48.
    [72] Ghosh W, Roy P. Mesorhizobium thiogangeticum sp. nov., a novel sulfur-oxidizing chemolithoautotroph from rhizosphere soil of an Indian tropical leguminous plant. Int J Syst Evol Microbiol, 2006, 56: 91-97.
    [73] Lee, K.Y., Wahl, R. and Barbu, E. Contenu en bases purique et pyrimidiques desacides deoxyribonucleiques des bacteries [J]. Ann Inst Pasteur, 1956, 91: 212-224.
    [74] Tamaoka, J. Determination of DNA base composition. In: Chemical Methods in Prokaryotic Systematics (Goodfellow, M. and O'Donnell, AG, Eds) [M]. John Wiley and Sons, Chichester, 1994.
    [75] Logan, NA. Blackwell Scientific Publications [M], London. 1994.
    [76] Madsen EL. Determining in situ biodegradation: Facts and Challenges[J]. Envrion Sci Technol, 1991, 25(10): 1663-1672.
    [77] Torsvik VL, Goksoyr J, Daae FL. High divesrity in DNA of soil bateria[J]. Appl Envir Microbiol, 1990, 56(2): 782-787.
    [78]王素英,陈文新.黄芪根瘤菌的分类研究[J].微生物学报, 1997, 37(5): 335-343.
    [79]曹雪莲,刘均洪.烷烃加氧酶系的研究进展[J].上海化工, 2007.
    [80] Ashraf W, Mihdhir A, and Murrell JC. Bacterial Oxidation of Propane[J]. FEMS Microbiol Lett, 1994, 122: 1-6.
    [81] Grogan G, Roberts GA, Parsons S, et al. P450(camr), a cytochrome P450 catalysing the stereospecific 6-endo-hydroxylation of (1 R)-(+)-camphor[J]. Appl Microbiol Biotechnol, 2002, 59: 449–454.
    [82] Matson RS, Hare RS and Fulco AJ. Characteristics of a cytochrome P-450-dependent fatty acid omega-2 hydroxylase from Bacillus megaterium [J]. Biochim Biophys Acta. 1977, 487: 487–494.
    [83] Munro AW, Noble MA, Ost TW et al. Flavocytochrome P450 BM3 substrate selectivity and electron transfer in a model cytochrome P450[J]. Subcell Biochem, 2000, 35: 297–315.
    [84] van Beilen JB and Funhoff EG. Expanding the alkane oxygenase toolbox: new enzymes and applications[J]. Curr Opin Biotechnol, 2005, 16: 308-314.
    [85] van Beilen JB and Funhoff EG. Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol, 2007, 74: 13-21.
    [86] van Beilen JB, Veenhoff L, and Witholt B. Alkane hydroxylase systems in Pseudomonas aeruginosa strains able to grow on n-octane [J]. In New Frontiers in Screening for Microbial Biocatalysts, 1998.
    [87] van Beilen JB, et al. Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases[J]. Appl. Environ. Microbiol, 2006, 72: 59–65.
    [88] Sabirova JS, Ferrer M, Golyshin PN, et al. Proteomic insights into metabolic adaptations in Alcanivorax borkumensis induced by alkane utilization [J]. J Bacteriol, 2006, 188: 3763–3773.
    [89] van Beilen JB, Panke S, Lucchini S, et al. Analysis of Pseudomonas putida alkane degradation gene clusters and flanking insertion sequences: evolution and regulation of the Alk-genes [J]. Microbiology, 2001, 147: 1621-1630.
    [90] Whyte LG, Smits THM, van Beilen JB, et al. Cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus spp. strains Q15 and 16531 [J]. Appl Environ Microbiol, 2002, 68: 5933-5942.
    [91] Smits THM, Witholt B, van Beilen JB: Functional characterization of genes involved in alkane oxidation by Pseudomonas aeruginosa[J]. Antonie Van Leeuwenhoek, 2003, 84: 193-200.
    [92] van Beilen JB, Witholt B: Alkane degradation by Pseudomonas. In The Pseudomonads vol 3. Edited by Ramos JL: Kluwer Academic Publishers; 2004.
    [93] Marin M, Yuste L, Rojo F: Differential expression of the components of the two alkane hydroxylases from Pseudomonas aeruginosa[J]. J Bacteriol, 2003, 185: 3232-3237.
    [94] van Beilen JB, Smits THM, Roos FF, et al. Identification of an Amino Acid Position That Determines the Substrate Range of Integral Membrane Alkane Hydroxylases[J]. J Bacteriol, 2005, 187: 85-91.
    [95] Hannemann F, Bichet A, Kerstin ME, et al. Cytochrome P450 systems—biological variations of electron transport chains. Biochimica. et Biophysica. Acta, 2006, 2: 330–334.
    [96] Wentzel A, Ellingsen TE, Kotlar HK, et al. Bacterial metabolism of long-chain n-alkanes[J]. Applied Microbiology Biotechnology, 2007, 76: 1209-1221.
    [97] Feng L, Wang W, Cheng J, et al. Genome and proteome of long-chain alkane degrading Geobacillus thermodentitrificans NG80-2 isolated from a deep-subsurface oil reservoir[J]. Proceedings of the National Academy of Sciences of the United States America, 2007, 104: 5602-5607.
    [98] Fleischmann RD, Adams MD, White O, et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd[J]. Science. 1995, 269 (5223): 496-512.
    [99] Bolotin A, Wincker P, Mauger S, et al. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403[J]. Genome Res. 2001, 11(5): 731-753.
    [100] Kawarabayasi Y, Hino Y, Horikawa H, et al. Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1[J]. DNA Res. 1999, 6(2): 83-101, 145-152.
    [101] Ng WV, Kennedy SP, Mahairas GG et al. Genome sequence of Halobacterium species NRC-1[J]. Proc Natl Acad Sci U S A. 2000, 97(22): 12176-12181.
    [102]张英珊,郑凤英.海洋环境基因组学在海洋生态研究中的应用[J].生态环境2006, 15(1)179-183.
    [103] Hou S, Saw JH, Lee KS, et al. Genome sequence of the deep-sea gamma-proteobacterium Idiomarina loihiensis reveals amino acid fermentation as a source of carbon and energy[J]. Proc Natl Acad Sci U S A. 2004, 101(52): 18036-18041.
    [104] Zhao JS, Deng Y, Manno D, et al. Shewanella spp. genomic evolution for a cold marine lifestyle and in-situ explosive biodegradation[J]. PLoS One. 2010, 5(2): e9109.
    [105] Tripp HJ, Bench SR, Turk KA, et al. Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium[J]. Nature. 2010, 464(7285): 90-94.
    [106] Schneiker S, Martins dos Santos VA, Bartels D, et al. Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol, 2006, 24 : 997-1004.
    [107] Tamura K., Dudley J, Nei M & Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0[J]. Mol Biol Evol, 2007, 24: 1596–1599.
    [108] Saitou N & Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees[J]. Mol Biol Evol, 1987, 4: 406– 425.
    [109] Shieh WY, Chen YW, Chaw SM & Chiu HH. Vibriruber sp. nov., a red, facultatively anaerobic, marine bacterium isolated from sea water[J]. Int J Syst Evol Microbiol, 2003, 53: 479–484.
    [110]东秀珠,蔡妙英等.常见细菌系统鉴定手册[M],科学出版社, 2001.
    [111] Mesbah M & Whitman WB. Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine+cytosine of DNA. J Chromatogr, 1989, 479: 297–306.
    [112] Sasser, M. Identification of bacteria by gas chromatography of cellular fatty acids, Technical Note 101. Newark, DE: MIDI. 1990.
    [113] Tindall, BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources[J]. Syst Appl Microbiol, 1990a, 13: 128-130.
    [114] Tindall, BJ. Lipid composition of Halobacterium lacusprofundi[J]. FEMS Microbiol Letts, 1990b, 66: 199-202.
    [115] Yamamoto S, Kasai H, Arnold DL, et al. Phylogeny of the genus Pseudomonas:intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes[J]. Microbiology, 2000, 146: 2385-2394.
    [116] Versalovic J, Koeuth T, Lupski JR, et al. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Re-search, 1991, 19(24): 6823?6831.
    [117] Kato C, Li L, Tamaoka J, et al. Molecular analysis of the sediment of the 11000m deep Mariana Trench[J]. Extremophilies, 1997, 1: 117-123.
    [118] Li L, Kato C, Horikoshi K. Bacterial diversity in deep sea sediments from different depths[J]. Biodiv Conserv, 1999, 8: 659-677.
    [119] Yangbayashi M, Nogi Y, Li L, et al. Changes in the microbial community in Japan Trench sediment from a depth of 6292m during cultivation without decompression[J]. FEMS Microbiol Let, 1999, 170: 271-279.
    [120] Zengler K, Toledo G, Rappe M, et al. Cultivating the uncultured [J]. Proc Natl Acad Sciv USA, 2002, 99(24):15681-15686.
    [121] Penelope SY, Bronwyn EG, Philip H, et al. Liquid serial dilution is inferior to solid media for isolation of cultures representative of the phylum level diversity of soil bacteria[J]. Appl. Environ. Microbiol, 2004, 70(7): 4363-4366.
    [122] Shayne JJ, Philip H, Parveen S, et al. Laboratory cultivation of widespread and previously uncultured soil bacteria[J]. Appl Environ Microbiol, 2003, 69(12): 7210-7215.
    [123] Komukai-NS, Sugiura K, Yamauchi-IY, et al. Construction of bacterial consortia that degrade Arabian light crude oil[J]. J Ferment Bioeng, 1996, 82: 570-574.
    [124] Gai ZH, Yu B, Li L, et al. Cometabolic degradation of dibenzofuran and dibenzothiophene by a newly isolated carbazole-degrading Sphingomonas sp. strain[J]. Appl. Environ. Microbiol, 2007, 73: 2832–2838.
    [125] Hedlund BP, and Staley JT. Isolation and characterization of Pseudoalteromonas strains with divergent polycyclic aromatic hydrocarbon catabolic properties. Environ Microbiol. 2006 Jan, 8(1): 178-82.
    [126] Sohn JH, Kwon KK, Kang JH, et al. Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment[J]. Int J Syst Evol Microbiol, 2004, 54: 1483–1487.
    [127] Venkateswaran K and Harayama S. Sequential enrichment of microbial populations exhibiting enhanced biodegradation of crude oil[J]. Can J Microbiol, 1995, 41: 767-775.
    [128] Foght JM, Fedorak PM and Westlake DW. Mineralization of [14C] hexadecane and [14C] phenanthrene in crude oil: specificity among bacterial isolates[J]. Can J Microbiol, 1990, 36: 169-175.
    [129] Trzesicka-Mlynarz D and Ward OP. Degradation of polycyclic aromatic hydrocarbons (PAHs) by a mixed culture and its component pure cultures, obtained from PAH-contaminated soil[J]. Can J Microbiol. 1995, 41(6): 470-6.
    [130] Abu GO, Dike PO. A study of natural attenuation processes involved in a microcosm model of a crude oil-impacted wetland sediment in the Niger Delta[J]. Bioresour Technol, 2008, 99(11): 4761-7.
    [131] Van Trappen S, Mergaert J & Swings J. Flavobacterium gelidilacus sp. nov., isolated from microbial mats in Antarctic lakes[J]. Int J Syst Evol Microbiol, 2003, 53: 1241–1245.
    [132] Van Trappen S., Vandecandelaere I, Mergaert J. & Swings J. Flavobacterium degerlachei sp. nov., Flavobacterium frigoris sp. nov. and Flavobacterium micromati sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes[J]. Int J Syst Evol Microbiol, 2004, 54: 85–92.
    [133] Weon HY, Song MH, Son JA, et al. Flavobacterium terrae sp. nov. and Flavobacterium cucumis sp. nov., isolated from greenhouse soil[J]. Int J Syst Evol Microbiol, 2007, 57: 1594–1598.
    [134] Vela AI, Fernandez A, Sánchez-Porro C, et al. Flavobacterium ceti sp. nov., isolated from beaked whales (Ziphius cavirostris)[J]. Int J Syst Evol Microbiol, 2007, 57: 2604–2608.
    [135] Liu H, Liu R, Yang SY, et al. Flavobacterium anhuiense sp. nov., isolated from field soil[J]. Int J Syst Evol Microbiol, 2008, 58, 756–760.
    [136] Bernardet JF & Nakagawa Y. An introduction to the family Flavobacteriaceae. In The Prokaryotes: a Handbook on the Biology of Bacteria, 2006, 3rd edn, vol. 7, pp. 455–480. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer & E. Stackebrandt. New York: Springer.
    [137] Versalovic J, Schneider M, De Bruijin FJ, et al. Genomic fingerprinting of bacteria using repetitive sequence based PCR (rep-PCR)[J]. Methods in Molecular and Cellular Bi-ology,1994, 5: 25?40.
    [138] Yang FH, LI ZHN, JI XZH, et al. Applications of BOX-PCR Technique in Diversity Study of Microorganisms Institute of Microbiology[J], CAS AUG 20, 2008, 35(8): 1282-1286.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.